新增欧拉第41、42题Python解法

This commit is contained in:
2026-01-11 18:04:41 +08:00
parent 9c91d0f0d6
commit 0c344afe01
3 changed files with 155 additions and 0 deletions

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1,78 @@
"""
The nth term of the sequence of triangle numbers is given by, $t_n = \frac{n(n+1)}{2}$ ;
so the first ten triangle numbers are:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
By converting each letter in a word to a number corresponding to its alphabetical position
and adding these values we form a word value. For example, the word value for SKY is 19+11+25 = 55 = t_10 .
If the word value is a triangle number then we shall call the word a triangle word.
Using words.txt (right click and 'Save Link/Target As...'), a 16K text file containing nearly two-thousand
common English words, how many are triangle words?
"""
import time
from pathlib import Path
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
print(f"Time taken by {func.__name__}: {end_time - start_time:.8f} seconds")
return result
return wrapper
def word_to_num(txt: str) -> int:
"""
将单词转换为数字每个字母对应其在字母表中的位置A=1, B=2, ..., Z=26
参数:
txt: 要转换的单词
返回:
单词的数字表示
示例:
>>> word_to_num("SKY")
55
"""
return sum(ord(c) - ord("A") + 1 for c in txt)
def is_triangle_number(n: int) -> bool:
"""
判断一个数是否为三角形数
参数:
n: 要判断的数
返回:
True 如果 n 是三角形数,否则 False
示例:
>>> is_triangle_number(10)
True
>>> is_triangle_number(11)
False
"""
# 使用二次方程求解,如果结果是整数则为三角形数
# 三角形数公式n = k(k+1)/2
# 解得 k = (-1 + sqrt(1 + 8n)) / 2
k = (-1 + (1 + 8 * n) ** 0.5) / 2
return k.is_integer()
@timer
def main() -> None:
with open(Path(__file__).parent / "0042_words.txt", "r") as file:
words = file.read().replace('"', "").split(",")
triangle_words = [word for word in words if is_triangle_number(word_to_num(word))]
print(f"Number of triangle words: {len(triangle_words)}")
if __name__ == "__main__":
main()