Symbol(clack:cancel)
This commit is contained in:
118
solutions/0000_0029/0003.largestprime/euler_3.py
Normal file
118
solutions/0000_0029/0003.largestprime/euler_3.py
Normal file
@@ -0,0 +1,118 @@
|
||||
"""
|
||||
The prime factors of 13195 are 5, 7, 13and 29.
|
||||
What is the largest prime factor of the number 600851475143 ?
|
||||
"""
|
||||
|
||||
import random
|
||||
from math import gcd
|
||||
from typing import List, Set
|
||||
|
||||
|
||||
def is_probable_prime(n: int, trials: int = 10) -> bool:
|
||||
"""Miller-Rabin素性测试(快速判断是否为质数)"""
|
||||
if n < 2:
|
||||
return False
|
||||
if n in (2, 3):
|
||||
return True
|
||||
if n % 2 == 0:
|
||||
return False
|
||||
|
||||
# 将 n-1 写成 d * 2^s 的形式
|
||||
d = n - 1
|
||||
s = 0
|
||||
while d % 2 == 0:
|
||||
d //= 2
|
||||
s += 1
|
||||
|
||||
# 测试
|
||||
for _ in range(trials):
|
||||
a = random.randrange(2, n - 1)
|
||||
x = pow(a, d, n)
|
||||
if x == 1 or x == n - 1:
|
||||
continue
|
||||
for _ in range(s - 1):
|
||||
x = pow(x, 2, n)
|
||||
if x == n - 1:
|
||||
break
|
||||
else:
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def pollards_rho(n: int, max_iter: int = 100000) -> int | None:
|
||||
"""
|
||||
Pollard's Rho 算法:返回n的一个非平凡因子
|
||||
|
||||
Args:
|
||||
n: 待分解的合数
|
||||
max_iter: 最大迭代次数防止无限循环
|
||||
|
||||
Returns:
|
||||
n的一个因子(可能是质数也可能是合数)
|
||||
若失败返回None
|
||||
"""
|
||||
|
||||
if n % 2 == 0:
|
||||
return 2
|
||||
|
||||
# 随机生成多项式 f(x) = x^2 + c (mod n)
|
||||
c = random.randrange(1, n - 1)
|
||||
|
||||
def f(x):
|
||||
return (pow(x, 2, n) + c) % n
|
||||
|
||||
# Floyd 判圈算法
|
||||
x = random.randrange(2, n - 1)
|
||||
y = x
|
||||
d = 1
|
||||
|
||||
iter_count = 0
|
||||
while d == 1 and iter_count < max_iter:
|
||||
x = f(x) # 乌龟:走一步
|
||||
y = f(f(y)) # 兔子:走两步
|
||||
d = gcd(abs(x - y), n)
|
||||
iter_count += 1
|
||||
|
||||
if d == n:
|
||||
# 失败,尝试其他参数(递归或返回None)
|
||||
return pollards_rho(n, max_iter) if max_iter > 1000 else None
|
||||
|
||||
return d
|
||||
|
||||
|
||||
def factorize(n: int | None) -> List[int | None]:
|
||||
"""
|
||||
完整因数分解:递归分解所有质因数
|
||||
|
||||
Args:
|
||||
n: 待分解的正整数
|
||||
|
||||
Returns:
|
||||
质因数列表(可能含重复)
|
||||
"""
|
||||
if n == 1:
|
||||
return []
|
||||
if n is None:
|
||||
return [None]
|
||||
|
||||
# 如果是质数,直接返回
|
||||
if is_probable_prime(n):
|
||||
return [n]
|
||||
|
||||
# 获取一个因子
|
||||
factor = pollards_rho(n)
|
||||
|
||||
if factor is None:
|
||||
return [None]
|
||||
|
||||
# 递归分解
|
||||
return factorize(factor) + factorize(n // factor)
|
||||
|
||||
|
||||
def get_prime_factors(n: int) -> Set[int | None]:
|
||||
"""获取所有不重复的质因数"""
|
||||
return set(factorize(n))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(get_prime_factors(60)) # {2, 3, 5}
|
||||
Reference in New Issue
Block a user