Symbol(clack:cancel)
This commit is contained in:
67
solutions/0000_0029/0023/euler_23_s3.py
Normal file
67
solutions/0000_0029/0023/euler_23_s3.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import time
|
||||
|
||||
|
||||
def timer(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
start_time = time.time()
|
||||
result = func(*args, **kwargs)
|
||||
end_time = time.time()
|
||||
print(f"{func.__name__} took {end_time - start_time:.6f} seconds")
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def sum_of_non_abundant_numbers(limit=28123):
|
||||
"""
|
||||
计算所有不能表示为两个盈数之和的正整数之和
|
||||
|
||||
参数:
|
||||
limit: 上限值,默认为28123(欧拉计划官方推荐值)
|
||||
根据数学证明,所有大于28123的数都可以表示为两个盈数之和
|
||||
|
||||
返回:
|
||||
total: 所有满足条件的正整数之和
|
||||
"""
|
||||
|
||||
# 1. 使用筛法预处理所有数的真因数之和(高效O(n log n))
|
||||
divisor_sum = [0] * (limit + 1)
|
||||
for i in range(1, limit + 1):
|
||||
for j in range(i * 2, limit + 1, i):
|
||||
divisor_sum[j] += i
|
||||
|
||||
# 2. 找出所有盈数
|
||||
abundant_numbers = [i for i in range(12, limit + 1) if divisor_sum[i] > i]
|
||||
|
||||
# 3. 标记可以表示为两个盈数之和的数
|
||||
can_be_expressed = [False] * (limit + 1)
|
||||
abundant_set = list(set(abundant_numbers)) # 用于快速查找
|
||||
|
||||
# 遍历盈数对
|
||||
n_abundant = len(abundant_set)
|
||||
for i in range(n_abundant):
|
||||
a = abundant_set[i]
|
||||
if a > limit:
|
||||
break
|
||||
# 从i开始,允许两个相同的盈数相加(如12+12=24)
|
||||
for j in range(i, n_abundant):
|
||||
s = a + abundant_set[j]
|
||||
if s > limit:
|
||||
break
|
||||
can_be_expressed[s] = True
|
||||
|
||||
# 4. 计算所有不能表示为两个盈数之和的数的和
|
||||
total = sum(i for i in range(1, limit + 1) if not can_be_expressed[i])
|
||||
|
||||
return total
|
||||
|
||||
|
||||
@timer
|
||||
def main():
|
||||
# 执行计算
|
||||
result = sum_of_non_abundant_numbers()
|
||||
print(f"所有不能表示为两个盈数之和的正整数之和是:{result}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
Reference in New Issue
Block a user