Symbol(clack:cancel)

This commit is contained in:
2025-12-26 17:35:14 +08:00
parent 266544ac47
commit 25469e1022
54 changed files with 0 additions and 0 deletions

View File

@@ -0,0 +1,67 @@
import time
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.6f} seconds")
return result
return wrapper
def sum_of_non_abundant_numbers(limit=28123):
"""
计算所有不能表示为两个盈数之和的正整数之和
参数:
limit: 上限值默认为28123欧拉计划官方推荐值
根据数学证明所有大于28123的数都可以表示为两个盈数之和
返回:
total: 所有满足条件的正整数之和
"""
# 1. 使用筛法预处理所有数的真因数之和高效O(n log n)
divisor_sum = [0] * (limit + 1)
for i in range(1, limit + 1):
for j in range(i * 2, limit + 1, i):
divisor_sum[j] += i
# 2. 找出所有盈数
abundant_numbers = [i for i in range(12, limit + 1) if divisor_sum[i] > i]
# 3. 标记可以表示为两个盈数之和的数
can_be_expressed = [False] * (limit + 1)
abundant_set = list(set(abundant_numbers)) # 用于快速查找
# 遍历盈数对
n_abundant = len(abundant_set)
for i in range(n_abundant):
a = abundant_set[i]
if a > limit:
break
# 从i开始允许两个相同的盈数相加如12+12=24
for j in range(i, n_abundant):
s = a + abundant_set[j]
if s > limit:
break
can_be_expressed[s] = True
# 4. 计算所有不能表示为两个盈数之和的数的和
total = sum(i for i in range(1, limit + 1) if not can_be_expressed[i])
return total
@timer
def main():
# 执行计算
result = sum_of_non_abundant_numbers()
print(f"所有不能表示为两个盈数之和的正整数之和是:{result}")
if __name__ == "__main__":
main()