feat(0029.DistinctPowers):添加欧拉项目第29题解决方案

📝 docs(0029.DistinctPowers):添加问题描述和解题思路文档
 feat(euler_29.py):实现基础解决方案和高效算法
 feat(euler_29_best.py):实现基于容斥原理的最优解决方案
This commit is contained in:
2025-12-26 17:31:57 +08:00
parent 2498e79d50
commit 266544ac47
3 changed files with 236 additions and 0 deletions

View File

@@ -0,0 +1,10 @@
# Distinct Powers
只需要比较所有可能重复的底和幂找到有多少这样的a^b就能知道有多少重复。
这个逻辑最为简单,我自己的实现免费处理较大额的底和幂的情况,这点我暂时没想到好方法。
当看到 [WP(Page 5)](https://projecteuler.net/post_id=92910) 的方法,我才明白自己的问题在哪。
这类问题真的是,单纯解出来不算什么,如何使用数学更简单更快捷的解出来,才是难的。
核心关键点是组合数学的[容斥原理](https://zh.wikipedia.org/wiki/%E6%8E%92%E5%AE%B9%E5%8E%9F%E7%90%86)。
因为幂的数学特点可能需要多次应用容斥原理以确保不重复计算。这也是我自己方法和WP方法的差距所在。

View File

@@ -0,0 +1,92 @@
"""
Consider all integer combinations of a^b for 2<=a<=5 and 2<=b<=5 :
2^2 = 4 2^3 = 8 2^4 = 16 2^5 = 32
3^2 = 9 3^3 = 27 3^4 = 81 3^5 = 243
4^2 = 16 4^3 = 64 4^4 = 256 4^5 = 1024
5^2 = 25 5^3 = 125 5^4 = 625 5^5 = 3125
If they are then placed in numerical order, with any repeats removed,
we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by a^b for 2<=a<=100 and 2<=b<=100 ?
"""
import time
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} runtime: {end_time - start_time} seconds")
return result
return wrapper
def count_distinct_terms_efficient(limit_a, limit_b):
# 预计算每个 a 的最小底数表示
base_map = {}
power_map = {}
for a in range(2, limit_a + 1):
base_map[a] = a
power_map[a] = 1
# 找出所有可以表示为幂的数
for power in range(2, 7): # 2^7=128>100所以最多到6次幂
base = 2
while base**power <= limit_a:
value = base**power
# 如果这个值还没有被更小的底数表示
if base_map[value] == value:
base_map[value] = base
power_map[value] = power
base += 1
# 使用集合存储 (base, exponent) 对
seen = set()
for a in range(2, limit_a + 1):
base = base_map[a]
power = power_map[a]
# 如果 a 是某个数的幂,我们需要检查 base 是否还能分解
# 例如16 = 4^2但 4 = 2^2所以 16 = 2^4
# 我们需要找到最终的 base
while base_map[base] != base:
power = power * power_map[base]
base = base_map[base]
for b in range(2, limit_b + 1):
seen.add((base, power * b))
return len(seen)
def do_compute(a_top: int, b_top: int, a_down: int = 2, b_down: int = 2) -> int:
tmp = set()
for a in range(a_down, a_top + 1):
for b in range(b_down, b_top + 1):
tmp.add(a**b)
return len(tmp)
@timer
def main():
"""not bad"""
print(count_distinct_terms_efficient(100, 100))
@timer
def main2():
print(do_compute(100, 100))
if __name__ == "__main__":
main()
main2()

View File

@@ -0,0 +1,134 @@
import math
import time
from functools import lru_cache
from typing import Callable
def timer(func: Callable) -> Callable:
def wrapper(*args, **kwargs):
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
elapsed = end_time - start_time
print(f"Function {func.__name__} execution time: {elapsed:.4f} seconds")
return result
return wrapper
def maxpower(a: int, n: int) -> int:
"""计算最大的整数c使得a^c ≤ n"""
res = int(math.log(n) / math.log(a))
# 处理边界情况
if pow(a, res + 1) <= n:
res += 1
if pow(a, res) > n:
res -= 1
return res
@lru_cache(maxsize=None)
def lcm(a: int, b: int) -> int:
"""计算最小公倍数(使用缓存优化)"""
gcd_val = math.gcd(a, b)
return a // gcd_val * b
def recurse(
lc: int, index: int, sign: int, left: int, right: int, thelist: list[int]
) -> int:
"""容斥原理的递归实现"""
if lc > right:
return 0
res = sign * (right // lc - (left - 1) // lc)
# 递归处理剩余元素
for i in range(index + 1, len(thelist)):
res += recurse(lcm(lc, thelist[i]), i, -sign, left, right, thelist)
return res
def dd(left: int, right: int, a: int, b: int, check: list[bool]) -> int:
"""双层容斥计算"""
res = right // b - (left - 1) // b
thelist = [i for i in range(a, b) if check[i]]
for i in range(len(thelist)):
res -= recurse(lcm(b, thelist[i]), i, 1, left, right, thelist)
return res
def compute_counts(n: int) -> tuple[list[int], int, int]:
"""计算前缀和数组"""
sqn = int(math.isqrt(n)) # 使用isqrt替代sqrt返回整数
maxc = maxpower(2, n)
# 初始化数组
counts = [0] * (maxc + 1)
counts[1] = n - 1
# 主计算循环
for c in range(2, maxc + 1):
check = [True] * (maxc + 1)
umin = (c - 1) * n + 1
umax = c * n
# 优化筛法:使用步长跳过非倍数
for i in range(c, maxc // 2 + 1):
check[i * 2 : maxc + 1 : i] = [False] * ((maxc - i * 2) // i + 1)
# 只处理质数check[f]为True
for f in range(c, maxc + 1):
if check[f]:
counts[f] += dd(umin, umax, c, f, check)
# 计算前缀和
for c in range(2, maxc + 1):
counts[c] += counts[c - 1]
return counts, sqn, maxc
def compute_final_answer(n: int) -> int:
"""计算最终答案"""
counts, sqn, _ = compute_counts(n)
ans = 0
coll = 0
used = [False] * (sqn + 1)
# 统计答案
for i in range(2, sqn + 1):
if not used[i]:
c = maxpower(i, n)
ans += counts[c]
u = i
for j in range(2, c + 1):
u *= i
if u <= sqn:
used[u] = True
else:
coll += c - j + 1
break
# 最终调整
ans += (n - sqn) * (n - 1)
ans -= coll * (n - 1)
return ans
@timer
def main(n: int = 10**6) -> None:
answer = compute_final_answer(n)
print(f"n = {n}, Answer = {answer}")
if __name__ == "__main__":
main(10**7)