feat(eular_12.py):优化质数测试参数并修复组合数计算逻辑

 feat(eular_13.py):新增超大整数加法解决方案
📝 docs(eular_13.md):添加算法说明文档
 feat(eular_14.py):新增Collatz序列最长链计算
📝 docs(eular_14.md):添加性能优化说明
 feat(eular_15.py):新增网格路径组合数学解法
📝 docs(eular_15.md):添加组合数学详细说明
 feat(eular_16.py):新增幂数字和计算功能
 feat(eular_16.hs):新增Haskell版本实现
This commit is contained in:
2025-12-17 16:02:06 +08:00
parent 9762ba3f0c
commit 48f57bd443
9 changed files with 386 additions and 4 deletions

View File

@@ -27,7 +27,6 @@ NOTE
import math import math
import random import random
import re
import time import time
from collections import Counter from collections import Counter
from functools import reduce from functools import reduce
@@ -74,7 +73,7 @@ def main_coding() -> None:
n += 1 n += 1
def is_probable_prime(n: int, trials: int = 10) -> bool: def is_probable_prime(n: int, trials: int = 20) -> bool:
"""Miller-Rabin素性测试快速判断是否为质数""" """Miller-Rabin素性测试快速判断是否为质数"""
if n < 2: if n < 2:
return False return False
@@ -181,7 +180,8 @@ def get_prime_factors(n: int) -> dict[int | None, int]:
def zuheshu(tl: list[int]) -> int: def zuheshu(tl: list[int]) -> int:
return reduce(lambda x, y: x * y, tl) xt = [x + 1 for x in tl]
return reduce(lambda x, y: x * y, xt)
@timer @timer
@@ -200,5 +200,7 @@ def main_math() -> None:
if __name__ == "__main__": if __name__ == "__main__":
print("暴力试算:")
main_coding() main_coding()
# main_math() print("质因数分解:")
main_math()

152
solutions/0013/eular_13.py Normal file
View File

@@ -0,0 +1,152 @@
"""Work out the first ten digits of the sum of the following one-hundred 50-digit numbers."""
import time
txt = """37107287533902102798797998220837590246510135740250
46376937677490009712648124896970078050417018260538
74324986199524741059474233309513058123726617309629
91942213363574161572522430563301811072406154908250
23067588207539346171171980310421047513778063246676
89261670696623633820136378418383684178734361726757
28112879812849979408065481931592621691275889832738
44274228917432520321923589422876796487670272189318
47451445736001306439091167216856844588711603153276
70386486105843025439939619828917593665686757934951
62176457141856560629502157223196586755079324193331
64906352462741904929101432445813822663347944758178
92575867718337217661963751590579239728245598838407
58203565325359399008402633568948830189458628227828
80181199384826282014278194139940567587151170094390
35398664372827112653829987240784473053190104293586
86515506006295864861532075273371959191420517255829
71693888707715466499115593487603532921714970056938
54370070576826684624621495650076471787294438377604
53282654108756828443191190634694037855217779295145
36123272525000296071075082563815656710885258350721
45876576172410976447339110607218265236877223636045
17423706905851860660448207621209813287860733969412
81142660418086830619328460811191061556940512689692
51934325451728388641918047049293215058642563049483
62467221648435076201727918039944693004732956340691
15732444386908125794514089057706229429197107928209
55037687525678773091862540744969844508330393682126
18336384825330154686196124348767681297534375946515
80386287592878490201521685554828717201219257766954
78182833757993103614740356856449095527097864797581
16726320100436897842553539920931837441497806860984
48403098129077791799088218795327364475675590848030
87086987551392711854517078544161852424320693150332
59959406895756536782107074926966537676326235447210
69793950679652694742597709739166693763042633987085
41052684708299085211399427365734116182760315001271
65378607361501080857009149939512557028198746004375
35829035317434717326932123578154982629742552737307
94953759765105305946966067683156574377167401875275
88902802571733229619176668713819931811048770190271
25267680276078003013678680992525463401061632866526
36270218540497705585629946580636237993140746255962
24074486908231174977792365466257246923322810917141
91430288197103288597806669760892938638285025333403
34413065578016127815921815005561868836468420090470
23053081172816430487623791969842487255036638784583
11487696932154902810424020138335124462181441773470
63783299490636259666498587618221225225512486764533
67720186971698544312419572409913959008952310058822
95548255300263520781532296796249481641953868218774
76085327132285723110424803456124867697064507995236
37774242535411291684276865538926205024910326572967
23701913275725675285653248258265463092207058596522
29798860272258331913126375147341994889534765745501
18495701454879288984856827726077713721403798879715
38298203783031473527721580348144513491373226651381
34829543829199918180278916522431027392251122869539
40957953066405232632538044100059654939159879593635
29746152185502371307642255121183693803580388584903
41698116222072977186158236678424689157993532961922
62467957194401269043877107275048102390895523597457
23189706772547915061505504953922979530901129967519
86188088225875314529584099251203829009407770775672
11306739708304724483816533873502340845647058077308
82959174767140363198008187129011875491310547126581
97623331044818386269515456334926366572897563400500
42846280183517070527831839425882145521227251250327
55121603546981200581762165212827652751691296897789
32238195734329339946437501907836945765883352399886
75506164965184775180738168837861091527357929701337
62177842752192623401942399639168044983993173312731
32924185707147349566916674687634660915035914677504
99518671430235219628894890102423325116913619626622
73267460800591547471830798392868535206946944540724
76841822524674417161514036427982273348055556214818
97142617910342598647204516893989422179826088076852
87783646182799346313767754307809363333018982642090
10848802521674670883215120185883543223812876952786
71329612474782464538636993009049310363619763878039
62184073572399794223406235393808339651327408011116
66627891981488087797941876876144230030984490851411
60661826293682836764744779239180335110989069790714
85786944089552990653640447425576083659976645795096
66024396409905389607120198219976047599490197230297
64913982680032973156037120041377903785566085089252
16730939319872750275468906903707539413042652315011
94809377245048795150954100921645863754710598436791
78639167021187492431995700641917969777599028300699
15368713711936614952811305876380278410754449733078
40789923115535562561142322423255033685442488917353
44889911501440648020369068063960672322193204149535
41503128880339536053299340368006977710650566631954
81234880673210146739058568557934581403627822703280
82616570773948327592232845941706525094512325230608
22918802058777319719839450180888072429661980811197
77158542502016545090413245809786882778948721859617
72107838435069186155435662884062257473692284509516
20849603980134001723930671666823555245252804609722
53503534226472524250874054075591789781264330331690"""
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Time taken: {end_time - start_time} seconds")
return result
return wrapper
def by_str_sum(data: list[str], left: int | None = None) -> str:
res: list[str] = []
carry = 0
max_len = max([len(i) for i in data])
data = [i[::-1] for i in data]
for n in range(max_len):
carry = sum(int(i[n]) for i in data if len(i) > n) + carry
res.insert(0, str(carry % 10))
carry //= 10
while carry > 0:
res.insert(0, str(carry % 10))
carry //= 10
return "".join(res) if left is None else "".join(res[:left])
@timer
def main() -> None:
data = txt.split("\n")
print(by_str_sum(data, left=10))
def bigint_sum_py(data: list[str], left: int | None = None) -> str:
datax = [int(i) for i in data]
return str(sum(datax)) if left is None else str(sum(datax))[:left]
@timer
def main_py():
data = txt.split("\n")
print(bigint_sum_py(data, left=10))
if __name__ == "__main__":
main()
main_py()

8
solutions/0013/readme.md Normal file
View File

@@ -0,0 +1,8 @@
# 超大整数加法
简单来说就是按位运算原始数据就按照string进行读取每次计算一位数值
就和小学时学加法一样计算,把加的数的最右位放入结果,左边的数存为当前的记录中,
计算完所有数之后,在把寄存结果处理一下,就可以了。
这也是一种暴力解决的方案。在实际运行中和python自身实现的运算大整数运算大差不差吧
但这个暴力方案时间稳定,这个倒是没错的。

View File

@@ -0,0 +1,77 @@
"""
The following iterative sequence is defined for the set of positive integers:
n -> n/2 (is even)
n -> 3n + 1 (is odd)
Using the rule above and starting with 13, we generate the following sequence:
13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1
It can be seen that this sequence (starting at 13 and finishing at 1 ) contains 10 terms.
Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
Which starting number, under one million, produces the longest chain?
"""
import time
from functools import cache
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.6f} seconds")
return result
return wrapper
def is_even(n: int) -> bool:
return n & 1 == 0
def collatz_sequence(n: int) -> list[int]:
sequence = [n]
while sequence[-1] != 1:
if is_even(n):
n = n // 2
else:
n = 3 * n + 1
sequence.append(n)
return sequence
def longest_collatz_sequence(limit: int) -> int:
longest_length = 0
longest_start = 0
for i in range(1, limit + 1):
length = len(collatz_sequence(i))
if length > longest_length:
longest_length = length
longest_start = i
return longest_start
@cache
def chain_length(n):
if n == 1:
return 0
next_term = 3 * n + 1 if n % 2 else n // 2
return chain_length(next_term) + 1
@timer
def main_do() -> None:
print(longest_collatz_sequence(1000000))
@timer
def main_cache() -> None:
print(max(range(1, 1000001), key=chain_length))
if __name__ == "__main__":
main_do()
main_cache()

View File

@@ -0,0 +1,3 @@
暴力试算,虽然总能解决问题,但是要损耗时间。有的时候没什么好想法的时候,的确可以用来作为解法。
但是从hash列表的角度来说已经计算过的数值可以用来避免重复计算提高效率。
这一点还是很值得记录的。

View File

@@ -0,0 +1,21 @@
"""
Starting in the top left corner of a 2 X 2 grid,
and only being able to move to the right and down,
there are exactly 6 routes to the bottom right corner.
How many such routes are there through a 20 X 20 grid?
"""
import math
def grid_paths(m: int, n: int) -> int:
return math.comb(m + n, m)
def main() -> None:
print(grid_paths(20, 20))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,88 @@
# 组合数学
### 我的错误
我搞了很久在想自己在这个问题上放的错误。原始错误是m+n长度路径应该选择n-1个情况进行选择因为最右的点只有一个选择。
真的是错得离谱了。正确理解应该是程度为m+n的长度上选择在m或者n的次序上改变方向。
那我就整体回顾一下组合数学吧。
### 另一条路
[整数序列 A000984](https://oeis.org/A000984) 。这里也有这个的详细说明和讨论。
### 组合数学概念速览
组合数学Combinatorics是研究离散对象的计数、排列、组合及结构关系的数学分支广泛应用于计算机科学、统计学、密码学等领域。其核心思想是**系统化地处理有限结构的排列与选择问题**,以下是其核心原理和关键定理的概述:
#### **一、基本原理**
1. **加法原理**
若完成一项任务有 \(m\) 种互斥的方法,另一种任务有 \(n\) 种方法,则选择其中一种任务的方法数为 \(m+n\)。
**示例**从3本数学书和4本历史书中选一本有 \(3+4=7\) 种选法。
2. **乘法原理**
若完成一项任务需连续执行多个步骤,第一步有 \(m\) 种方法,第二步有 \(n\) 种方法,则总方法数为 \(m \times n\)。
**示例**从3件上衣和2条裤子搭配有 \(3 \times 2=6\) 种搭配。
#### **二、关键定理与公式**
1. **排列与组合**
- **排列**(顺序相关):
\(n\) 个不同元素取 \(r\) 个排列:
\[
P(n,r) = \frac{n!}{(n-r)!}
\]
- **组合**(顺序无关):
\(n\) 个不同元素取 \(r\) 个组合:
\[
C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}
\]
2. **二项式定理**
展开二项式幂的关键公式:
\[
(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}
\]
组合数 \(\binom{n}{k}\) 称为**二项式系数**,体现在杨辉三角(帕斯卡三角)中。
3. **鸽巢原理(抽屉原理)**
将 \(n\) 个物品放入 \(m\) 个容器,若 \(n>m\),则至少有一个容器包含至少两个物品。
**应用**:证明重复性存在(如生日悖论)。
4. **容斥原理**
计算多个集合的并集大小,避免重复计数:
\[
|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \cdots + (-1)^{n+1} |A_1 \cap \cdots \cap A_n|
\]
**应用**:错排问题、素数计数。
5. **生成函数**
将序列转化为形式幂级数,化组合问题为代数问题。例如,求组合数时:
\[
(1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k
\]
普通生成函数用于计数,指数生成函数用于排列问题。
6. **卡特兰数**
定义:
\[
C_n = \frac{1}{n+1} \binom{2n}{n}
\]
应用于括号匹配、二叉树计数、网格路径问题。
7. **斯特林数**
- **第二类斯特林数** \(S(n,k)\):将 \(n\) 个不同元素划分为 \(k\) 个非空集合的方法数。
- **第一类斯特林数**:与轮换排列相关。
8. **波利亚计数定理**
考虑对称性下的计数问题,用于染色、图形枚举等场景。
#### **三、核心思想**
- **一一对应**:将复杂计数映射到已知模型(如将组合问题转化为方程整数解个数)。
- **递归与递推**:通过子问题构造关系式(如斐波那契数列、错排公式)。
- **对称性与分类讨论**:利用对称性简化问题,对不重不漏的分类要求严格。
#### **四、应用领域**
- **算法设计**:分析算法复杂度(如动态规划状态数)。
- **图论**:树、图的计数与结构分析。
- **编码理论**:纠错码的构造与组合设计。
- **概率论**:古典概型中的样本空间计数。

View File

@@ -0,0 +1,14 @@
import Data.Char (digitToInt)
-- 计算 b^n 的各位数字之和
powerDigitSum :: Integer -> Integer -> Integer
powerDigitSum b n = sum . map digitToInt . show $ b ^ n
-- 示例使用
main :: IO ()
main = do
-- 测试用例
print $ powerDigitSum 2 15 -- 32768 → 3+2+7+6+8 = 26
print $ powerDigitSum 10 100 -- 1后跟100个0 → 1
print $ powerDigitSum 3 3 -- 27 → 2+7 = 9
print $ powerDigitSum 2 1000

View File

@@ -0,0 +1,17 @@
"""
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
What is the sum of the digits of the number 2^1000 ?
"""
def power_digit_sum(n):
return sum(int(digit) for digit in str(2**n))
def main():
print(power_digit_sum(1000))
if __name__ == "__main__":
main()