✨ feat(eular_12.py):优化质数测试参数并修复组合数计算逻辑
✨ feat(eular_13.py):新增超大整数加法解决方案 📝 docs(eular_13.md):添加算法说明文档 ✨ feat(eular_14.py):新增Collatz序列最长链计算 📝 docs(eular_14.md):添加性能优化说明 ✨ feat(eular_15.py):新增网格路径组合数学解法 📝 docs(eular_15.md):添加组合数学详细说明 ✨ feat(eular_16.py):新增幂数字和计算功能 ✨ feat(eular_16.hs):新增Haskell版本实现
This commit is contained in:
@@ -27,7 +27,6 @@ NOTE:
|
|||||||
|
|
||||||
import math
|
import math
|
||||||
import random
|
import random
|
||||||
import re
|
|
||||||
import time
|
import time
|
||||||
from collections import Counter
|
from collections import Counter
|
||||||
from functools import reduce
|
from functools import reduce
|
||||||
@@ -74,7 +73,7 @@ def main_coding() -> None:
|
|||||||
n += 1
|
n += 1
|
||||||
|
|
||||||
|
|
||||||
def is_probable_prime(n: int, trials: int = 10) -> bool:
|
def is_probable_prime(n: int, trials: int = 20) -> bool:
|
||||||
"""Miller-Rabin素性测试(快速判断是否为质数)"""
|
"""Miller-Rabin素性测试(快速判断是否为质数)"""
|
||||||
if n < 2:
|
if n < 2:
|
||||||
return False
|
return False
|
||||||
@@ -181,7 +180,8 @@ def get_prime_factors(n: int) -> dict[int | None, int]:
|
|||||||
|
|
||||||
|
|
||||||
def zuheshu(tl: list[int]) -> int:
|
def zuheshu(tl: list[int]) -> int:
|
||||||
return reduce(lambda x, y: x * y, tl)
|
xt = [x + 1 for x in tl]
|
||||||
|
return reduce(lambda x, y: x * y, xt)
|
||||||
|
|
||||||
|
|
||||||
@timer
|
@timer
|
||||||
@@ -200,5 +200,7 @@ def main_math() -> None:
|
|||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
print("暴力试算:")
|
||||||
main_coding()
|
main_coding()
|
||||||
# main_math()
|
print("质因数分解:")
|
||||||
|
main_math()
|
||||||
|
|||||||
152
solutions/0013/eular_13.py
Normal file
152
solutions/0013/eular_13.py
Normal file
@@ -0,0 +1,152 @@
|
|||||||
|
"""Work out the first ten digits of the sum of the following one-hundred 50-digit numbers."""
|
||||||
|
|
||||||
|
import time
|
||||||
|
|
||||||
|
txt = """37107287533902102798797998220837590246510135740250
|
||||||
|
46376937677490009712648124896970078050417018260538
|
||||||
|
74324986199524741059474233309513058123726617309629
|
||||||
|
91942213363574161572522430563301811072406154908250
|
||||||
|
23067588207539346171171980310421047513778063246676
|
||||||
|
89261670696623633820136378418383684178734361726757
|
||||||
|
28112879812849979408065481931592621691275889832738
|
||||||
|
44274228917432520321923589422876796487670272189318
|
||||||
|
47451445736001306439091167216856844588711603153276
|
||||||
|
70386486105843025439939619828917593665686757934951
|
||||||
|
62176457141856560629502157223196586755079324193331
|
||||||
|
64906352462741904929101432445813822663347944758178
|
||||||
|
92575867718337217661963751590579239728245598838407
|
||||||
|
58203565325359399008402633568948830189458628227828
|
||||||
|
80181199384826282014278194139940567587151170094390
|
||||||
|
35398664372827112653829987240784473053190104293586
|
||||||
|
86515506006295864861532075273371959191420517255829
|
||||||
|
71693888707715466499115593487603532921714970056938
|
||||||
|
54370070576826684624621495650076471787294438377604
|
||||||
|
53282654108756828443191190634694037855217779295145
|
||||||
|
36123272525000296071075082563815656710885258350721
|
||||||
|
45876576172410976447339110607218265236877223636045
|
||||||
|
17423706905851860660448207621209813287860733969412
|
||||||
|
81142660418086830619328460811191061556940512689692
|
||||||
|
51934325451728388641918047049293215058642563049483
|
||||||
|
62467221648435076201727918039944693004732956340691
|
||||||
|
15732444386908125794514089057706229429197107928209
|
||||||
|
55037687525678773091862540744969844508330393682126
|
||||||
|
18336384825330154686196124348767681297534375946515
|
||||||
|
80386287592878490201521685554828717201219257766954
|
||||||
|
78182833757993103614740356856449095527097864797581
|
||||||
|
16726320100436897842553539920931837441497806860984
|
||||||
|
48403098129077791799088218795327364475675590848030
|
||||||
|
87086987551392711854517078544161852424320693150332
|
||||||
|
59959406895756536782107074926966537676326235447210
|
||||||
|
69793950679652694742597709739166693763042633987085
|
||||||
|
41052684708299085211399427365734116182760315001271
|
||||||
|
65378607361501080857009149939512557028198746004375
|
||||||
|
35829035317434717326932123578154982629742552737307
|
||||||
|
94953759765105305946966067683156574377167401875275
|
||||||
|
88902802571733229619176668713819931811048770190271
|
||||||
|
25267680276078003013678680992525463401061632866526
|
||||||
|
36270218540497705585629946580636237993140746255962
|
||||||
|
24074486908231174977792365466257246923322810917141
|
||||||
|
91430288197103288597806669760892938638285025333403
|
||||||
|
34413065578016127815921815005561868836468420090470
|
||||||
|
23053081172816430487623791969842487255036638784583
|
||||||
|
11487696932154902810424020138335124462181441773470
|
||||||
|
63783299490636259666498587618221225225512486764533
|
||||||
|
67720186971698544312419572409913959008952310058822
|
||||||
|
95548255300263520781532296796249481641953868218774
|
||||||
|
76085327132285723110424803456124867697064507995236
|
||||||
|
37774242535411291684276865538926205024910326572967
|
||||||
|
23701913275725675285653248258265463092207058596522
|
||||||
|
29798860272258331913126375147341994889534765745501
|
||||||
|
18495701454879288984856827726077713721403798879715
|
||||||
|
38298203783031473527721580348144513491373226651381
|
||||||
|
34829543829199918180278916522431027392251122869539
|
||||||
|
40957953066405232632538044100059654939159879593635
|
||||||
|
29746152185502371307642255121183693803580388584903
|
||||||
|
41698116222072977186158236678424689157993532961922
|
||||||
|
62467957194401269043877107275048102390895523597457
|
||||||
|
23189706772547915061505504953922979530901129967519
|
||||||
|
86188088225875314529584099251203829009407770775672
|
||||||
|
11306739708304724483816533873502340845647058077308
|
||||||
|
82959174767140363198008187129011875491310547126581
|
||||||
|
97623331044818386269515456334926366572897563400500
|
||||||
|
42846280183517070527831839425882145521227251250327
|
||||||
|
55121603546981200581762165212827652751691296897789
|
||||||
|
32238195734329339946437501907836945765883352399886
|
||||||
|
75506164965184775180738168837861091527357929701337
|
||||||
|
62177842752192623401942399639168044983993173312731
|
||||||
|
32924185707147349566916674687634660915035914677504
|
||||||
|
99518671430235219628894890102423325116913619626622
|
||||||
|
73267460800591547471830798392868535206946944540724
|
||||||
|
76841822524674417161514036427982273348055556214818
|
||||||
|
97142617910342598647204516893989422179826088076852
|
||||||
|
87783646182799346313767754307809363333018982642090
|
||||||
|
10848802521674670883215120185883543223812876952786
|
||||||
|
71329612474782464538636993009049310363619763878039
|
||||||
|
62184073572399794223406235393808339651327408011116
|
||||||
|
66627891981488087797941876876144230030984490851411
|
||||||
|
60661826293682836764744779239180335110989069790714
|
||||||
|
85786944089552990653640447425576083659976645795096
|
||||||
|
66024396409905389607120198219976047599490197230297
|
||||||
|
64913982680032973156037120041377903785566085089252
|
||||||
|
16730939319872750275468906903707539413042652315011
|
||||||
|
94809377245048795150954100921645863754710598436791
|
||||||
|
78639167021187492431995700641917969777599028300699
|
||||||
|
15368713711936614952811305876380278410754449733078
|
||||||
|
40789923115535562561142322423255033685442488917353
|
||||||
|
44889911501440648020369068063960672322193204149535
|
||||||
|
41503128880339536053299340368006977710650566631954
|
||||||
|
81234880673210146739058568557934581403627822703280
|
||||||
|
82616570773948327592232845941706525094512325230608
|
||||||
|
22918802058777319719839450180888072429661980811197
|
||||||
|
77158542502016545090413245809786882778948721859617
|
||||||
|
72107838435069186155435662884062257473692284509516
|
||||||
|
20849603980134001723930671666823555245252804609722
|
||||||
|
53503534226472524250874054075591789781264330331690"""
|
||||||
|
|
||||||
|
|
||||||
|
def timer(func):
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
start_time = time.time()
|
||||||
|
result = func(*args, **kwargs)
|
||||||
|
end_time = time.time()
|
||||||
|
print(f"Time taken: {end_time - start_time} seconds")
|
||||||
|
return result
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def by_str_sum(data: list[str], left: int | None = None) -> str:
|
||||||
|
res: list[str] = []
|
||||||
|
carry = 0
|
||||||
|
max_len = max([len(i) for i in data])
|
||||||
|
data = [i[::-1] for i in data]
|
||||||
|
for n in range(max_len):
|
||||||
|
carry = sum(int(i[n]) for i in data if len(i) > n) + carry
|
||||||
|
res.insert(0, str(carry % 10))
|
||||||
|
carry //= 10
|
||||||
|
while carry > 0:
|
||||||
|
res.insert(0, str(carry % 10))
|
||||||
|
carry //= 10
|
||||||
|
return "".join(res) if left is None else "".join(res[:left])
|
||||||
|
|
||||||
|
|
||||||
|
@timer
|
||||||
|
def main() -> None:
|
||||||
|
data = txt.split("\n")
|
||||||
|
print(by_str_sum(data, left=10))
|
||||||
|
|
||||||
|
|
||||||
|
def bigint_sum_py(data: list[str], left: int | None = None) -> str:
|
||||||
|
datax = [int(i) for i in data]
|
||||||
|
return str(sum(datax)) if left is None else str(sum(datax))[:left]
|
||||||
|
|
||||||
|
|
||||||
|
@timer
|
||||||
|
def main_py():
|
||||||
|
data = txt.split("\n")
|
||||||
|
print(bigint_sum_py(data, left=10))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
|
main_py()
|
||||||
8
solutions/0013/readme.md
Normal file
8
solutions/0013/readme.md
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
# 超大整数加法
|
||||||
|
|
||||||
|
简单来说,就是按位运算,原始数据就按照string进行读取,每次计算一位数值,
|
||||||
|
就和小学时学加法一样计算,把加的数的最右位放入结果,左边的数存为当前的记录中,
|
||||||
|
计算完所有数之后,在把寄存结果处理一下,就可以了。
|
||||||
|
|
||||||
|
这也是一种暴力解决的方案。在实际运行中,和python自身实现的运算大整数运算大差不差吧,
|
||||||
|
但这个暴力方案时间稳定,这个倒是没错的。
|
||||||
77
solutions/0014.CollatzSeq/eular_14.py
Normal file
77
solutions/0014.CollatzSeq/eular_14.py
Normal file
@@ -0,0 +1,77 @@
|
|||||||
|
"""
|
||||||
|
The following iterative sequence is defined for the set of positive integers:
|
||||||
|
|
||||||
|
n -> n/2 (is even)
|
||||||
|
n -> 3n + 1 (is odd)
|
||||||
|
|
||||||
|
Using the rule above and starting with 13, we generate the following sequence:
|
||||||
|
13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1
|
||||||
|
|
||||||
|
It can be seen that this sequence (starting at 13 and finishing at 1 ) contains 10 terms.
|
||||||
|
Although it has not been proved yet (Collatz Problem), it is thought that all starting numbers finish at 1.
|
||||||
|
|
||||||
|
Which starting number, under one million, produces the longest chain?
|
||||||
|
"""
|
||||||
|
|
||||||
|
import time
|
||||||
|
from functools import cache
|
||||||
|
|
||||||
|
|
||||||
|
def timer(func):
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
start_time = time.time()
|
||||||
|
result = func(*args, **kwargs)
|
||||||
|
end_time = time.time()
|
||||||
|
print(f"{func.__name__} took {end_time - start_time:.6f} seconds")
|
||||||
|
return result
|
||||||
|
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
|
||||||
|
def is_even(n: int) -> bool:
|
||||||
|
return n & 1 == 0
|
||||||
|
|
||||||
|
|
||||||
|
def collatz_sequence(n: int) -> list[int]:
|
||||||
|
sequence = [n]
|
||||||
|
while sequence[-1] != 1:
|
||||||
|
if is_even(n):
|
||||||
|
n = n // 2
|
||||||
|
else:
|
||||||
|
n = 3 * n + 1
|
||||||
|
sequence.append(n)
|
||||||
|
return sequence
|
||||||
|
|
||||||
|
|
||||||
|
def longest_collatz_sequence(limit: int) -> int:
|
||||||
|
longest_length = 0
|
||||||
|
longest_start = 0
|
||||||
|
for i in range(1, limit + 1):
|
||||||
|
length = len(collatz_sequence(i))
|
||||||
|
if length > longest_length:
|
||||||
|
longest_length = length
|
||||||
|
longest_start = i
|
||||||
|
return longest_start
|
||||||
|
|
||||||
|
|
||||||
|
@cache
|
||||||
|
def chain_length(n):
|
||||||
|
if n == 1:
|
||||||
|
return 0
|
||||||
|
next_term = 3 * n + 1 if n % 2 else n // 2
|
||||||
|
return chain_length(next_term) + 1
|
||||||
|
|
||||||
|
|
||||||
|
@timer
|
||||||
|
def main_do() -> None:
|
||||||
|
print(longest_collatz_sequence(1000000))
|
||||||
|
|
||||||
|
|
||||||
|
@timer
|
||||||
|
def main_cache() -> None:
|
||||||
|
print(max(range(1, 1000001), key=chain_length))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main_do()
|
||||||
|
main_cache()
|
||||||
3
solutions/0014.CollatzSeq/readme.md
Normal file
3
solutions/0014.CollatzSeq/readme.md
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
暴力试算,虽然总能解决问题,但是要损耗时间。有的时候没什么好想法的时候,的确可以用来作为解法。
|
||||||
|
但是从hash列表的角度来说,已经计算过的数值,可以用来避免重复计算,提高效率。
|
||||||
|
这一点还是很值得记录的。
|
||||||
21
solutions/0015.gridpath/eular_15.py
Normal file
21
solutions/0015.gridpath/eular_15.py
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
"""
|
||||||
|
Starting in the top left corner of a 2 X 2 grid,
|
||||||
|
and only being able to move to the right and down,
|
||||||
|
there are exactly 6 routes to the bottom right corner.
|
||||||
|
|
||||||
|
How many such routes are there through a 20 X 20 grid?
|
||||||
|
"""
|
||||||
|
|
||||||
|
import math
|
||||||
|
|
||||||
|
|
||||||
|
def grid_paths(m: int, n: int) -> int:
|
||||||
|
return math.comb(m + n, m)
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
print(grid_paths(20, 20))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
88
solutions/0015.gridpath/readme.md
Normal file
88
solutions/0015.gridpath/readme.md
Normal file
@@ -0,0 +1,88 @@
|
|||||||
|
# 组合数学
|
||||||
|
|
||||||
|
### 我的错误
|
||||||
|
|
||||||
|
我搞了很久在想自己在这个问题上放的错误。原始错误是,m+n长度路径,应该选择(n-1)个情况进行选择,因为最右的点只有一个选择。
|
||||||
|
真的是错得离谱了。正确理解应该是程度为m+n的长度上,选择在m或者n的次序上改变方向。
|
||||||
|
|
||||||
|
那我就整体回顾一下组合数学吧。
|
||||||
|
|
||||||
|
### 另一条路
|
||||||
|
|
||||||
|
[整数序列 A000984](https://oeis.org/A000984) 。这里也有这个的详细说明和讨论。
|
||||||
|
|
||||||
|
### 组合数学概念速览
|
||||||
|
|
||||||
|
组合数学(Combinatorics)是研究离散对象的计数、排列、组合及结构关系的数学分支,广泛应用于计算机科学、统计学、密码学等领域。其核心思想是**系统化地处理有限结构的排列与选择问题**,以下是其核心原理和关键定理的概述:
|
||||||
|
|
||||||
|
#### **一、基本原理**
|
||||||
|
1. **加法原理**
|
||||||
|
若完成一项任务有 \(m\) 种互斥的方法,另一种任务有 \(n\) 种方法,则选择其中一种任务的方法数为 \(m+n\)。
|
||||||
|
**示例**:从3本数学书和4本历史书中选一本,有 \(3+4=7\) 种选法。
|
||||||
|
|
||||||
|
2. **乘法原理**
|
||||||
|
若完成一项任务需连续执行多个步骤,第一步有 \(m\) 种方法,第二步有 \(n\) 种方法,则总方法数为 \(m \times n\)。
|
||||||
|
**示例**:从3件上衣和2条裤子搭配,有 \(3 \times 2=6\) 种搭配。
|
||||||
|
|
||||||
|
#### **二、关键定理与公式**
|
||||||
|
1. **排列与组合**
|
||||||
|
- **排列**(顺序相关):
|
||||||
|
\(n\) 个不同元素取 \(r\) 个排列:
|
||||||
|
\[
|
||||||
|
P(n,r) = \frac{n!}{(n-r)!}
|
||||||
|
\]
|
||||||
|
- **组合**(顺序无关):
|
||||||
|
\(n\) 个不同元素取 \(r\) 个组合:
|
||||||
|
\[
|
||||||
|
C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}
|
||||||
|
\]
|
||||||
|
|
||||||
|
2. **二项式定理**
|
||||||
|
展开二项式幂的关键公式:
|
||||||
|
\[
|
||||||
|
(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^{k} y^{n-k}
|
||||||
|
\]
|
||||||
|
组合数 \(\binom{n}{k}\) 称为**二项式系数**,体现在杨辉三角(帕斯卡三角)中。
|
||||||
|
|
||||||
|
3. **鸽巢原理(抽屉原理)**
|
||||||
|
将 \(n\) 个物品放入 \(m\) 个容器,若 \(n>m\),则至少有一个容器包含至少两个物品。
|
||||||
|
**应用**:证明重复性存在(如生日悖论)。
|
||||||
|
|
||||||
|
4. **容斥原理**
|
||||||
|
计算多个集合的并集大小,避免重复计数:
|
||||||
|
\[
|
||||||
|
|A_1 \cup A_2 \cup \cdots \cup A_n| = \sum |A_i| - \sum |A_i \cap A_j| + \cdots + (-1)^{n+1} |A_1 \cap \cdots \cap A_n|
|
||||||
|
\]
|
||||||
|
**应用**:错排问题、素数计数。
|
||||||
|
|
||||||
|
5. **生成函数**
|
||||||
|
将序列转化为形式幂级数,化组合问题为代数问题。例如,求组合数时:
|
||||||
|
\[
|
||||||
|
(1+x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k
|
||||||
|
\]
|
||||||
|
普通生成函数用于计数,指数生成函数用于排列问题。
|
||||||
|
|
||||||
|
6. **卡特兰数**
|
||||||
|
定义:
|
||||||
|
\[
|
||||||
|
C_n = \frac{1}{n+1} \binom{2n}{n}
|
||||||
|
\]
|
||||||
|
应用于括号匹配、二叉树计数、网格路径问题。
|
||||||
|
|
||||||
|
7. **斯特林数**
|
||||||
|
- **第二类斯特林数** \(S(n,k)\):将 \(n\) 个不同元素划分为 \(k\) 个非空集合的方法数。
|
||||||
|
- **第一类斯特林数**:与轮换排列相关。
|
||||||
|
|
||||||
|
8. **波利亚计数定理**
|
||||||
|
考虑对称性下的计数问题,用于染色、图形枚举等场景。
|
||||||
|
|
||||||
|
#### **三、核心思想**
|
||||||
|
- **一一对应**:将复杂计数映射到已知模型(如将组合问题转化为方程整数解个数)。
|
||||||
|
- **递归与递推**:通过子问题构造关系式(如斐波那契数列、错排公式)。
|
||||||
|
- **对称性与分类讨论**:利用对称性简化问题,对不重不漏的分类要求严格。
|
||||||
|
|
||||||
|
#### **四、应用领域**
|
||||||
|
- **算法设计**:分析算法复杂度(如动态规划状态数)。
|
||||||
|
- **图论**:树、图的计数与结构分析。
|
||||||
|
- **编码理论**:纠错码的构造与组合设计。
|
||||||
|
- **概率论**:古典概型中的样本空间计数。
|
||||||
14
solutions/0016.PowerDigitSum/eular_16.hs
Normal file
14
solutions/0016.PowerDigitSum/eular_16.hs
Normal file
@@ -0,0 +1,14 @@
|
|||||||
|
import Data.Char (digitToInt)
|
||||||
|
|
||||||
|
-- 计算 b^n 的各位数字之和
|
||||||
|
powerDigitSum :: Integer -> Integer -> Integer
|
||||||
|
powerDigitSum b n = sum . map digitToInt . show $ b ^ n
|
||||||
|
|
||||||
|
-- 示例使用
|
||||||
|
main :: IO ()
|
||||||
|
main = do
|
||||||
|
-- 测试用例
|
||||||
|
print $ powerDigitSum 2 15 -- 32768 → 3+2+7+6+8 = 26
|
||||||
|
print $ powerDigitSum 10 100 -- 1后跟100个0 → 1
|
||||||
|
print $ powerDigitSum 3 3 -- 27 → 2+7 = 9
|
||||||
|
print $ powerDigitSum 2 1000
|
||||||
17
solutions/0016.PowerDigitSum/eular_16.py
Normal file
17
solutions/0016.PowerDigitSum/eular_16.py
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
"""
|
||||||
|
2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
|
||||||
|
|
||||||
|
What is the sum of the digits of the number 2^1000 ?
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
def power_digit_sum(n):
|
||||||
|
return sum(int(digit) for digit in str(2**n))
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
print(power_digit_sum(1000))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
||||||
Reference in New Issue
Block a user