feat(eular_12.py):添加Miller-Rabin素性测试和Pollard's Rho算法实现质因数分解

♻️ refactor(eular_12.py):优化代码结构,新增数学方法main_math()用于高效计算三角形数的约数个数
This commit is contained in:
2025-12-16 18:37:17 +08:00
parent fbfbfd25b4
commit 9762ba3f0c

View File

@@ -26,7 +26,13 @@ NOTE
"""
import math
import random
import re
import time
from collections import Counter
from functools import reduce
from math import gcd
from typing import List
def timer(func):
@@ -68,5 +74,131 @@ def main_coding() -> None:
n += 1
def is_probable_prime(n: int, trials: int = 10) -> bool:
"""Miller-Rabin素性测试快速判断是否为质数"""
if n < 2:
return False
if n in (2, 3):
return True
if n % 2 == 0:
return False
# 将 n-1 写成 d * 2^s 的形式
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
# 测试
for _ in range(trials):
a = random.randrange(2, n - 1)
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n: int, max_iter: int = 100000) -> int | None:
"""
Pollard's Rho 算法返回n的一个非平凡因子
Args:
n: 待分解的合数
max_iter: 最大迭代次数防止无限循环
Returns:
n的一个因子可能是质数也可能是合数
若失败返回None
"""
if n % 2 == 0:
return 2
# 随机生成多项式 f(x) = x^2 + c (mod n)
c = random.randrange(1, n - 1)
def f(x):
return (pow(x, 2, n) + c) % n
# Floyd 判圈算法
x = random.randrange(2, n - 1)
y = x
d = 1
iter_count = 0
while d == 1 and iter_count < max_iter:
x = f(x) # 乌龟:走一步
y = f(f(y)) # 兔子:走两步
d = gcd(abs(x - y), n)
iter_count += 1
if d == n:
# 失败尝试其他参数递归或返回None
return pollards_rho(n, max_iter) if max_iter > 1000 else None
return d
def factorize(n: int | None) -> List[int | None]:
"""
完整因数分解:递归分解所有质因数
Args:
n: 待分解的正整数
Returns:
质因数列表(可能含重复)
"""
if n == 1:
return []
if n is None:
return [None]
# 如果是质数,直接返回
if is_probable_prime(n):
return [n]
# 获取一个因子
factor = pollards_rho(n)
if factor is None:
return [None]
# 递归分解
return factorize(factor) + factorize(n // factor)
def get_prime_factors(n: int) -> dict[int | None, int]:
"""获取所有不重复的质因数"""
return dict(Counter(factorize(n)))
def zuheshu(tl: list[int]) -> int:
return reduce(lambda x, y: x * y, tl)
@timer
def main_math() -> None:
n = 1
while True:
tn = get_triangle_number(n)
factors = get_prime_factors(tn)
if factors == {}:
n += 1
continue
if zuheshu(list(factors.values())) > 500:
print(tn)
break
n += 1
if __name__ == "__main__":
main_coding()
# main_math()