created and first commit(3 solusions)

This commit is contained in:
2025-11-26 15:31:14 +08:00
commit d1af6aa880
11 changed files with 259 additions and 0 deletions

View File

@@ -0,0 +1,26 @@
"""
Project Euler Problem 0 :
Find the sum of all the odd squares which do not exceed 764000.
这是注册问题。
"""
UP_NUM = 764000
def is_even(num: int) -> bool:
"""Check if a number is even."""
return num & 1 == 0
def main():
res: list[int] = []
for i in range(UP_NUM):
t = (i + 1) ** 2
if not is_even(t):
res.append(t)
print(sum(res))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,26 @@
"""
Project Euler Problem 1 :
Find the sum of all the multiples of 3 or 5 below 1000.
"""
UP_NUM = 1000
def condition(num: int) -> bool:
if num % 3 == 0:
return True
elif num % 5 == 0:
return True
return False
def main():
res = []
for i in range(1, UP_NUM):
if condition(i):
res.append(i)
print(sum(res))
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,48 @@
"""
Even Fibonacci Numbers
Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be:
1, 2, 3, 5, 8, 13, 21, 34, 55, 89
By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms.
"""
UP_NUM = 4000000
def is_even(num: int) -> bool:
"""Check if a number is even."""
return num & 1 == 0
"""
下面这个方法实在太慢计算400万项还会内存溢出。
```python
def fibonacci_sequence(n: int) -> list[int]:
a, b = 1, 2
res = [a, b]
while b <= n:
a, b = b, a + b
res.append(b)
return res
def main():
fib_seq = fibonacci_sequence(UP_NUM)
even_sum = sum(num for num in fib_seq if is_even(num))
print(even_sum)
```
"""
def even_fibonacci(limit: int) -> int:
a, b = 1, 2
even_sum = 0
while b <= limit:
if is_even(b):
even_sum += b
a, b = b, a + b
return even_sum
if __name__ == "__main__":
print(even_fibonacci(UP_NUM))

View File

@@ -0,0 +1,103 @@
import random
from math import gcd
from typing import List, Set
def is_probable_prime(n: int, trials: int = 10) -> bool:
"""Miller-Rabin素性测试快速判断是否为质数"""
if n < 2:
return False
if n in (2, 3):
return True
if n % 2 == 0:
return False
# 将 n-1 写成 d * 2^s 的形式
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
# 测试
for _ in range(trials):
a = random.randrange(2, n - 1)
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n: int, max_iter: int = 100000) -> int:
"""
Pollard's Rho 算法返回n的一个非平凡因子
Args:
n: 待分解的合数
max_iter: 最大迭代次数防止无限循环
Returns:
n的一个因子可能是质数也可能是合数
若失败返回None
"""
if n % 2 == 0:
return 2
# 随机生成多项式 f(x) = x^2 + c (mod n)
c = random.randrange(1, n - 1)
def f(x):
return (pow(x, 2, n) + c) % n
# Floyd 判圈算法
x = random.randrange(2, n - 1)
y = x
d = 1
iter_count = 0
while d == 1 and iter_count < max_iter:
x = f(x) # 乌龟:走一步
y = f(f(y)) # 兔子:走两步
d = gcd(abs(x - y), n)
iter_count += 1
if d == n:
# 失败尝试其他参数递归或返回None
return pollards_rho(n, max_iter) if max_iter > 1000 else None
return d
def factorize(n: int | None) -> List[int | None]:
"""
完整因数分解:递归分解所有质因数
Args:
n: 待分解的正整数
Returns:
质因数列表(可能含重复)
"""
if n == 1:
return []
# 如果是质数,直接返回
if is_probable_prime(n):
return [n]
# 获取一个因子
factor = pollards_rho(n)
# 递归分解
return factorize(factor) + factorize(n // factor)
def get_prime_factors(n: int) -> Set[int | None]:
"""获取所有不重复的质因数"""
return set(factorize(n))