Files
SolutionEuler/solutions/0003.largestprime/euler_3.py
Sidney Zhang 65999c8456 feat(project):添加欧拉项目第4、5题解决方案及文档
📝 docs(README):更新项目描述并添加核心数学理念说明
🔧 chore(pyproject.toml):更新项目描述信息
♻️ refactor(euler_3.py):改进质因数分解函数并添加类型注解
💡 docs(readme):添加第4题数学分析文档和算法说明
 test(euler_3.py):添加主函数测试用例验证质因数分解功能
2025-12-15 12:12:03 +08:00

119 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
The prime factors of 13195 are 5, 7, 13and 29.
What is the largest prime factor of the number 600851475143 ?
"""
import random
from math import gcd
from typing import List, Set
def is_probable_prime(n: int, trials: int = 10) -> bool:
"""Miller-Rabin素性测试快速判断是否为质数"""
if n < 2:
return False
if n in (2, 3):
return True
if n % 2 == 0:
return False
# 将 n-1 写成 d * 2^s 的形式
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
# 测试
for _ in range(trials):
a = random.randrange(2, n - 1)
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
def pollards_rho(n: int, max_iter: int = 100000) -> int | None:
"""
Pollard's Rho 算法返回n的一个非平凡因子
Args:
n: 待分解的合数
max_iter: 最大迭代次数防止无限循环
Returns:
n的一个因子可能是质数也可能是合数
若失败返回None
"""
if n % 2 == 0:
return 2
# 随机生成多项式 f(x) = x^2 + c (mod n)
c = random.randrange(1, n - 1)
def f(x):
return (pow(x, 2, n) + c) % n
# Floyd 判圈算法
x = random.randrange(2, n - 1)
y = x
d = 1
iter_count = 0
while d == 1 and iter_count < max_iter:
x = f(x) # 乌龟:走一步
y = f(f(y)) # 兔子:走两步
d = gcd(abs(x - y), n)
iter_count += 1
if d == n:
# 失败尝试其他参数递归或返回None
return pollards_rho(n, max_iter) if max_iter > 1000 else None
return d
def factorize(n: int | None) -> List[int | None]:
"""
完整因数分解:递归分解所有质因数
Args:
n: 待分解的正整数
Returns:
质因数列表(可能含重复)
"""
if n == 1:
return []
if n is None:
return [None]
# 如果是质数,直接返回
if is_probable_prime(n):
return [n]
# 获取一个因子
factor = pollards_rho(n)
if factor is None:
return [None]
# 递归分解
return factorize(factor) + factorize(n // factor)
def get_prime_factors(n: int) -> Set[int | None]:
"""获取所有不重复的质因数"""
return set(factorize(n))
if __name__ == "__main__":
print(get_prime_factors(60)) # {2, 3, 5}