Files
SolutionEuler/solutions/0023/euler_23.py
Sidney Zhang 13d5d27c5a feat(pyproject.toml):添加sympy依赖用于数学计算
📝 feat(0021.AmicableNumbers/readme.md):添加亲和数对文档的中文翻译
 feat(0022):新增欧拉问题22解决方案,包含姓名文件和处理脚本
 feat(0023):新增欧拉问题23解决方案,包含三种实现和文档说明

📝 docs(solutions/0067.MaxPathSum2):新增热带半环理论综述文档

新增关于热带半环(Tropical Semiring)的详细综述文档,涵盖其数学原理、与代数几何的联系(热带几何)、在量子力学与量子信息中的应用,以及其他跨学科应用领域。文档系统性地介绍了热带半环的基本理论结构,包括min-plus/max-plus代数、幂等性与分配律,以及其与全序集和格论的联系。同时深入探讨了热带几何的核心概念(如热带化、热带簇、Amoebas和Newton多边形)及其在代数几何中的应用(如热带Bézout定理、拓扑不变量计算和枚举几何)。文档还综述了热带半环在量子力学(如热带量子理论、非厄米系统特殊点分析)和量子信息(如贝尔不等式分析、热带张量网络)中的前沿应用,并展望了其在密码学、生物信息学等领域的潜力。该文档旨在为相关领域的研究者提供一个全面的理论参考。
2025-12-22 18:27:46 +08:00

71 lines
2.1 KiB
Python

"""
A perfect number is a number for which the sum of its proper divisors is exactly equal to the number.
For example, the sum of the proper divisors of 28 would be 1 + 2 + 4 + 7 + 14 = 28,
which means that 28 is a perfect number.
A number n is called deficient if the sum of its proper divisors is less than n and
it is called abundant if this sum exceeds n .
As 12 is the smallest abundant number, 1+2+3+4+6 = 16,
the smallest number that can be written as the sum of two abundant numbers is 24.
By mathematical analysis, it can be shown that all integers greater than 28123 can be written
as the sum of two abundant numbers.
However, this upper limit cannot be reduced any further by analysis even though
it is known that the greatest number that cannot be expressed as the sum of two abundant numbers is less than
this limit.
Find the sum of all the positive integers which cannot be written as the sum of two abundant numbers.
"""
import time
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Execution time: {end_time - start_time} seconds")
return result
return wrapper
def is_abundant(n: int) -> bool:
if n % 12 == 0:
return True
sum_divisors = [1]
for i in range(2, n):
if n % i == 0:
if i not in sum_divisors:
sum_divisors.append(i)
if n // i not in sum_divisors:
sum_divisors.append(n // i)
if sum(sum_divisors) > n:
return True
return sum(sum_divisors) > n
def is_sum_of_two_abundants(n: int) -> bool:
if n < 24:
return False
if n == 24:
return True
for i in range(12, n // 2 + 1):
if is_abundant(i) and is_abundant(n - i):
return True
return False
@timer
def main():
limit = 28123
non_abundant_sums = [
i for i in range(1, limit + 1) if not is_sum_of_two_abundants(i)
]
print(sum(non_abundant_sums))
if __name__ == "__main__":
main()