Files
SolutionEuler/solutions/0041.PandigitalPrime/euler_41.py

77 lines
1.8 KiB
Python

"""
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once.
For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
"""
import random
import time
from functools import lru_cache
from itertools import permutations
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.perf_counter()
result = func(*args, **kwargs)
end_time = time.perf_counter()
print(f"Execution time: {end_time - start_time} seconds")
return result
return wrapper
def miller_rabin_test(n: int, k: int = 10) -> bool:
if n < 2:
return False
if n == 2 or n == 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(k):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
@lru_cache(maxsize=128)
def is_even_or_five_ending(num: int) -> bool:
"""快速检查是否为偶数或以5结尾"""
return num % 2 == 0 or num % 5 == 0
@timer
def main() -> None:
str_nums = "987654321"
stop = False
for i in range(9, 0, -1):
if sum(int(digit) for digit in str_nums[-i:]) % 3 == 0:
continue
for perm in permutations(str_nums[-i:], i):
num = int("".join(perm))
if is_even_or_five_ending(num):
continue
if miller_rabin_test(num):
print(num)
stop = True
break
if stop:
break
if __name__ == "__main__":
main()