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PREFACE

There is no branch of mathematics, however abstract, which
may not some day be applied to phenomena of the real world.

—Nikolai Ivanovich Lobatchevsky

This book is an extensively-revised and expanded version of “The Theory of
Semirings, with Applications in Mathematics and Theoretical Computer
Science” [Golan, 1992], first published by Longman. When that book went out
of print, it became clear — in light of the significant advances in semiring theory
over the past years and its new important applications in such areas as idempotent
analysis and the theory of discrete-event dynamical systems — that a second edition
incorporating minor changes would not be sufficient and that a major revision of
the book was in order. Therefore, though the structure of the first =dition was
preserved, the text was extensively rewritten and substantially expanded.

In particular, references to many interesting and applications of semiring theory,
developed in the past few years, had to be added. Unfortunately, I find that it is
best not to go into these applications in detail, for that would entail long digressions
into various domains of pure and applied mathematics which would only detract
from the unity of the volume and increase its length considerably. However, I have
tried to provide an extensive collection of examples to arouse the reader’s interest
in applications, as well as sufficient citations to allow the interested reader to locate
them. For the reader’s convenience, an index to these citations is given at the end
of the book.

Thanks are due to the many people who, in the past six years, have offered
suggestions and criticisms of the preceding volume. Foremost among them is Dr.
Susan LaGrassa, who was kind enough to send me a detailed list of errors — typo-
graphical and mathematical — which she found in it. I have tried to correct them
all. During the 1997/8 academic year I conducted a seminar on semirings while on
sabbatical at the University of Idaho. Many thanks are due to the participants of
that seminar, and in particular to Prof. Erol Barbut and Prof. Willy Brandal, for
their incisive comments. Prof. Dan Butnariu of the University of Haifa was also

ix



X PREFACE

very instrumental in introducing me to applications of semirings in the theory of
fuzzy sets, as where departmental guests Prof. Ivan Chajda, Prof. E. P. Klement
and Prof. Radko Mesiar, while Dr. Larry Manevitz of the Department of Computer
Science at the University of Haifa was always ready to help me understand applica-
tions in artificial intelligence and other areas of computer science. I also owe a large
debt to my two former Ph.D. students, Dr. Wang Huaxiong and Dr. Wu Fuming,
who listened patiently to my various p-baked ideas as they formed and contributed
many original insights on semiring theory, which have been incorporated in this
edition.

Semirings abound in the mathematical world around us. Indeed, the first mathe-
matical structure we encounter — the set of natural numbers — is a semiring. Other
semirings arise naturally in such diverse areas of mathematics as combinatorics,
functional analysis, topology, graph theory, Euclidean geometry, probability the-
ory, commutative and noncommutative ring theory, optimization theory, discrete
event dynamical systems, automata theory, formal language theory and the math-
ematical modeling of quantum physics and parallel computation systems. From an
algebraic point of view, semirings provide the most natural common generalization
of the theories of rings and bounded distributive lattices, and the techniques used
in analysing them are taken from both areas.

Historically, semirings first appear implicitly in [Dedekind, 1894] and later in
[Macaulay, 1916], [Krull, 1924], [Noether,1927], and [Lorenzen, 1939] in connection
with the study of ideals of a ring. They also appear in [Hilbert, 1899] and [Hunt-
ington, 1902] in connection with the axiomatization of the natural numbers and
nonnegative rational numbers. Semirings per se were first considered explicitly in
[Vandiver, 1934], also in connection with the axiomatization of the arithmetic of the
natural numbers. His approach was later developed in a series of expository arti-
cles culminating in [Vandiver & Weaver, 1956]. Over the years, semirings have been
studied by various researchers either in their own right, in an attempt to broaden
techniques coming from semigroup theory or ring theory, or in connection with
applications. However, despite such categorical pronouncements as ... the above
shows that the ring is not the fundamental system for associative algebra of dou-
ble composition” (italics in the original) found in [Vandiver, 1939], semirings never
became popular and the interest in them among algebraists gradually petered out,
although it never died completely. The only attempt to present the algebraic theory
of semirings as an integral part of modern algebra seems to be in [Rédei, 1967] and
[Almeida Costa, 1974]. Nonetheless, semirings — and semimodules over them — have
become an important tool in applied mathematics and theoretical computer science
and appear, under various names, with consistent and increasing frequency in the
literature of those subjects. Were there more communication between theoretical
algebraists and these utilizers of algebra, it is likely that the former would find in
the work of the latter sufficiently many “naturally arising” problems to revive and
revitalize research in semiring theory in its own right, while the latter would find
at their disposal a supply of theoretical results which they can use.



PREFACE X1

Since the results on semirings are scattered through the mathematical literature
and are for most part inaccessible, they are not easily available to those who have
to use them. A further problem is that the terminology used by different authors
is not standard many authors use the term “semiring” for what we call here a
“hemiring” and vice versa. Others, translating directly from the German, use the
term “halfring”. Some do not require that a semiring have a multiplicative identity
or even an additive zero. On the other hand, some insist that multiplication, as
well as addition, be commutative. In [Gondran & Minoux, 1984], the term “dioid”
(i.e., double monoid) is used in place of “semiring” and the term “semiring” is used
in a stronger sense, while [Shier, 1973] prefers the term “binoid” for a commutative
semiring in which addition is idempotent; others use “dioid” for that purpose.
A categorical definition of “semiring” (namely as a semiadditive category having
one object) is given in [Manes, 1976]. To add to the confusion, some sources, e.g.
[Sturm, 1986], use the term “semiring” to mean something else entirely. The reader
must therefore be extremely wary.

The notation used throughout the book will be explained as it is introduced. In
addition, we will use the following standard notation:
B={0,1},
P = the set of all positive integers,
N = the set of all nonnegative integers,
Z = the set of all integers,
@Q = the set of all rational numbers,
QT = the set of all nonnegative rational numbers
= the unit interval on the real line,
R = the set of all real numbers,
R* = the set of all nonnegative real numbers,
C = the set of all complex numbers.

If n is a positive integer then:

Sy, is the group of all permutations of {1,...,n},
A, is the group of all even permutations of {1,...,n}.

If A and B are sets then:
sub(A) is the family of all subsets of 4,

fsub(A) is the family of all finite subsets of A,
B4 is the set of all functions from A4 to B.



1. HEMIRINGS AND SEMIRINGS:
DEFINITIONS AND EXAMPLES

A semigroup (M, *) consists of a nonempty set M on which an associative
operation * is defined. If M is a semigroup in which there exists an element e
satisfying m xe = m = e x m for all m € M, then M is called a monoid having
identity element e. This element can easily seen to be unique, and is usually
denoted by 1as. Note that a semigroup (M,=) which is not a monoid can be
canonically embedded in a monoid M’ = M U {e} where e is some element not
in M, and where the operation * is extended to an operation on M’ by defining
exm’ =m' = m xefor all m' € M’. An element m of M idempotent if and only
if m*m = m. A semigroup (M, %) is commutative if and only if m+m’ = m’/ xm
for all m,m’ € M.

A monoid (M, ) is partially-ordered if and only if there exists a partial order
relation < defined on M satisfying the condition that m < m/ implies that m*m” <
m *m” and m” x m < m” « m’ for all elements m, m’, and m” in M. Basic
information on partially-ordered monoids can be found in [Fuchs, 1963].

A hemiring [resp. semiring] is a nonempty set’ R on which operations of
addition and multiplication have been defined such that the following conditions
are satisfied:

(1) (R,+) is a commutative monoid with identity element 0;

(2) (R,") is a semigroup [resp. monoid with identity element 1g];

(3) Multiplication distributes over addition from either side;

(4) 0r=0=r0forall r € R.
As a rule, we will write 1 instead of 1z when there is no likelihood of confusion.
Note that if 1 = 0 then » = r1 = r0 = 0 for each element r of R and so R = {0}. In
order to avoid this trivial case, we will assume that all semirings under consideration
are nontrivial, i.e. that

(5) 1£0.

Note that 0 is clearly the only element of R satisfying (4): if z is an element of R
satisfying zr = z = rz for all 7 in R then 0 = 0z = z. The corresponding condition
for addition, namely that 1 satisfies the condition that 1 +r = r for all r € R, will
be discussed later.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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2 CHAPTER 1

Conditions (4) and (5) insure that the operations of addition and multiplication
are not the same. Even given that they are not, these conditions do not follow from
the others.

(1.1) ExamPLE. Consider the set N together with the operation & defined by
letting a @ b be the least common multiple of @ and b, and the usual multiplication
operation -. Then conditions (1) - (3) are satisfied, while (4) and (5) are not since
1 1s the identity element with respect to both operations.

Another example is the algebra of digraphs, developed in an unpublished
paper by Anthony P. Stone. A digraph is a pair (V, E) consisting of a finite set V
of vertices and a subset F of V x V of edges. Let R be the set of all digraphs and
define addition and multiplication on R by setting (V, E)+(V’, E'Y = (VUV', EUE")
and (V,E) - (V/,E") = (VUV',EUE U{V x V'}). Then conditions (1) - (3) are
satisfied, while (4) and (5) are not since (&, @) is the identity element with respect
to both operations.

If R is the family of all subsets of a nonempty set X, define operations of addition
and multiplication on R by setting a + b = aNb and ab = (a U b) \ (aNb). Then
(R, +, ) satisfies conditions (1), (2), (3), and (5) (with additive identity X and
multiplicative identity @) but does not satisfy (4).

In order to construct efficient computer programs for recognizing semirings, it is
sometimes helpful to reduce the number of axioms which need to be checked to as
small a number as possible. Several such reductions have been obtained, of which
the following result is typical.

(1.2) PrROPOSITION. A set R containing two distinct elements 0 and 1 and on
which operations + and - are defined is a commutative semiring if and only if the
following conditions are satisfied for all a,b,c,d,e € R:

(1) a+0=04+a=ua;

(2) al = a;

(3) 0a=0;

(4) [(ae+b)+ c]d = db+ [a(ed) + cd].

PROOF. Surely any commutative semiring satisfies conditions (1) - (4). Con-
versely, assume that these four conditions are satisfied. If b,d € R then bd =
[(00 + b) + 0]d = db + [0(0d) + 0d] = db and so multiplication is commutative. If
a,b € Rthen a+b={[(al+b)+0]1 =15+ [a(11) + 01] = b + a and so addition is
commutative. If a,e,d € R then (ae)d = [(ae +0) 4 0]d = a0 + [a(ed) + 0d] = a(ed)
and so multiplication is associative. If a,b,c € R then

(@a+b)+c=(b+a)+c=[bl+a)+c]l=1la+[b(1l)+cl]=a+(b+¢)
and so addition is associative. Finally, if a,b,d € R then
(a+b)d = [(al +b)+ 0]d = db+ [a(1d) + 0d] = db+ ad = ad + bd

and so multiplication distributes over addition. Thus R is a commutative semi-
ring. O
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In this work we will be interested primarily in semirings and will refer to hemir-
ings only tangentially, as necessary. This approach is justified by the fact that if
(R, +,-) is a hemiring then we can canonically embed it in a semiring in the follow-
ing manner: let S = R x N and define operations of addition and multiplication on
S by setting (r,n)+(r',n’) = (r+r',n+n') and (r,n)- (v, n') = (nr' +n'r+rr’, nn’)
for all (r,n), (r'n’) € S. Then (S,+, ) can be easily verified to be a semiring with
multiplicative identity (0, 1), called the Dorroh extension of R by N.

A subset S of a semiring R is a subhemiring of R if it contains 0 and is closed
under the operations of addition and multiplication in R. If it also contains 1, it is
a subsemiring. Thus, for example, if R is a semiring then

PR)={0}u{r+1]|reR}

is a subsemiring of R. If R is a hemiring and S is a subhemiring of R which is a
semiring having multiplicative identity e then then set R x S, on which we define
operations of addition and multiplication by (r,s) + (',s') = (r +r/,s + s’) and
(r,s)-(r',s') = (rs’ +sr' +rr',ss’), is a semiring with multiplicative identity (0, €),
called the Dorroh extension of R by S.

The center of a hemiring R is C(R) = {r € R| rr' = r'r for all »' € R}. This
set 1s nonempty since it contains 0, and it is easily seen to be a subhemiring of R.
If R is a semiring then 1 € C(R) and C(R) is a subsemiring of R. The hemiring R
is commutative if and only if C(R) = R.

An element r of a hemiring R is additively idempotent if and only if r+7 = r
for all 7 in R. The set I't(R) of all additively-idempotent elements of R is nonempty
since it contains 0. The hemiring R is additively idempotent if and only if
I (R) = R. Baccelli et al. [1992] and Gunawardena [1996] use the term “dioid” as
a synonym for “additively-idempotent semiring”. Note that if R is an additively-
idempotent semiring then {0, 1} is a subsemiring of R. Moreover, a necessary and
sufficient condition for a semiring R to be additively idempotent is that 1 + 1 = 1.
Indeed, this condition is clearly necessary while, if it holds, then for each r € R
we have r = r(1 + 1) = r + r, proving that R is additively idempotent. The
computational complexity of determining whether two formulae over an additively
idempotent semiring are equivalent is discussed in [Hunt, 1983]. For the complexity
of related problems refer also to [Bloniarz, Hunt & Rosenkrantz, 1984]. Additively-
idempotent semirings also arise naturally in the consideration of command algebras
for computers; refer to [Hesselink, 1990]. Additively-idempotent semirings having
three or four elements have been completely classified by Shubin [1992].

An element a of a hemiring R is multiplicatively idempotent if and only if
a? = a. We will denote the set of all multiplicatively idempotent elements of R by
I*(R). This set is nonempty since 0 € I*(R). If R is a commutative semiring then
I*(R) is a submonoid of (R, -). The hemiring R is multiplicatively idempotent
if and only if I*(R) = R. If 0 # ¢ € I*(R) then eRe = {ere | r € R} is a
subhemiring of R which is a semiring, though not a subsemiring of R unless e = 1.

An element a of a hemiring R is multiplicatively regular if and only if there
exists an element b of R satisfying aba = a. Such an element b is called a gener-
alized inverse of a. If b is a generalized inverse of a and b’ = bab, then ab’a = a
and b'ab’ = b'. An element satisfying these two conditions is a Thierrin-Vagner
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inverse of a and we have thus seen that an element of R is multiplicatively regular
if and only if it has a Thierrin-Vagner inverse. If a is multiplicatively regular then
ab is multiplicatively idempotent. Conversely, every multiplicatively-idempotent
element of R is surely multiplicatively regular. A hemiring R is multiplicatively
regular if and only if each element of R is multiplicatively regular.

Set I(R) = I (R)NI*(R). Elements of I(R) are idempotent. Note that if a €
I(R) then {0, a} is a semiring contained in R, though it is not a subsemiring unless
a = 1. The hemiring R is idempotent if it is both additively and multiplicatively
idempotent, i.e. if and only if R = I(R).

A hemiring R is zerosumfree if and only if » + ' = 0 implies that » = 7 = 0.
This condition states that the monoid (R,+) is as far as possible from being a
group: no nonzero element has an inverse. Note that a ring cannot be zerosum-
free as a semiring. Indeed, if R is a ring then —1 + 1 = 0 in R, while both —1
and 1 are necessarily nonzero. Note that every additively-idempotent hemiring is
zerosumfree. Indeed, if R is additively idempotent and if » + 7/ = 0 then

r=r+0=r+(C+r)=(CF+r)+r'=r+r' =0

and similarly ' = 0.

If R is a zerosumfree semiring then R = {0}U{r € R|rb # 0 for all 0 # b € R}
is a subsemiring of R. In order for a semiring R to be zerosumfree it suffices that
there exist one element ¢ € R satisfying ¢ = ¢ + 1. Indeed, if such an element exists
and if » + ' = 0 then

0= (r+r)t=rt+rt=r(l+t)+r(1+1)
=r(l+)+r(1+1+)=(r+r)+r' +(r+r)t =7

!
and so r=r+r' =0 as well.

‘A nonzero element @ of a hemiring R is a left zero divisor if and only if there
exists a nonzero element b of R satisfying ab = 0. It is a right zero divisor if and
only if there exists a nonzero element b of R satisfying ba = 0. It is a zero divisor
if and only if it is either a left and a right zero divisor. A hemiring R having no zero
divisors is entire. In [Kuntzmann, 1972], entire zerosumfree semirings are called
information algebras.

An element a of a hemiring R is infinite if and only if a 4+ = a for all r € R.
Such an element is necessarily unique since if a and a’ are infinite elements of R then
a=a+d =a +a=d. Note that 0 can never be infinite since 0 +1 =1#0. A
semiring R is simple if and only if 1 is infinite, that is to say if and only ifa+1 =1
for all elements a of R. Equivalently, R is simple if and only if P(R) = {0, 1}.
Commutative simple semirings are studied in [Cao, 1984] and [Cao, Kim & Roush,
1984] under the name of inclines. (But note that in [Kim & Roush, 1995] the
commutativity condition has been removed.) If R is simple then, in particular,
141 = 1 which suffices to show that R is additively idempotent. Conversely, if
R is additively idempotent then {a € R | a + 1 = 1} is a subsemiring of R and so
R is simple precisely when this subsemiring is all of R. Note that if R is a simple
semiring and if 1 # a € R then ab # 1 for all b € R. Indeed, if ab = 1 then
a=al=ab+1l)=ab+a=14+a=1
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The condition that 1 be infinite is the dual of the condition that 0r = 0 = 70 for
all » € R, which we have assumed among the defining axioms of a semiring. The
opposite of the notion of simplicity is that of an antisimple semiring: a semiring R
is antisimple if and only if R = P(R). Any ring is antisimple as a semiring.

The existence of simple semirings having more than one nonzero element (see
below) shows that an infinite element a of a semiring R does not necessarily satisfy
ar = a for all 0 # r € R. An infinite element a of R having the property that
ra = a = ar for all 0 # r € R is strongly infinite.

A semiring R is semitopological if and only if it has the additional structure
of a topological space such that the functions R x R — R defined by (r,7') — 7+ 7
and (r,7') — rr’ are continuous. If the underlying topological space is Hausdorft,
then the semiring is topological. Any semiring is topological with respect to the
discrete topology.

Rings are clearly semirings, but there are many other interesting examples of
semirings. We conclude this chapter by assembling several such examples from
various branches of mathematics and its applications.

(1.3) ExaMPLE. The set N of nonnegative integers with the usual operations
of addition and multiplication of integers is a commutative, zerosumfree, entire
semiring which is not additively idempotent. The same is true for the set Q7 of all
nonnegative rational numbers, for the set R* of all nonnegative real numbers, and,
in general, for St = S NIR*, where S is any subring of R. Given a fixed infinite
cardinal number ¢, it is also true for the set of all cardinal numbers d < ¢. The
semiring N is also antisimple. These semirings are among the first mathematical
structures we encounter. Clearly N is a subsemiring of Q% and Q7 is a subsemiring
of R*. Note that {0,1,2,3}U {qg € Q | ¢ > 4} is an example of a subsemiring of
R+ which is not of the form S* for some subring S of R.

If S is one of the semirings 17, QF, or Rt and if 7 is an element of S satisfying
r>1then R ={a € S| a>r}U{0}is a subhemiring of S which is never a
semiring. If 2> r > 1 then {ae € R |a > r} U {0,1} is a subsemiring of R*.

This example can also be extended in the following manner: following the ter-
minology of [Brunfiel, 1979], we say that a commutative semiring S is partially
ordered if there exists a subset P of S satisfying the following conditions

(1) PA(=P) = {0};

(2) P+ PCP

(3) P-PC P;

(4) s2€ Pforalls€ S.

In this case, it is clear that (P, +, ) is a commutative zerosumfree semiring. Also
refer to [Craven, 1991).

In the most general setting, Lawvere [1964] defined the notion of a natural
number object N in an arbitrary topos. On such an object one can define opera-
tions of addition and multiplication in such a way as to turn N into a commutative
semiring. This construction has important applications in the generalization of the
theory of recursive functions. See [Coste-Roy, Coste & Mahé, 1980]. Natural num-
ber objects have since been defined in even more general contexts, such as that of
arbitrary cartesian categories. See [Roman, 1989].
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Let S be a semiring containing RT as a subsemiring. An invariant metric on
S is a function d: S x S — R T satisfying the following conditions:

Any such invariant metric defines on S the structure of a topological semiring. See
[Bourne, 1961/2a].

This situation arises often in analysis. For example, let X be a compact space and
let C*(X) be the semiring of all continuous functions from X to R* with pointwise
addition and multiplication. If X is a Tychonoff space, this is essentially the Stone-
Cech compactification of X [Acharyya, Chattopadhyay & Ray, 1993]. Define the
invariant metric d on C*(X) by setting d(f,g) = sup{|f(z) — g(z)| | z € X}.
Similarly, if W+ is the cancellative semiring of all convergent series of the form
f(t) = 307, ane'™ (a, € RY) with the usual addition and multiplication, then
we can define an invariant metric d on W+ as follows: if f(t) = 3 a,e!”* and

g(t) = S baei™ then d(f,9) = 3 |an — bal-

(1.4) ExaMPLE. Let R be aring. Dedekind was the first to observe that the set
ideal( R) consisting of R and all of its ideals, with the usual operations of addition
and multiplication of ideals, is an additively-idempotent (and hence zerosumfree)
semiring which need not be commutative or entire. We will later see that the same
is true for the family of all ideals of a semiring.

Now let R be a commutative ring and let A be the set of all elements of R which
are not zero divisors. Let S = A~!R be the total ring of quotients of R. A frac-
tional ideal K of R is an R-submodule of S satisfying the condition that a K" C R
for some a € A. The set fract(R) of all fractional ideals of R is closed under tak-
ing intersections, sums, and products. Moreover, (fract(R),+, -) is a commutative
additively-idempotent (and hence zerosumfree) semiring with additive identity (0)
and multiplicative identity R. The family of all finitely-generated fractional ideals
of R is a subsemiring of this semiring.

A commutative integral domain R is a Priifer domain if and only if every
finitely-generated fractional ideal of R has a multiplicative inverse in fract(R). This
condition is equivalent to the condition that, in ideal(R), intersection distributes
over addition, i.e. that (ideal(R),+,N) is a semiring. See Theorem 6.6 of [Larsen
& McCarthy, 1971] or [Gilmer, 1972] for a proof of this fact. Moreover, the set of all
finitely-generated ideals of R is a subsemiring of this semiring. The study of rings
with the property that (ideal(R),+,N) is a distributive lattice goes back to [Blair,
1953]. See [Tuganbaev, 1998] for a comprehensive bibliography of the many works
in this area. Noetherian Priifer domains are called Dedekind domains. These
are precisely the commutative integral domains having the property that each ideal
can be written as a unique product of prime ideals. The multiplicative theory of
ideals of a ring is certainly one of the major sources of inspiration and problems in
semiring theory.
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(1.5) EXAMPLE. Another major source of inspiration for the theory of semirings
is lattice theory. If (R, V,A) is a bounded distributive lattice having unique mini-
mal element 0 and unique maximal element 1, then it is a commutative, idempotent
simple semiring. Indeed, these properties uniquely characterize bounded distribu-
tive lattices: if R 1s a commutative, idempotent, simple semiring then (R, +, ) is a
bounded distributive lattice having unique minimal element 0 and unique maximal
element 1. Another well-known characterization of bounded distributive lattices
is the following: (R, V,A) is a bounded distributive lattice having unique minimal
element 0 and unique maximal element 1 if and only if it is a commutative idem-
potent semiring and aA(aVb) =a=aV(aAb)forall a,b € R. Henriksen [1958/9]
gives another characterization of the bounded distributive lattices in the family
of semirings by showing that a commutative semiring R is a bounded distributive
lattice if and only if the following conditions are satisfied for every element a of R:

() 1+a)?=14a=>14a=1;

(2) There exists a natural number n(a) > 1 such that a™® = a.

Yet another such condition is given by Gtlazek [1968]: a semiring R is a bounded
distributive lattice if and only if ab+ed = (a+¢)(a+d)(b+cd) for all a,b,c,d € R.
The theory of modules having the property that their lattice of submodules, with
the operations of addition and intersection, is summarized in [Tuganbaev, 1998].

Since the dual lattice of a distributive lattice is again distributive, we see that
(R, A,V) is also a commutative, simple semiring.

As a particular case, we note that every frame is a semiring. A frame (alias
complete brouwerian lattice, alias locale, alias local lattice, alias Heyting
algebra, alias pointless topology) is a complete lattice in which meets distribute
over arbitrary joins. The study of frames is rooted in the topological work of
Marshall Stone [1937] as extended in [Benabou, 1959], [Ehresmann, 1957], and
[Papert, 1959, 1964] and later further extended by Dowker, Isbell, and Strauss and
in the logical studies of Skolem. For further details concerning frames, see [BirkhofT,
1973], [Johnstone, 1982], or [Rasiowa & Sikorski, 1963].

If a and b are elements of a frame (L, V, A) then the pseudocomplement of
b relative to a, denoted (a : b), is the unique largest element ¢ of L satisfying
bAc < a. The pseudocomplement of an element a of L is (0: a). If (0:a) =0,
then a is dense in L. The dense elements of a frame are precisely those elements
which are not zero divisors.

The simplest example of a frame is B = {0, 1}. Note that the algebraic structure
of B is not the same as that of the field Z/(2) since 1+1 = 1 in B, whereas 1+1 =0
in Z/(2). The variety generated by the semirings B and Z/(2) is characterized in
(Guzman, 1992]. The semiring B is called the boolean semiring; it has many
applications in automata theory (see [Eilenberg, 1974]) and in switching theory,
where it is often known as the switching algebra. For generalization of switching
theory over other finite semirings, see [Berman & Mukaidono, 1984] and [Muzio &
Wesselkamper, 1986]. A well-known topology on B is the Sierpinski topology,
the open sets of which are @, {1}, and B. Given this topology, the semiring B
is semitopological but not topological. If R is an additively-idempotent hemiring,
then it makes sense to define the Dorroh extension of R by B in exactly the same
way that the Dorroh extension of R by N was previously defined.
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The lattice of all ideals of a distributive lattice is a frame; similarly, the lattice of
all closed ideals of a commutative C*-algebra is also well-known to be isomorphic
to the lattice of all open sets of a locally compact Hausdorff space and so is a frame.
Hence they are canonically semirings.

Another important instance of this construction is the following: if X is any topo-
logical space then the family of all closed subsets of X is a bounded distributive
lattice and hence a semiring, with addition taken to be intersection and multipli-
cation taken to be union. (For a consideration of the problem of precisely which
distributive lattices are isomorphic to lattices of closed sets, refer to [Papert, 1959].)
Similarly, the family of all open subsets of X is a semiring, with addition taken to
be intersection and multiplication taken to be union. If R is the semiring of all
closed subsets of a topological space X then a basis for R is a subsemiring S of R
having the property that every element of R is the intersection of elements of S.
Any bounded distributive lattice is isomorphic to a basis of the semiring of closed
subsets of a compact topological space. For a proof, see [Sancho de Salas, 1987].

Similarly, if R is a totally-ordered set with unique minimal element 0 and unique
maximal element 1 then (R, maz, min) is a distributive lattice and hence a semiring.
Cechldrova and Plavka [1996] call such semirings bottleneck algebras, to empha-
size their connection with bottleneck problems in combinatorial optimization. In
particular, we have a natural semiring structure on I. Any subset of I containing 0
and 1 is a subsemiring of this semiring. Similarly, (NU {co}, maz, min) is a zero-
sumfree commutative simple semiring. Note that if R is a semiring of this sort and
if S is any subset of R containing 0 and 1 then S is a subsemiring of R. Also, note
that if R is a bounded distributive lattice and 0 # r € R then r i1s idempotent so
rRr = [0,7] = {r' € R | v’ < r} is a subhemiring of R which is a semiring in its
own right, having multiplicative identity r.

If R is a bounded distributive lattice, then the ideal topology on R turns R intc a
semitopological semiring. Since this topology need not be Hausdorff, the semiring
is not necessarily topological. Conditions for R to be a topological semiring are
discussed in [Murty, 1974].

(1.6) EXAMPLE. An element a # lp of a monoid (M, -) is absorbing if and
only ifab = a = bafor allb € M. If M has an absorbing element, it is clearly unique.
From the definition of a semiring R, we note that the monoid (R, -) has an absorbing
element 0. Conversely, let (M, ) be a multiplicative monoid having an absorbing
element 0. Define addition on M by setting a +& = 0 for all a,b € M. Then
(M, +) is an abelian semigroup, (M, -) is a monoid, and multiplication distributes
over addition from either side. Let u be an element not in M and set R = M U{u},
and define operations on S as follows:

(1) Ifa,b € M then a + b and ab are as in M;

(2) fac Sthena+u=u+a=aand au =ue =u.

Then (S, +, ) is a semiring with additive identity u, which is both zerosumfree and
entire. See [LaGrassa, 1995].

Thus the theory of multiplicative monoids with absorbing elements can be sub-
sumed in the theory of semirings. Such monoids arise in various contexts, such as
the modeling of knapsack problems in combinatorics, which in turn have important
applications in the construction of public-key cyphers.
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(1.7) EXAMPLE. Let R— fil be the set of all topologizing filters of left ideals of a
ring R (which, in a natural way, correspond to the linear topologies on R), and let -
denote the Gabriel product of such filters. Then (R— fil,N, ) is a simple additively-
idempotent semiring which is not, in general, commutative. The structure of R— fil
and its use in ring theory have been considered in detail in {Golan, 1987].

(1.8) ExAMPLE. There is no lack of finite semirings. For example, for each
positive integer n consider the set X,, = {~00,0,1,...,n} in which —co is assumed
to satisfying the conditions that —oco < i and —oc0o + 7 = —oo for all ¢ € X,,.
Define operations of addition and multiplication on X, by ¢ + h = maz{i, h} and
th = min{i + h,n}. This gives X, the structure of a commutative zerosumfree
semiring, first studied in [Smith, 1966].

Another important family of finite semirings is considered in [Alarcén & An-
derson, 1994a]. Let n > 1 be an integer and let 0 < i < n — 1. Set B(n,i) =
{0,1,...,n — 1} and define an operation & on B(n,1) as follows: if a,b € B(n,1)
thena®b=a+bif a+b<n—1and, otherwise, a ® b is the unique element ¢ of
B(n, 1) satisfying ¢ = a+ b (mod n — ). Define the an operation ® on B(n, i) sim-
ilarly. Thus, B(n,0) is a ring isomorphic to Z/(n) and if ¢ > 0 then B(n, )\ {0} is
the cyclic semigroup generated by 1 of period n—i and index i. Clearly B = B(2,1).

(1.9) EXAMPLE. In many categorical situations we have “sums” and “products”
satisfying semiring-like conditions. Rather than enter into such abstracta in detail
which we have no intention of pursuing, we present here some special cases which
suffice to illustrate the general situation.

Let A be the family of isomorphism classes of additive abelian groups and denote
by [G] the isomorphism class of a group G. Then A is a commutative semiring
under the operations of addition and multiplication defined by [G] + [H} = [G & H]
and [G][H] = [G ® H]. The multiplicative identity of A is [Z]. This semiring is
considered in [Feigelstock, 1980]. More generally, if R is an arbitrary ring and if
R — Mod — R is the family of isomorphism classes of (R, R)-bimodules then we
can define operations of addition and multiplication on R — Mod — R by setting
[M]+ [N]=[M @& N] and [M][N]=[M ®r NJ.

Let C be the family of isomorphism classes of countable Boolean algebras and
denote by [R] the isomorphism class of a Boolean algebra R. Then C is a com-
mutative semiring under the operations of addition and multiplication defined by
[R]+[S] = [R® S] and [R][S] = [R * 5], where & denotes the direct sum of boolean
algebras and * denotes the free product. The additive identity of C is the class
of one-element algebras and its multiplicative identity is the class of two-element
algebras. This semiring is considered by Dobbertin [1982] and R. Pierce [1983,
1989].

If D is the family of homeomorphism classes of compact zero-dimensional metric
spaces of finite type and if [X] denotes the homeomorphism class of a space X, then
D is a countably-infinite commutative semiring under the operations of addition and
multiplication defined by [X]+[Y] = [X+Y] and [X][Y] = [X x Y], where X +Y is
the disjoint union of X and ¥ and X x Y is the cartesian product of X and Y. The
additive identity of D is [@] and the multiplicative identity is [{z}]. This semiring
is studied in [Pierce, 1972], where its additive structure is completely described.
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Similarly, if G is a finite group then a finite G-set S is a finite set together with a
left action of G on it. The family of all G-isomorphism classes of finite G-sets forms
a commutative semiring AT (G) in which addition is defined by disjoint union and
multiplication by the cartesian product with diagonal action. This construction is
given in {tom Dieck, 1979].

(1.10) ExampLE. If (M, *) is a semigroup, then the family R = sub(M) of all
subsets of M is a hemiring, with operations of addition and multiplication given
by A+ B= AUB and AB = {a+b|a € A, b€ B}. The additive identity is .
If M is a monoid, sub(M) is a semiring with multiplicative identity {157}. We will
make much use of semirings of this form later.

This example is weakened in [Kuntzmann, 1972], where the semigroup (M, *) is
replaced by a partial semigroup, i.e. a nonempty set M with an operation * defined
on subset of M x M but subject to the condition that if a, b, and ¢ are elements of
M for which ax* (b*c) and (a#b)*c are both defined, then these two elements must
be equal. Partial semirings and other partial algebras are finding more and more
applications in the theory of abstract data types in theoretical computer science.
Refer to [Manes & Arbib, 1986] and [Reichel, 1987].

If R is a semiring then we can also define the structure of a semiring on sub(R)
by setting A+ B={a+b|a€ A;be B} and AB ={ab|a € A;b € B}.

(1.11) ExaMPLE. The following example presents one of the most important
applications of semiring theory. If A is a nonempty set then the free monoid A* is
the set of all finite strings ajas . ..a, of elements of A (including the empty string,
which is denoted by O). Two strings ajaz ...a, and b1bs...b,, are equal in A* if
and only if n = m and a; = b; for all 1 < ¢ < m. We define on A* the operation of
concatenation:

ajas ...ay 'b1b2-~~bk = a1a2...anb1b2...bk.

The set A* 1s a monoid under this operation, the identity element of which is O.
The elements of A are often called symbols or letters and the elements of A* are
called words on these symbols. If w = a1az...a, is a word in A* \ {0} then the
natural number n is the length of w and is denoted by |w|; by convention, |O] = 0.
Clearly |ww’| = |w|+ || for all words w and w’ in A*. For each @ € A and w € A*
we denote by |w|, the number of occurrences of a in the word w. The function p
which assigns to each w € A* the function p(w): A — N defined by p(w):a — |w|,
is called the Parikh mapping.

Subsets of A* are (formal) languages on the alphabet A. If B # Ois a
submonoid of A* and B’ = B\ {O} then C = B’ \ (B’)? is a minimal set of
generators of B, called the base of B. A base of a free submonoid of A* is called
a (variable length) code over the alphabet A. Thus, for example, a nonempty
subset C of A* \ {O} satisfying the condition that uw ¢ C for all v € C and
O # w € A* is a code. Codes of this type are known as prefix codes. Codes
have their origin in Shannon’s early work on information transmission, though they
were given an algebraic formulation only much later. For an introduction to formal
language theory, see [Rozenberg & Salomaa, 1980]; for codes and their uses, refer
to [Berstel & Perrin, 1985], [Lallement, 1979] or [Shyr, 1979].
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If the set A is finite, say A = {a1,...,ax}, then we have a bijective function
¢: A* — N defined by ¢(0) = 0 and ¢(a;,a;, - .- a;,) = Sopep ink".

If m is an element of a semigroup (M, %) then the set of left divisors of m is
LD(m) = {m' € M | m = m/+m” for some m” € M} and the set of right divisors
of mis RD(m) = {m” € M | m = m’' x m" for some m’ € M}. These sets may be
empty for an arbitrary semigroup M but that cannot be the case if M is a monoid.
Indeed, if M is a monoid then {1, m} C LD(m)N RD(m) for allm € M. A monoid
(M, «) is finitary if and only if any element of M can be written as m’ * m' for
only finitely-many choices of m’ and m” in M. Note that if w € A* then LD(w)
and RD(w) are always finite and that, as a result, free monoids are finitary. More
generally, we can consider monoids of the form M = A} x ... x A% where the A;
are nonempty sets and multiplication on M is defined componentwise:

(w1, . wn) (Y1, Un) = (W1Y1, - -+, WnYn ).
Such monoids are also finitary.

It is possible to extend the definition of A* to include words of infinite length.
Let A% consist of A* together with all countably-infinite sequences of elements of
A. Define the operation - on A by setting ww’ to be the concatenation of w and
w if w € A* and ww’ = w if w is a countably-infinite sequence of elements of A.
Then (A, ) is again a monoid the identity element of which is 0. Subsets of A
are oo-languages on A. These constructions were first defined in [Park, 1981] and
are important in the modeling of concurrent computational systems.

Let A be a nonempty set. As in Example 1.10, we can define operations of
addition and multiplication on sub(A*) as follows: L + L' = L UL’ while LL' =
{ww' |w € L and v’ € L'}. Then (sub(A*),+,) is an additively-idempotent entire
semiring in which the additive identity is @ and the multiplicative identity is {O}.
This semiring originated in Kleene’s algebraic formulation of the theory of machines
[Kleene, 1956], and is at the heart of algebraic automata theory. Refer to [Conway,
1971], [Gécseg & Pedk, 1972], [Lallement, 1979], and [Saicmaa & Soittola, 1978]. It
is easy to verify that the set of all elements of sub(A*) which are not prefix codes
is a subsemiring of this semiring. The smallest subsemiring of sub(A*) containing
all singletons and closed under intersections is called the semiring of all starfree
languages on A.

Other variants on the above semiring are possible. Let A be a finite set and
define an operation * on A* as follows: if u = ajas2...a, and v = byby...b,, are
elements of A* then uxv = ajas...apxby...b,, if a, = by and u*v = O otherwise.
If U and V are nonempty subsets of A* set UV = {u*v |u € U and v € V}.
fU=0orV =0setUx*V =@. Thisis called the Latin product of U and
V. Then we can define a semiring structure on sub(A*) by taking addition to be
union as before and multiplication to be the Latin product. This semiring is of
important use in enumeration problems in graph theory; see [Gondran & Minoux,
1984a]. In another variant, we define the fusion product on sub(A*) by setting
UxV = {uzv|uz € U;zv € V}. See [Ying, 1991] for details.

Another product which can be defined on sub(A*) is the shuffle product ®. If
u,v € A* and a,b € A, we inductively define

1@u=u®1={u}
(au ® bv) = a(u @ bv) + b(au @ v)
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and then, for L, L’ C A*, we set
LeL =U{u®v|ue L;ve L'}

It is easy to check that (sub(A*),U, ®) is a semiring, which has important applica-
tions in models of concurrent computation. See [Bloom, Sabadini & Walters, 1996]
or [Golan, Mateescu & Vaida, 1996].

(1.12) ExaMPLE. If R is a nonempty set then a function ® from R x R to
sub(R) can be extended to an operation on sub(R) by setting A® B = U{a® b |
a € A,b € B}. In imitation of the definition of a hyperring — as given, for example,
in [Ciampi & Rota, 1987] - we can define a hypersemiring to be a nonempty set
R together with functions + and - from R X R to sub(R) satisfying the following
conditions:

(1) Addition is associative and commutative;

(2) Multiplication is associative and distributes over addition from either side;

(3) There exists an element 0 of R such that, for all » € R we have 0+ r = {r}
and0-»={0}=r-0.

(4) There exists an element 1 of R such that, for all» € R we have 1.r = {r} =
r-1.

(5) 1#£0.

Note that if R is a hypersemiring then sub(R) is a semiring with respect to the
operations of addition and multiplication extended as above. The additive identity
of sub(R) is {0} and the multiplicative identity of sub(R) is {1}. A related notion
is also discussed in [Nakano, 1967]; refer also to [Mockor, 1977].

As an example of such a construction, let G be a lattice-ordered group and let z
be an element not in G. Set R = G U {z} and extend the operation of G to R by
setting rz = zr = z for all » € R. Also assume that » Az =7 and r V z = z for all
r € R. Define functions + and - from R x R to sub(R) as follows:

M) Ifg,9d €eGsetg+g ={g" €G|ghng =9g"ANg =gAg"} and extend
this to a function from R x R to sub(R) by setting z € r + ' if and only if
r=r'forall r,r' € R;

(2) If r,7 € R then r- 7' = {rr'}.

Then (R, +, ) is a hypersemiring; for a proof, see Example 3.4 of [Mockor, 1983].

(1.13) ExaMPLE. The additive structure of a semiring does not necessarily de-
termine its multiplicative structure. Thus, for example, if (R, +, -) is any noncom-
mutative semiring then we can define another semiring (R, +, o), having the same
additive structure, called the opposite semiring of (R, +, -), by setting aob=b-a
for all @ and b in R. A more graphic set of examples is the following. A triangular
norm (t-norm) on [ is defined to be an operation M on I satisfying the following
conditions:

(1) (I,M)is a commutative monoid with identity element 1;

(2) @ <binlimplies that aNe<bMNcforallcel.
From these conditions it follows that 0 Ma = 0 for all @ € I. Triangular norms
were first introduced by Menger [1942] and have proven useful in the theory of
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probabilistic metric spaces and in multivalued logic. Measures based on triangular
norms are used in mathematical statistics [Dvoretzky, Wald & Wolfowitz, 1952]
and [Schweizer & Sklar, 1961], capacity theory [Frank, 1979], probability theory
[Schmidt, 1982], game theory [Aumann & Shapley, 1979] and [Butnariu & Kle-
ment, 1993], and pattern recognition [Sugeno, 1979]. For the use of triangular
norms in defining propositional fuzzy logics, refer to [Butnariu et al., 1995]. It is
straightforward to see that if M is a triangular norm on I then (I, maz,N) is a semi-
ring. But there are infinitely-many triangular norms definable on I! For example,
for each s € RT U {oo} we can define the fundamental triangular norm M, on
I as follows:

(1) aMg b= min{a,b};

(2) aNy b= ab;

(3) aNe b =maz{0,a+b—1};

(4) aN, b=logs{[(s — 1)+ (s* — 1)(s* = 1)]/(s — 1)} for all s e R*T\ {0,1}.
Thus we have an infinite family of multiplication operations which turn the com-
mutative monoid (I, maz) into a commutative semiring. Other infinite families of
triangular norms on I can also be found in [Schweizer & Sklar, 1963] and [Weber,
1983). If R, = (I, maz,M;) for each s € Rt U {oo} then I*(R,) = {0,1} for all
s # 0, while I*(Ry) = Ry. For various ways of looking at triangular norms, refer
to [Mesiar & Pap, 1998].

Dually, a triangular conorm (t-conorm) on I is an operation U on I satisfying
the following conditions:

(1) (I,U) is a commutative monoid with identity element 0;
(2) a<binlimplies that aUc <bUcforallcel.

From these conditions, it follows that 1 Ua = 1 for all a € I and so (I, min,U) is
a semiring with additive identity 1 and multiplicative identity 0. Every triangular
norm N defines a corresponding triangular conorm U by aUb = 1—[(1—a)MN(1-b)]
and every triangular conorm on I is definable in this manner. Thus we also have
an infinite family of multiplication operations which turn the commutative monoid
(I, min) into a commutative semiring.

If s € RTU {co} and I is topologized with its usual topology, then (I, maz,M;)
and (I, min, U;) are both topological semirings. Indeed, if * is a continuous function
from I x T to I such that (I, *) is a monoid with identity element 1 such that a0 =
0 = 0+a for all a € I then (I, maz, x) must be a commutative topological semiring.
Similarly, if (I, *) is a monoid with identity element 0 such that ax1 =1=1%a
for all @ € I then (I, min, *) must be a commutative topological semiring. Refer to
[Frank, 1979]. For further examples of t-norms and t-conorms and their computer-
generated pictorial representations, refer to [Mizumoto, 1989]. For representation of
t-norms as well as similar operations which turn (R*U{o0}, maz) into a topological
semiring, see [Ling, 1966].

(1.14) EXAMPLE. [Bourne, 1951; Heatherly, 1974] If (M, +) is a commutative
monoid with identity element 0 then the set End(M) of all endomorphisms of
M is a semiring under the operations of pointwise addition and composition of
functions. Thus, for example, if M = (RU {oco}, min) then End(M) is the set of
all nondecreasing functions on M. This semiring is of use in certain types of path
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problems in graph theory, see [Gondran & Minoux, 1984a]. If M is idempotent
then, for each m € M, the function a,,: M — M defined by a,,:z > m for all
¢ € M is a member of End(M) and {a,, | m € M} is a subhemiring of End(M)
which is not a subsemiring.

We note that Endy(M) = {a € End(M) | «(0) = 0} is a subsemiring of
End(M). If 6: M — Fndo(M) is a function satisfying

(1) 6(m +m') = 6(m) + (m');

(2) 6(m)(m') = 8(m) o 8(m’); and

(3) 8(0):m — 0.
for all m and m’ in M then @ defines a multiplication operation on M by setting
m - m’ = 6(m)(m’) such that (M, +,-) is a semiring. Indeed, all possible semiring
structures on (M, +) arise in this manner.

(1.15) ExaMPLE. Let R be a semiring, let 0 # b € R, and let D be a finite
subset of R containing 0. Then R has base b and set of digits D if every » € R
has a unique representation in the form do + d1b+ - - - + d,b", where the d; belong
to D. For example, for R = N take 2 < b€ Nand D= {0,...,b— 1}. For the use
of such semirings in generating fractals, refer to [Allouche et al., 1995].

(1.16) ExamMPLE. If Ris an infinite commutative integral domain and if f(X,Y")
and g(X,Y) are polynomials over R, we can define operations @& and ® on R by
setting a ® b = f(a,b) and a ® b = g(a,b). Necessary and sufficient conditions
for (R,®,®) to be a hemiring or a semiring in this situation have been studied in
[Petrich, 1965].

(1.17) ExamMpPLE. In Example 1.13 we saw that the additive structure of a semi-
ring does not n=cessarily determine its multiplicative structure. The multiplicative
structure of a semiring does not determine the additive structure either. For in-
stance, on the multiplicative monoid (R*,-) we can define two semiring structures
by taking addition to be ordinary addition of numbers or taking addition to be
maximum. Pearson [1966, 1968a] has classified all operations & on subintervals of
R U {oo} which, together with ordinary multiplication, turn them into topological
semirings.

Let R = NxNxN. Define addition on R componentwise and define multiplication
on R by setting

(a,a’,a")(b,b',b") = (a"b+ ab”,a"b’' + a'b" + ab+ ab’ + a’b + 'V’ ,a”"d").

Then R is an entire semiring. Another semiring structure on R is obtained by
defining multiplication componentwise. We have already seen that (N, +, ) has a
semiring structure. If h, k& € N, let h LI k be the greatest common divisor of h and
k in N. Then it is straightforward to verify that (N, U, ) is also a semiring. More
generally, a standard thread is a topological semigroup on a closed subinterval
I = [a,b] of R, together with an operation x defined on I such that (I, *) is a monoid
with identity element b and the element a satisfies e xz =z *a=a forall z € I.
The problem of finding all possible operations + on a standard thread over which
* distributes is solved in [Mak & Sigmon, 1988]. In particular, this solution yields
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all semiring structures on I with given multiplication *. Refer also to [Cao, Kim
& Roush, 1984]. This situation can also occur for finite semirings. If R = {0, », 1}
is ordered by 0 < u < 1 then (R, maz,min) is a semiring. However, R can be
given another semiring structure (R, @, min), where a @ b is defined to be equal to
maz{a,b} unless a = b = 1, while 1 & 1 = u. This semiring has applications in the
design of computer circuitry; see [Hu, 1975].

(1.18) EXAMPLE. On a ring R, define the operation o by aob = a + b — ab.
This operation has been well studied and plays an important role in the definition
of the Jacobson radical. Let S be a nonempty set of commuting elements of R
containing 0 and closed under both o and multiplication, which satisfies the self-
distributivity condition with respect to multiplication, namely that a%bc = abc
for all a,b,c € S. Then (S, o0, ) is a hemiring. Thus, for example, we could take S
to be the set I*(R) N C(R) of central idempotents of R. For a discussion of this
construction in a more general setting, see [Birkenmeier, 1989]. Note that if 1g
belongs to S then S is in fact a simple semiring, since ao 1g = a for alla € S.

(1.19) EXxaMPLE. Let R be an additively-idempotent hemiring and define a new
operation o on R by aob = a+ b+ ab. Then (R, +, o) satisfies conditions (1)-(3)
of a semiring but is not a semiring since its additive and multiplicative identities
coincide.

An interesting interpretation of this operation also arises in the context of the
Join geometries studied in [Prenowitz & Jantosciak, 1979]. Let E be a nonempty
convex subset of euclidean space and let R = sub(E). For a,b € E, let ab be the
element of R defined as follows:

(1) aa={a};

(2) If a # b then ab is the open line segment connecting a and b.

As in Example 1.10, extend the definition of product to an operation on R by
setting AB = U{ab | a € A,b € B for all A,B € R}. Note that AB = @ if
and only if A = @ or B = @. It is straightforward to verify that (R,U, ) is
a commutative, additively-idempotent entire hemiring with additive identity @.
Moreover, A € I*(R) if and only if A is a convex subset of E. If a and b are
distinct elements of E then a,b ¢ ab. The closed line segment connecting a and b
is precisely aob = {a} U{b} U ab.

We note that the hemiring R can be embedded in a semiring as follows: let z
be a point not in E and let S = sub(E U{z}). Extend the definition of product by
setting az = za = a for all @ € F'U {2z} and, as before, set

AB=U{ab|a€ A,be Bforall A,Be S}.

Then (S,U, ) is a semiring with multiplicative identity {z}. Refer also to [Lyndon,
1961].

(1.20) ExamPLE. [Martelli, 1974, 1976] Let X be a set and let P = sub(X). A
subset U of P is a clutter if and only if A # B € U implies that A € B. Any finite
set U contains a clutter U# obtained by deleting from U all supersets of sets in U.
On the family R of all finite clutters of elements of P we can define addition and
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multiplication by setting U+V = ({AUB |A€ U,Be V})# and U-V = (UUV)#.
Under these operations, R is a commutative additively-idempotent semiring with
additive identity {@} and multiplicative identity @.

(1.21) ExaMPLE. A prenucleus on a frame (L, V,A) is a function 2: L — L
satisfying the following conditions:

(1) e < z(c) for all c € L;

(2) If ¢ < ¢ in L then z(c) < 2(c');

(3) z(eAc)=z2(c) Az(c) forall ¢, ¢’ € L.
Let PN(L) be the set of all prenuclei on L and define the operation A on PN(L)
componentwise: (z A 2’):¢ +— z(¢) A 2'(c) for all ¢ € L. Then PN(L), together
with addition given by A and multiplication given by composition of functions, is
a zerosumfree simple semiring which has important applications in the analysis of
frames. For structural consideration of PN(L), where L = R — tors is the frame
of all (hereditary) torsion theories on a module category R — mod, see [Golan &
Simmons, 1988].

(1.22) ExaMPLE. Let R = R U {oc}. Then (R, min,+) is an additively-
idempotent commutative semiring in which addition is the operation of taking min-
imum and multiplication is ordinary addition. As we shall see later, this semiring is
important in solving the shortest-path problem in optimization. If S = R* U {co}
then (S, min, +) is a simple subsemiring of (R, min, +) with infinite element 0. For
uses of this semiring in optimization theory, see [Gondran & Minoux, 1984al; for its
uses in analysis, refer to [Maslov & Sambourskil, 1992] and [Kolokol’tsov & Maslov,
1997]. It can also replace the semiring (R*, +, ) to obtain a new type of probability
theory, first studied by Maslov [1987] and later by Akian [1995a, 1995b] and her
collaborators [Akian, Quadrat & Viot, 1998]. This semiring has also found appli-
cations in multicriteria optimization, optimal control, and the theory of semantic
domains [Stinderhauf, 1997]. Indeed, computation in this semiring is so imporiant
that Lam and Tong [1996] have proposed a hardware implementation in analog
processing circuits.

The semiring S has a subsemiring (N U {oo}, min, +), known as the tropical
semiring, which has important applications in the theory of formal languages and
automata theory, including the capture of the nondeterministic complexity of a
finite automaton. Refer to [Mascle, 1986], [Simon, 1988], and [Pin, 1998]. The one-
point compactification of NU {co}, endowed with the discrete topology, is the set
NU{w,00}. This set can be totally-ordered by setting i < w < oo for all € N and
has the topological structure defined by taking as open sets all subsets of NU {oo}
and all sets of the form ([NU{oo}]\ A)U{w}, where A is a finite subset of NU{oc0}.
This set too can be turned into a semiring with operations @ and @ defined by:

(1) a® b= min{a,b};

(2) a@b=a+bif a,b €N and maz{a,b} otherwise.

See [Leung, 1988] and [Simon, 1994] for details and applications; for applications
to synchronized elementary net systems, see [Andre, 1989].

In a manner similar to the above, we see that (RU {—oo}, maz, +) is an additi-
vely-idempotent commutative semiring. This semiring is called the schedule alge-
bra or, sometimes, the max-plus algebra. Cuninghame-Green [1979] illustrates
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how it can be used in the analysis of the behavior of industrial processes. Also refer
to [Cheng, 1987], [Cruon & Hervé, 1965], [Cuninghame-Green, 1962, 1976, 1991]
and [Cuninghame-Green & Borawitz, 1984]. Much of this work is based on ideas
presented informally in [Giffler, 1963, 1968]. A more formal presentation of Giffler’s
schedule algebra is given in [Wongseelashote, 1976]. For the use of this semiring in
finding critical paths in graphs, refer to [Carré, 1979]. For its use in discrete-event
dynamical systems refer to [Baccelli et al., 1992], [Gaubert, 1996a], [Gaubert &
Max Plus, 1997], [Gunawardana, 1994], [Olsder, 1991, 1992]. For applications to
control theory, see [Mairesse, 1985] and for applications to automata theory, see
[Krob, 1998]. Also refer to [Max-Plus Working Group, 1995].

Among the subsemirings of the schedule algebra which we will discuss later are
(Z U {—o0}, maz,+) and the antisimple semiring (N U {—oc0}, maz,+). Another
important subsemiring of this semiring is (R*U{—o0}, maz, +). This semiring has
important applications in the categorical approach to the theory of metric spaces,
which was first developed in [Lawvere, 1973]. In fact, we can restrict ourself to
(FU{—o00}, maz,+), where F is any submonoid of (R, +).

(1.23) ExampLE. If (R,+,") is a semiring and X is a set together with a bi-
Jective function 6: X — R then the semiring structure on R induces a semiring
structure (X,®,®) on X with the operations defined by =z ® y = §~1(6(z) + é(y))
and £ ®y = 671(6(z) 6(y)). Such constructions can often lead to interesting exam-
ples such as the following one, mentioned in [Mullin, 1975]: Let R be the semiring
of all functions from N to itself with the operations of componentwise addition and
multiplication. Define a function 6 from Rt to R which sends each nonnegative
real number into its representation as a continued fraction. Then é(r)(¢) = 0 for
only finitely-many i € N if and only if r is irrational. Since the family of all f € R
catisfying the property that f(¢) = 0 for only finitely-many ¢ € N is closed under
taking componentwise sums and products, we see that we have an indused semiring
structure on {0} U [R*\ Q%]

(1.24) ExaMPLE. Finally, we mention another example arising from theoreti-
cal computer science. Bergstra and Klop [1983, 1984, 1986, 1989] have constructed
an algebra of communicating processes (ACP) to formalize the actions in a
distributive computation environment. Such an algebra consists of a finite set R of
atomic actions, among which is a distinguished action ¢ “deadlock”), on which we
have operations + (“choice”) and | (“communication merge”) satisfying the condi-
tions that (R, +,|) is a commutative additively-idempotent hemiring with additive
identity é. In addition, there is another operation - (“sequential composition”) de-
fined on R such that (R, ) is a semigroup satisfying a - § = é for all a € R and such
that - distributes over + from the right but not necessarily from the left. Refer also
to [Baeten, Bergstra & Klop, 1988]. For other related algebras of communicating
processes which form semirings, see [Cherkasova, 1988] and [Hennessy, 1988].

(1.25) ExaMPLE. If (R,+,") s a semiring then one can define operations & and
© on sub(R) by setting A®B = {a+b|a€ A,b€ Bfand AOB={ablac A b€
B}. Then (sub(R), ®, ®) need not be a semiring. To see this, consider the following
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example, due to [Litvinov, Maslov & Sobolevskil, 1998]: let R = (R x R)U {—o0}
and define operations of R as follows:

(1) (a,b)+ (a’',b) = (max{a,a’}, maz{b,b'}) for all a,a’, b, ¥’ € R;

(2) (a,b)(@,¥)=(a+a b+ V) forall a,a b, b € R;

(3) (—0)+r=r+(—0c0)=rforall r € R;

(4) (—o0)r = —o0 = r(—o0) for all r € R.

Then (R, +,-) is a semiring but (sub(R),®,®) is not since, if r = {(0,1),(1,0)},
r ={(1,0)},and " = {(0,1)}, then r O (P & ") £ (rOr)® (rO ).



2. SETS AND RELATIONS WITH
VALUES IN A SEMIRING

The direct product R = X;cqR; of a family of semirings {R; | i € Q} has the
structure of a semiring with the operations of addition and multiplication defined
componentwise. This semiring is additively- [resp. multiplicatively-] idempotent
[resp. zerosumfree, simple] if each of the R; is additively- [resp. multiplicatively-]
idempotent [resp. zerosumfree, simple]. It is not entire if Q has order greater than
1.

If {R; | i € Q} is a set of information algebras (i.e. entire zerosumfree semirings)
then the pseudodirect product R’ =<;cq R; has the underlying set

{0} U xiea(R:i \ {Or,}).

Operations between nonzero elements defined componentwise, and these operations
are extended to all of R’ by setting 0+ = '+ 0 = »' and 07/ = »'0 = 0 for all
r' € R'. This is again an information algebra. If each of the R; is additively- [resp.
multiplicatively-] idempotent then so is t<;eq R;. Similarly, it is simple if each of
the R; is.

In particular, we note that if A is a nonempty set and R is a semiring then R4
is a semiring, sometimes called the semiring of R-valued subsets of A. This name
derives from the fact that each subset B of A defines a characteristic function

cp €BA given by
{1 ifa € B
cCp:Qar

0 otherwise

Thus B4 can be canonically identified with the semiring sub(A) of all subsets of
A. If f € R” then the support of f is supp(f) = {a € A | f(a) # 0}. If
im(f) C {0,1} then f is exact (or crisp). The notion of sets with values in a
semiring was considered in detail in [Eilenberg, 1974].

If Si 1s a subsemiring of R; for each i € Q then X;eqS; is a subsemiring of
XieqR;. In particular, if S is a subsemiring of a ring R and if A is a nonempty set
then S4 is a subsemiring of R4. Thus, if R is an additively-idempotent semiring
and A is a nonempty set then the set of all exact functions in R4 is a subsemiring
of RA.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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If A is an infinite set and R is a semiring then {f € R* | f has finite support}
is a subhemiring of R4 which is not a subsemiring, since it does not contain the
multiplicative identity. If R is zerosumfree and entire then

{0y U {f e R| A\ supp(f) is finite}

is a subsemiring of R4.

(2.1) AppLICATION. It is sometimes very important to allow an element of a
set to appear in that set “more than once”. For example, this happens when we are
counting the zeroes of a function or the eigenvalues of a linear transformation. This
has led to the theory of multisets, which were first formally studied by Knuth [1992]
for use in computer science and have since been used extensively in many contexts.
Thus, given a nonempty set A, a multisubset of A is defined by a multiplicity
function in N4, where N is the set of all nonnegative integers. The theory of
multisets has been formalized in [Blizard, 1989]. For a formalization of linear logic
in terms of multisets, refer to [Troelstra, 1992]. Loeb [1992], concerned with various
combinatorial problems, extended the notion of a multiset to that of a hybrid set,
or “set with a negative number of elements” by considering multiplicity functions
belonging to ZA4.

Another extension of the notion of a multiset involves looking at multiplicity
functions in R4, where R = NU {—00,00}. Elements of R4 are sometimes called
bags on A. (On the other hand, the term “bag” is often used as a synonym for
“multiset”, so one has to be careful.) See [Andre, 1989] for an application of this
construction to signal processing.

(2.2) AppLicaTiON. For any nonempty set A, we have the semiring I4 of all
fuzzy subsets of A, which has been extensively studied by Zadeh, beginning with
[Zadeh, 1965], and his disciples. Literally thousands of papers have been written
on fuzzy set theory. See [Kaufmann, 1975] or [Dubois & Prade, 1980] for details.
In [Gierz et al., 1980], which is based on a more geometric point of view, fuzzy
subsets are called cubes. Thus, for example, fuzzy subsets of R can be considered
as coinciding with nonnegative probability distribution functions. See [Klement,
1982] for details of this approach. The semiring I4 of all fuzzy subsets of a set
A is in fact a frame [De Luca & Termini, 1972] in which meets and joins are
defined componentwise: if U C I# and a € A then VU:a — sup{f(a) | f € U}
and AU:a — inf{f(a) | f € U}. These are not the only operations which can
be defined on [#. Various other operations and their properties are discussed in
detail in [Mizumoto & Tanaka, 1981]. Many of these are defined componentwise
by various triangular norms and conorms on I. If f and g are elements of I4 then
(g : f) is the function defined by

1 i f(@) < gla)

g(a) otherwise

(6: fram{

If g = cp is an exact subset of A then (g : f) = cp, where D = BU [A\ supp(f)]
and this is an exact subset of A.
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(2.3) ExaMPLE. For nonempty sets A and B, we have the semiring sub(B)* of
all multifunctions from A to B. In [Manes & Arbib, 1986], multifunctions are the
basis for the treatment of the semantics of computer programs. If R is the schedule
algebra and A = R?, then a semiring of interest in analysis is the subsemiring of
RA consisting of all functions f: A — R satisfying the condition that supp(f) is
an open connected subset (= domain) of A on which f is subharmonic. Another
subsemiring of this semiring is obtained by substituting “upper semicontinuous”
for “subharmonic”.

(2.4) ExamPLE. If X is a topological space, then the family (R*)* of all non-
negative real-valued functions on X is a commutative semiring under the usual
pointwise operations. The family of all continuous nonnegative real-valued func-
tions on X is a subsemiring of this semiring.

This notion can be generalized. Let A be a nonempty set and let A be a nonempty
family of nonempty subsets of A satisfying the condition that if B, B’ € A then
BN B € A. If Ris a semiring then RE N R = o for all B # B’ in A. Set
RA = U{RP | B € A}. Thus, for each f € R4 there exists a unique B € A such
that f € RB. This subset B of A is called the domain of f and will be denoted by
dom(f). We now define operations of addition and multiplication on R* as follows:

(1) If £, € R* then dom(f+g¢) = dom(f)Ndom(g) and (f+g)(a) = f(a)+g(a)
for all a € dom(f + g).

(2) If f,g € RA then dom(fg) = dom(f) N dom(g) and (fg)(a) = f(a)g(a) for
all a € dom(f + g).

(2.5) PrROPOSITION. Let A be a nonempty set and let A be a nonempty family
of ncnempty subsets of A satisfying the condition that if B, B’ € A then BNB' € A.
If R is a semiring then R* is also a semiring.

ProOF. It is straightforward to check all of the conditions in the definition of
a semiring. Notice that the additive identity of R# is the function a — 0 having
domain A and the multiplicative identity in R is the function a — 1 having domain
A O

Thus, in particular, we see that if A is a nonempty set then R4 = R{A},

If A and B are nonempty sets then B4*F is called the semiring of all R-valued
relations between A and B. The use of these concepts to define the notion of
an R-valued language then follows the lines given in [Kim, Mizumoto, Toyoda
& Tanaka, 1975] and [Wechler, 1975]. Fuzzy relations, namely relations with
values in I, are considered in [Dubois & Prade, 1980], [Fang, 1993], [Kawahara &
Furusawa, 1999] [Murali, 1989], and [Ovchinnikov, 1981, 1993]. If A is a nonempty
set then an R-valued relation on A is an element of RAXA

(2.6) ExaMPLE. If V is a nonempty set then an element g of BY XV is called
a (directed) graph on V. The elements of V are called the vertices (or nodes)
of g and the elements (v,v') of V x V satisfying g(v,v') # 0 are called the arcs of
the graph. If V is finite then the number of elements of V' is the order of V. This
notion can be generalized: if V' is a nonempty set and R is an arbitrary semiring
then an element g of RY*V is an R-valued graph on V. The arcs of g are those
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elements (v,v") of V x V satisfying g(v,v’) # 0. In this case, g(v,v’) is the weight
of the arc in R. Graphs with values in I are called fuzzy graphs. A path of
length n in an R-valued graph g € RV*V is a finite ordered subset (v1,vs, ..., v,)
of vertices of g such that (v;,v;41) is an arc of g for all 1 < 7 < n. It is often
convenient to extend the definition of g and consider it as a function from the set
of all paths of g to R by setting

n—1
g(vr, ..., va) = [ 9(vi, vigr)-
i=1

The problem of finding efficient algorithms for computing this value, or often the
value Y g(p), where the sum ranges over all paths p of given length n from a fixed
vertex v to a fixed vertex ', is often of great importance, as we shall see. Refer
to [Fletcher, 1980] for an example of such an algorithm. Also consult [Gondran &
Minoux, 1984a] for further details.

Another way of looking at things is to consider B *V to be the set of non-
deterministic programs on the set V of states. Here it is understood that if
f € BV*V then f(v,v') = 1 if the program f may transform v into v/. See [Main
& Benson, 1985].

(2.7) EXxaAMPLE. If R is a semiring and if A and B are nonempty sets then an
R-valued relation h € R4*B is sometimes called a Chu space. Such spaces have
been studied intensively by Pratt [1986, 1993, 1994, 1995a, 1995b, 1996, 1997] and
his students, with an eye on applications in computer science. In this approach, A
is the set of events (or values, locations, variables, points) and B is the set of
states (“possible worlds”). The value f(a,b) represents the extent (or complexity)
of the event a happening at state b. In particular, if R = B then f(a,b) = 1 if
event a has happened at state b and f(a,b) = 0 if it has not. This interpretation
has been used in [V. Gupta, 1994] and [Pratt, 1995b] to build models of concurrent
systems.

The Chu space approach is basically categorical, and so it leads to the idea of a
transform between R-valued relations. Let f € R4*B and g € RA'*B’ be R-valued
relations. A transform (u,v): f — g consists of a pair of functions u: 4 — A’
and v: B’ — B satisfying the condition that f(a,v(d’)) = g(u(a),b) for alla € A
and ¥ € B’. Note that if (u,v): f — ¢ and (v/,v'):g — h are transforms then
(w'u,vv'): f — h is also a transform. If there exists a transform (u,v): f — g then
we say that f is a left adjoint of g and g is a right adjoint of f. In the model
of concurrent systems proposed in [V. Gupta, 1994], a transform (u,v):f — ¢
determines a simulation of g by f.

An R-valued relation h on a nonempty set A is transitive if and only if, whenever
a,a’,a” € A there exists an element r of R such that h(a, a’)h(a’,a”)+r = h(a,a”).
If in fact h(a,a’)h(a’,a”) + h(a,a”) = h(a,a”) then h is strongly transitive. It
is reflexive if and only if h(a,a) = 1 for each a € A and it is symmetric if and
only if h(a,a’) = h(d,a) for all a,a’ € A. A [strongly] transitive, reflexive, and
symmetric R-valued relation h on A is a [strong] R-valued equivalence relation
on A. For example, if R is an arbitrary semiring and A is a nonempty set,then any
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g € RA defines a B-equivalence relation ~g on A by setting a ~4 @’ if and only if
g9(a) = g(a’).
(2.8) ExaMpLE. If R = (I, V, A) then the function h € RNXN defined by

fm=n

h:(m,n) — if m+n is even

O o=

otherwise
is an R-valued equivalence relation on N.

(2.9) ExampLE. If R = (I, maz,-)and if A is a nonempty set then any function
f € R” defines an R-valued equivalence relation h € R4*4 by

min{f(a),f(b .
h:(a,b)H{ ey i f(a) # f(0)

1 otherwise

Indeed, if R = (I, maz,N), where M is a continuous triangular norm, then the family
of all R-valued equivalence relations on a nonempty set A has been characterized
by Valverde [1985]. For further results, refer to [Jacas and Valverde, 1996].

Let R be a semiring and let A be a nonempty set. If f,g € RA*4 and if
fg € RA*4 is the function defined by fg:(a,a’) — f(a,a’)g(a,a’) then fg is surely
symmetric and reflexive whenever both f and g are. Moreover, if both f and g are
transitive and the image of at least one of them is contained in the center of R then
it is straightforward to verify that fg is transitive as well. Thus we see that if f and
g are R-valued equivalence relations on A, the image of one of which is in the center
of R, then fg is also an R-valued equivalence relation on A. In particular, if R is
commutative then the set of all R-valued equivalence relations on any nonempty
set A is closed under taking products.

(2.10) ProposITION. Let R be a simple semiring and let h € RA%A be a
strong R-valued equivalence relation on a nonempty set A. Then the relation ~ on
A defined by a ~ o’ if and only if h(a,a’) = 1 is an equivalence felation.

PROOF. It is easy to see that ~ is symmetric and reflexive. If a ~ a’ and @’ ~ a”
then 1 = h(a, a’)h(a, a”) so h(a,a”) = h(a,a”)+h(a,a’)h(a’,a") = h(a,a”)+1 = 1.
Thus a ~a”. O

(2.11) ExaMPLE. Let R = (Rt U {oo}, min,+) and let A be a nonempty set.
Then an (extended) pseudometric on A is just an R-valued equivalence relation
on A. Such a function is an (extended) metric if and only if the relation ~ on
A which it defines is trivial. Thus, for example, if A is the set of all continuous
functions from I to R then we have an R-valued equivalence relation h on A defined
by

he (9, ) — / (1) — B(o)ldt.

Extended pseudometrics with values in (Nt U {00}, A, +) (namely (Nt U {oo})-
valued equivalence relations), also play an important role in theoretical computer
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science and formal language theory. For example, if A is a nonempty set we have
the following pseudometrics on A* with values in N* U {oo} are among those given
in [Choffrut & Pighizzini, 1997]: f e =21 -...- 2y and y = y1 - ...- yn then

(1) The Hamming distance between & and y is defined by
#i|zi £y} ifk=n

00 otherwise

du(e,) = {

(2) The subword distance between z and y is defined by

ds(z,y) = |z| + |y| — 2maz{|z| | z is a subword of both z and y}.

(2.12) AppPLICATION. Let A be a nonempty set of “states” and let L be a
nonempty set which i1s the “language” in which we make statements about the
elements of A. We assume that there is a distinguished subset |= of A x L and we
say that a state a € A satisfies a statement A € L if and only if (a, A) € k=. In this
case we write a | A. If L’ C L then the set of models for L') is the set

Mod(M'Y={a€ A]lakAforall A € L'}
and if A’ C A then the theory of A’ is the set
Th(AY={ € L|akXforallac A'}.

Now assume that L has a special element L satisfying Mod({Ll}) = @ and that
there is an operation V defined on L satisfying Mod({A V X'}) = Mod({\}) U
Mod({X'}) for all A\, X € L. In case L = {A1, Aa,...} is countable then we have an
(R* U {oo}, A, +)-valued equivalence relation h defined on A as follows:

(1) h(a,a) =0 for all a € 4;

(2) If a # o’ in A then h(a,a’) = 1, where n = min{k | a = \x and o’ }£ Ag)}.

These examples suggest that, for a general semiring R, we can treat R-valued
equivalence relations in the same way we treat duals of pseudometrics. Thus, for
example, if R is a semiring and A is a nonempty set, we say that R-valued equiv-
alence relations h, k € RA*4 are Lipschitz equivalent if and only if there exists
s1,82,71,72 € R satisfying sy h(a,a’) = r1 + k(a,a’) and syk(a,a’) = ro + h(a,a,)
for all a,a’ € A. It is easily checked that this is in fact an equivalence relation.

(2.13) ProrosITION. Let R be a semiring and let A be a nonempty set. If h €
RAXA s a strong R-valued equivalence relation on A then the following conditions
are equivalent for a,b € A:

(1) h(a,¢) = h(b,c) for all c € A;
(2) h(a,b)=1.

PrROOF. Assume (1). Then, in particular, h(a,b) = h(b,b) = 1 and so we have
(2). Conversely, assume (2). If ¢ € A then h(a,¢) = h(a,c) + h(a,b)h(b,c) =
h(a,c) + h(b, c) and similarly h(b, ¢) = h(b, c) + h(a,c), proving (1). O
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(2.14) PrOPOSITION. Let R be a semiring and let A be a nonempty set. If
h € RA%4 is a strong R-valued equivalence relation on A then:

(1) h(a,c)h(b,c) =0 for all c € A if and only if h(a,b) = 0;

(2) h(a,c) = h(b,c) for all c € A if and only if h(a,b) = 1.

ProOF. (1) Assume that h(a,c)h(b,c) =0 for all c € A. Then
h(a,b) = 1- h(a,d) = h(a,a)h(a,b) = h(a,a)h(b,a) = 0.
Conversely, assume h(a,b) = 0. Then for all ¢ € A we have
h(a,c)h(b,c) = h(a,c)h(c,b) + h(a,b) = h(a,d) = 0.

(2) Assume h(a,c) = h(b,c) for all ¢ € A. Then, in particular, 1 = h(a,a) =
h(b,a) = h(a,b). Conversely, assume that h(a,b) = 1. Then for any ¢ € A we
have h(a,c) = h(a,c) + h(a,b)h(b,c) = h(a,c) + h(b,c) and similarly h(b,c) =
h(b,c) + h(a,c), proving that h(a,b) = h(b,c). O

In particular, if h € RA*4 is an R-valued equivalence relation on a nonempty set
A then, for each ¢ € A, then equivalence class of ¢ with respect to that relation
is the R-valued subset h, of A defined by hs:a’ — h(a,a’). Propositon 2.14 then
says that, in the given situation,

(1) hghp is the 0-map if and only if h(a,d) = 0; and

(2) hq = hy if and only if h(a,b) = 1.
The set of all equivalence classes of A with respect to an R-valued equivalence
relation A is the R-valued partition P, of A defined by h. Note that if we have
a canonical surjection from A to Pj given by a — h,.



3. BUILDING NEW
SEMIRINGS FROM OLD

We now consider a material from the previous chapter from a different angle.
Let R be a semiring and let A be a nonempty set which is either finite or countably-
infinite. Then the set R4X4 of functions from 4 x A to R is denoted by M4(R),
and such functions are called (4 x A)-matrices on R. If A is a finite set of order n
we write My (R) instead of M 4(R); if A is countably-infinite we sometimes write
M, (R) instead of M4(R). If A is a finite or countably-infinite set we will often
denote matrices in the usual matrix notation rather than in functional notation.
In particular, we will sometimes employ “block notation” for such matrices. We
have already noted that addition of such matrices, defined componentwise, turns
M 4(R) into a commutative additive monoid, the identity element of which is the
function which takes every element of A x A to 0.

A matrix f € M4(R) is row finite [resp. column finite] if and only if for
each i € A [resp. j € A] all but finitely-many values of f(i,j) are equal to 0. If
f19 € M4(R) such that either f is row-finite or g is column finite then we can
define the product fg by setting fg:(7,j) — D opca f(i, k)g(k,j) for all 4,5 € A.
It is easy to verify that the set My ,(R) of all row-finite matrices in M4(R),
the set My ((R) of all column-finite matrices in M4(R), and the set M4 ,.(R)
of all row-finite and column-finite matrices in M 4(R) are all semirings under the
given operations of addition and multiplication. (The multiplicative identity is the
function f defined by f(i,i) = 1foralli € A and f(i,j) =0fori# jin A) If A
has order greater than 1, these semirings are not entire. If A is finite then, needless
to say, M4 (R) = My (R) = My r(R) = Ma(R). If S is a subsemiring of a
semiring R and A is a nonempty set then M4 ,(S), M4 (S), and My ,.(S) are
subsemirings of M4, 7(R), M4 .(R), and M4 ,.(R) respectively.

If R is a semiring and A is a nonempty set then the following are subsemirings
of My ,.(R):

(1) {f € Mare(R) | £(3,5) = 0 for i £ j};

(2) {f e Marc(R)| f(i,5) =0 for i > it;

(3) {feEMure(R) ] f(4,7) =0 unless i = j or i = 1}.

Thus we see that, if A is a finite set, the elements of R4*4 can be considered in
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two different ways: as element of the semiring of R-valued graphs on A or as ele-
ments of the semiring of (A x A)-matrices on R. These two semirings have the same
addition but different multiplications. In the literature the distinction between the
two is often marked by speaking of finite graphs and of their corresponding transi-
tion matrices. Matrix powers have a very natural graph-theoretic interpretation.
Indeed, if g € RA*4 and if i, j € A then, for each k > 0, the power g¥ in M 4(R) is
just S>{g(p) | p a path of length k from 7 to j}. In addition to the above, there are
other multiplication operations on R4*4 which, together with the componentwise
addition, turn it into a hemiring which is not necessarily a semiring. Thus, for ex-
ample, for each f € RAX4 let the trace of f be given by tr(f) = 3 ,c 4 f(a,a) and
define the operation * on RA*4 by fxg: (i, j) — tr(f)g(i, j). Then (R4*4 + %) is
a hemiring. For a general mechanism to construct such hemirings, refer to [Birken-
meier & Heatherly, 1987].

Note that if n > 1 is an integer, then M,(R) is not simple for any semiring
R. For the properties of semirings of matrices of the form M,(R), where R is a
bounded distributive lattice, see [Give’on, 1964]; for semirings of matrices of the
form M, (R) where R ranges over various other types of ordered algebraic struc-
tures, see [Blyth, 1964]. Semirings of matrices of the form M, (B) and their many
applications are discussed in detail in [Kim, 1982]; the structure of I*(My(IB)) is
completely described in [Chaudhuri & Mukherjea, 1980]. Semirings of matrices of
the form M,(I) and their applications are discussed in [Kim & Roush, 1980]; in
particular, for a multiplicatively-regular element A of M, (I), one finds there algo-
rithms to find a generalized inverse and a Thierrin-Vagner inverse of A. Semirings
of matrices over the semiring (R*, maz, -) are considered in [Vorobjev, 1963]. Ma-
trices over the semiring (R™*, +,-) have played an important part in linear algebra
since the work of Frobenius, and have important applications in such areas as the
study of Markov chains. For an introduction to the research in this area, refer to
[Gantmacher, 1959] or [Minc, 1988].

Semigroups of matrices over semirings are interesting in their own right; see
[Straubing, 1983b] for example. In addition, they can be used with advantage as
a basis for algorithms to compute general finite semigroups. Refer to [Froidure &
Pin, 1998]. Semirings of matrices over the the semiring (R U{oo}, min, +) and their
applications in operations research are discussed in [Pandit, 1961] and [Gaubert,

1996b)].

(3.1) ExampPLE. In [1996b], Gaubert solves the Burnside problem in this con-
text by showing that a finitely-generated torsion semigroup in M, (R) is finite,
where R is the schedule algebra (R U {—oco}, maz,+). Moreover, it is decidable
whether a finitely-generated semigroup of M,(R) is torsion. If one wants to ex-
tend this result to additively-idempotent semirings which are not semifields, the
matter becomes more difficult. However, it is shown there that if R is a commuta-
tive additively-idempotent semiring and if, for each r € R, the set

A(r)={r' € R|r=ad +r' for some a’ € R}
is finite, then every finitely-generated torsion semigroup in My (R) is finite.

As we will see later, matrices over a semiring have important applications in the
theory of finite automata. These applications give rise to certain problems which
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can be formulated in M, (R) for an arbitrary semiring R. Some such problems are
considered in [Simon, 1988]; among them

(1) The Finite Section Problem: Let U be a nonempty finite subset of
M, (R) and let G be the subsemigroup of (M, (R), -) generated by U. Given
1< h,k <n,istheset {r € R|r = apx} for some matrix [a;j] € G finite?

(2) The Finite Closure Problem: If U is a nonempty finite subset of M, (R),
is the subgroup of (M, (R), ) generated by U finite?

It is clear that if we can decide (1) then we can decide (2), but the converse is not
true in general. The decidability of these problems for the case of R = N is shown
in [Mandel & Simon, 1977]. For the case of R = (NU {00}, min,+), it is considered
in [Hashiguchi, 1982] and [Simon, 1988].

Since matrices over semirings have important applications, as we will see, the
speed of computation of matrix multiplication i1s often very important. For the
case of multiplication of finite matrices the entries of which come from a finite
semiring R, this problem has been studied in [Rosenkrantz & Hunt, 1988], where it
is shown that such matrix multiplication is linear-time reducible to integer matrix
multiplication. Thus, any fast algorithm for integer matrix multiplication can be
converted into a fast algorithm for multiplication of matrices over a finite semiring
R. This is true both for computation on one-processor machines and for parallel
computation. Refer also to [Mehlhorn, 1984].

(3.2) APPLICATION. A matrix iteration theory is an algebraic theory the
objects of which are natural numbers and the morphisms & — n in which are k x n
matrices over some fixed semiring R. Such theories are studied in detail in [Bloom &
Esik, 1993]. Such theories have important applications in the analysis of flowchart
schemes and automata. Refer also to [Ying, 1991].

Let (M, *) be a monoid with identity e and let R be a semiring. The family R[M]
of all functions f € RM having finite support is a semiring under the operations of
addition + and multiplication () defined as follows:

(1) (f +9)(m) = f(m) + g(m) for all m € M;
(2) (¢ | ¥)g)(m) = 3 {f(m")g(m”) | (m', m") € supp(f) x supp(g) and m'*+m"
m}.

The additive identity of R[M] is the function which takes every element of M to
Or. The multiplicative identity of R[M] is the function which takes e to 1g and
all other elements of M M to Or. The operation () is called *-convolution. If R
and M are commutative, then surely the semiring R[M] is commutative. Note too
that if R is additively idempotent, so is R[M].

(3.3) ExamMPLE. Let M = {1, m} be a group of order 2 and let R be a semir-
ing. Then we can identify R[M] with the semiring R x R on which addition and
multiplication are defined by

(¢,0)+ (e,d)=(a+c,b+d)

and

(a,c)(*)(c,d) = (ac+ bd, ad + bc).
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If z = (a,b) € R[M], set ©z = (b,a). Then we note that for each z,y € R[M] we
have

(1) e(ez) = g;
(2) ©(z +y) = (o2) + (oy);
(3) ©(z(+)y) = (Oz){+)y.

(3.4) AppLIcATION. For the application of semirings of the form B[A*], where
A is any alphabet, to the design of arithmetic circuits, see, for example, [Allender

et al., 1996].

We can extend the above notion of convolution as follows: if (M, %) is a monoid
then a family C of subsets of M is favorable if and only if the following conditions
are satisfied:

(1) C is closed under taking subsets and finite unions;
(2) If m € M then {m} €C;
(3) f A,BeCthen Ax B={mx*m'|(m,m')€ Ax B} eC.

Moreover, if R is a semiring then a favorable family C of subsets of M is R-favorable
if and only if it satisfies the additional condition:

(5) If m € M and if A, B € C then for all functions f: A — R and ¢: B — R,
the sum >_{f(m')g(m") | m' € A,m"” € B and m’ ¥ m"” = m} is defined in
R.

Note that the family Cy of all finite subsets of M is R-favorable for any semiring R
and, by (1) and (3), it is in fact the unique minimal favorable family of sub(M). If
the monoid M is finitary then the family of all subsets of M is R-favorable for any
semiring R.

If R is a semiring and C is an R-favorable family of subsets of a monoid (M, *)
then we will denote by R[C] the family of all functions f € RM satisfying the
condition that supp(f) € C . Note that conditions (1) and (2) insure that R[C] is a
submonoid of the commutative monoid (RM, +). Also, if f € RM has finite support
then f € R[C] for each R-favorable family C of subsets of M. In particular, for each
element 7 of R and each element m of M we have the function e, ,: M — R defined
by

, r ifm' =m
erm:m —

and this function belongs to R[C] for all R-favorable families C of subsets of M. For
any R-favorable family C of subsets of M we can define the *-convolution operation
(*) by setting

0 otherwise

f(¥)g:m — Y _{f(m")g(m") | (m',m") € supp(f) x supp(g) and m’ * m" = m}.

Then (R[C], +, (*)) is a semiring, called the convolution algebra on R defined by
M and C.

If C C D are R-favorable families of subsets of M then it is clear that R[C] is a
subsemiring of R[D]. Thus, in particular, R[M] = R[Co] is a subsemiring of R[C]
for every R-favorable family C of subsets of M.
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Let R be a semiring, let C be an R-favorable family of subsets of a monoid (M, ),
and let #: M — C be a function satisfying m € 8(m) for each element m of M. For
each f € RM and each m € M, let f|n ¢ be the function from M to R defined by

f(m') ifm € 6(m) .

0 otherwise

flm,e:m’H{

Functions of this type certainly belong to R[C]. Now define an operation, (x|g)
on RM | called local convolution, by setting (f{*|p)g)(m) = (flm,6 (*)9|m,¢)(m).
Then (RM, +, (]s)) is a hemiring.

(3.5) EXAMPLE. In Example 1.10 we considered a monoid (M, *) and a semiring
structure on sub(M) in which addition is union and multiplication is given by
AB = {axb|a € A b€ B}. As already noted, we can identify sub(M) with BY by
assigning to each subset A of M its characteristic function ¢4. Then caup = ca+cn
and cap = ca(x)cp. Thus semirings of the type given in Example 1.10 - and
in particular the important semirings given in Example 1.11 - are convolution
semirings whenever M is finitary.

(3.6) ExAMPLE. One of the most useful semirings in number theory is R = NM
where M 1is the finitary multiplicative monoid P of positive integers. The convolu-
tion operation (-} on R is usually denoted by * and is often called the Dirichlet
convolution. That is to say, (f*g)(n) = E{f(n’)g(n”) | n = n/n"} for each posi-
tive integer n. One checks that this operation is commutative. A function f € R is
multiplicative if and only if f(nn') = f(n)f(n') for all n,n’ € P. The set S of all
multiplicative functions in R is closed under * and componentwise products and it
is easy to see componentwise multiplication distributes over Dirichlet convolution
so that (S, #,-) is a commutative semiring.

Let M’ be the submonoid of P consisting of 1 and all those positive integers
which can be written as a product of an even number of primes. Then R’ = NM’
is a subsemiring of (R, +,*). Let u: M’ — N be the function defined by p(n) =1
if n =1 or n can be written as a product of distict primes and p(n) = 0 otherwise.
The Mobius Inversion Formula states that ¢ = g * f in R’ if and only if f = ¢ * f,
where ¢ € R’ is the function defined by ¢«(n) = 1 for all n € M’. Note that ¢ * p is
the multiplicative identity of R'.

Similarly, if M is the finitary monoid (N, +) then the convolution (+) is the
Cauchy convolution on NM. For a detailed study of these and other convolutions
of importance in number theory, refer to [Sivaramakrishnan, 1989].

(3.7) ExaMpLE. If (M, %) is a finitary monoid then we have a *-convolution
operation () defined among the fuzzy subsets of M. A fuzzy subset f of M is a
fuzzy submonoid if and only if f(x)f < f. Liu [1982] has justified this name by
showing that:

(1) If g1, g2, g3 are fuzzy singletons satisfying the condition that g;(z;) = f(z;)
whenever {z;} = supp(g;) then (g1(*)g2)(*)g3 = g1(*)(g2(*)g3);

(2) If e is the fuzzy singleton with supp(e) = {1sr} and e(1p) = 1 then for any
fuzzy singleton g satisfying g(z) = f(z) whenever {z} = supp(g) we have

e(x)g = g = g(*)e.
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(3.8) ExaMPLE. Let (M, +) be an abelian group and let R be the idempotent
semiring (RU {oo}, min, +). Let S be the set of all functions in R bounded from
below. Define addition on S componentwise and multiplication by convolution:

F(H)gme—inf{f(m')+g(m—-m')|m € M}.

The boundedness of f and g insures that this 1s well defined. This semiring has
important use in convex analysis. See [Aubin, 1993].

(3.9) ExaMmPLE. If A is a nonempty set and A* is the free monoid defined by A,
then we denote the semiring R[A*] by R({A). This semiring is called the semiring
of formal polynomials in A over R. It is additively idempotent if R is.

(3.10) ExampLE. [Kolokol'tsov & Maslow, 1987] Let X be a normal locally
compact topological space and let R be one the following semirings

(1) The semiring (R U {—o0}, maz,+) on which we have a metric d defined by
d(a,b) = |e* — €’
(2) The semiring (RU{—o00, 00}, maz, min) on which we have a metric d defined
by d(a,b) = |arctan(a) — arctan(b)|.
The subset S of RX consisting of all continuous functions having compact support
is a topological semiring with the topology coming from the metric d defined by
d(f,9) = sup{d(f(z),9(z)) | z € X}.
If, in addition, X is abelian additive topological group (for example, if X = R"™)
then S also has the structure of a convolution semiring (S, +, (+)).

(3.11) AprrLIcATION. Let M be the monoid (Z x Z,+) and let R be a semiring.
A (two-dimensional) cellular automaton on R is a function « from RM to itself
satisfying the condition that, for each f € RM, the value of a(f)(i, j) depends only
on the values f(h,k) for t—1 < h <i+land j—1< &k < j+ 1. In most
applications, R is taken to be N or Z/(k) for some positive integer k. Cellular
automata were first developed by von Neumann [1966], and later Ulam, in the
study of self-reproducing machines. The most well-known cellular automaton is
John Conway’s game of “Life”, popularized by the columnist Martin . Cellular
automata are now used extensively in computerized picture processing, pattern
recognition, models of the human nervous system, and in the design of multiple-
processor computers. Many operations of a cellular automaton can be regarded as
application of local convolutions f +— f(+]s)g, where

See [Preston & Duff, 1984] or [Martin, Odlyzko & Wolfram, 1984] for further de-
tails. Cellular automata provide a beautiful graphic example (often illustratable in
beautiful graphics) of how repeated application of a simply-defined operation in a
relatively-simple semiring can lead to very complex behavior.

If (M, ) is a semigroup rather than a monoid then we can still define the notion
of a favorable family C of subsets of M and the notion of *-convolution in R[C].
However, in this case (R[C ],+, (x)) turns out to be a hemiring rather than a
semiring.
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(3.12) EXAMPLE. Let V be a nonempty set and define the associative operation
* on V x V by setting (v,v') * (w,w’) = (v,w’) for all v,v',w,w' € V. Let R be a
semiring and let C be an R-favorable family of subsets of the semigroup (V x V, *).
Then R[C] is a subset of the set of all R-valued graphs on V. The *-convolution
operation (*) is just the operation of composition of graphs. See [Peeva, 1983] for
details. In particular, if V' is finite or countable, then this is just the operation of
matrix multiplication as defined above.

(3.13) EXAMPLE. Let s and m be integers greater than 1 and let A be the set of
all m-tuples (ay, ..., an), where the a; are integers satisfying 0 < a; < s—1. We can
define an operation A on A as follows: (ai,...,am) A (b1,...,bm) = (c1,...,¢m),
where ¢; equals 0 if a; # b; and equals their common value otherwise. Then
(A, A) 1s a semigroup. Let C = sub(A). The hemiring (NC], +, (A)) has important
applications in design theory and combinatorial geometry. See [Deza & Rosenberg,
1986], for details.

(3.14) ProPosITION. If R is a semiring and if C is an R-favorable family of
subsets of a semigroup (M, *) then the hemiring (R[C], +, (}) is a semiring if and
only if there exists an element e of R[C] such that, for all elements m # n of M,
the following conditions are satisfied:

(1) Zm’*m:m e(ml) =1= Zm*m”:m;
(2) Em’*m:n e(ml) =0= Em*m”:n E(Tn")

PRrROOF. Assume that R[C] is a semiring with multiplicative identity e. Then,
for each element m of M, we have

L=erm(m) = (e(erm)(m)= D>, e(merm(m’)= D em)
miym!'=m mism=m
and similarly
L=e1m(m) = (erm(xe)(m) = Y. em(m)e(m)= Y e(m").
Thus we have (1). If m # n are elements of M then
0=em(n) = (e(erm)n)= Y, emlerm(m)= > em)
and similarly,
0=em(n) = (erm{xe)(n) = Y, em(me(m’)= Y e(m").
m'sm''=n mem! =m

Thus we have (2).
Now, conversely, assume that e is an element of R[C] satisfying conditions (1)
and (2). Then for each f € R[C] and any element m of M we have

(e f)m) =3 e(m)f(m")= Y e(m')f(m)= f(m)

m'xsm''=m m'*xm=m
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and so e{x) f = f. Similarly, f(x)e = f. Thus R[C] is a semiring with multiplicative
identity e. O

If R[C] is not a semiring then it can always be embedded in a semiring, namely
its Dorroh extension.

Very close to the notion of a convolution is the following construction. Let A be a
partially-ordered set satisfying the condition that for each a € A the set (a] = {b €
A | b < a} is finite and let * be an operation defined on {{(a,b) € A x A|b < a}.
If R is a semiring then we can define the Wiegandt convolution ® on R4 by
setting

f®giar Y {f(b)glaxb) | be(a]}.

(3.15) ProPOSITION. Let R be a semiring and let A be a partially-ordered
set satisfying the condition that (a] is finite for each a € A and endowed with an
operation * defined on {(a,b) € A x A | b < a}. If addition is defined on R*
componentwise then in order for (R4, +,®) to be a semiring it suffices that the
following conditions are satisfied:

(1) Ifa>bthena>axbandax(axb)=0b;

(2) Ifa>b>cthenaxc>bxcand (axc)*x(bxc)=axb;

(3) Ifa>b>cthenaxc>bxc.

PROOF. We have already noted that (R4, +) is an additive monoid the identity
element of which is the function z defined by z(a) = 0 for all a € A. Moreover, if
f,g,h € R4 and a € A then

([f + gl @ h)(a) = Y _[F(b) + g(b)]h(a * b)

b<a

= Z F(b)h(a *b)+ g(b)h(ab)
b<a

=" f(b)h(axb)+ > g(b)h(axb)
b<a b<a

= (f®hl+[g® h])(a)

andso [f+g]®h=[f®h]+[g®h]. Similarly, f® [g+h] = [f® g] + [f ® h],
showing that ® distributes over addition from either side. If f € R4 and a € A
then [f®z](a) = S3{f(a)z(axb) | b< a} =0=[:® f](a) andso f®z =2 =2® f.

We are left to show that (RA ®) is a monoid with identity element not equal to
z. First, we note some consequences of conditions (1) - (3) of the hypothesis. If b
and b’ are distinct elements of (a] then a*b and a b’ must also be distinct. Indeed,
if axb=ax*b' then, by (1), we have b = a*(a*b) = ax(a*b’) =b'. We now claim
that

(4) Ifa>b>c, thenaxc>axb.
Indeed, from (2) and (1) we obtain axb=[ax(b*c)|x[bx(bxc)] = [a*(b*c)] *c.
Moreover, a > a*c > b*c. Therefore a > ax (b*xc)so a*xc > [a*(b*c)|*c=axb.
Since b # ¢, we in fact have a * ¢ > a x b, establishing (4). By the choice of A, we
know that it has minimal elements and, indeed, for each a € A there is a minimal
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element b of A satisfying b < a. Let A’ denote the set of all minimal elements of A.
If b is an element of A then, by condition (1), we have b b < b and so, if b € A,
we conclude that bxb =b. If a € A we claim that (a] U A’ = {a xa}. Indeed, we
surely have a xa € (a]. If b € (aJ U A’ then b = a * (a *b). By (4) we see that
a > a*b implies that b = a * (a * ) > a * a and so, by minimality, b = a ¥ a. As
a consequence, we see that (a] = {c € A | a > ¢ > axa}. We also note that, as a
consequence of (1), a * (a xa) = a for each a € A.

Ifb<ain Alet [ba] = {d € A | b < d < a}. Then we have a function
@:[b,a] — [a * a,a * b] defined by ¢:d — a *d. By what we have already noted
above, this function is injective. Moreover, by (4), it is order-reversing. We claim
that it is also surjective. Indeed, suppose that axa < d' <ax*bandset d =axd'.
Then a*xd = a* (a*d') = d’. Moreover, a > a xd while a x b > d’ implies that
d=ax*d >ax(a*xb) =b. Thus d = ¢(d), proving that ¢ is bijective. Another
order-reversing function from [b, a] to [a * a, a * b] is given by ¥:d +— d * b. Indeed,
by (2) we have a > axb > d*band so d xb > a * a by the minimality of a *x a. To
show that ¥ is bijective, we must show that every element d’ of [a * a, a * b] can be
uniquely represented in the form d * b for some d € [b, a]. Indeed, if d' is such an
element then there exists a unique element d” of [b, a] such that &’ = ¢(d”) = axd".
Hence d' = a*d” = [a* (d” *b)]* [d’ * (d” *b)] = [a* (d" * b)] * b = 9¥(d), where
d = a*(d" *b), and this is uniquely determined since d” is. Clearly a > d while
b=d"x(d"+b) <ax(d"*b)=dsodE€lba.

We now return to prove the associativity of ®. If f,g,h € R4 and a € A then,
by the above,

[f®(g@h)(a) =) f(d) { Y 9(0h((axd)*c)

d<a c<axd

But, by the above, we note that every such ¢ is of the form d’*d, where d’ is a unique
element of [d, a] which ranges over all of [d, a] as ¢ ranges over [a*a,a*d] = (a*d].
Thus we have

[
F@@emnl@ =) fd)| Y, g(d+*dh(laxdx[d* d])}

d<a d<d'<a

S| YD g(d xd)h(axd)

d<a d<d'<a :l

=Y | f(d)g(d +d)| h(axd)

d'<a |d<d’
=[(f®g) ® h](a),

proving associativity. Finally, let y € R4 be the characteristic function on A’. If
f € R4 and a € A then [f ® y](a) = S {f(b)y(a xb) | b < a} = f(a)y(a * a) = f(a)

so f®y = a. Similarly, [y ® fl(a) = y(a*a)f(a*(axa)) = f(a) soy® f = f.
Since f # z, this proves that (R4, +,®) is a semiring. O
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(3.16) ExaMPLE. If A = sub(B) for some nonempty set B then the operation
x on {(a,b) € Ax A|bC a} defined by a*b = a\ b satisfies conditions (1) - (3) of
Proposition 3.15. If A = P is partially-ordered by the relation & C a if and only if b
divides a, and if we define the operation * on {(a,b) EPxP|bC a} byaxb=a/b
then then Wiegandt convolution on N4 coincides with the Dirichlet convolution
as defined in Example 3.6. For an example of a Wiegandt convolution defined on
the lattice of subgroups of a finite abelian group, see [Delsarte, 1948]. This was
applied in [Rédel, 1967] to construct group-theoretic ¢-functions. For examples of
applications of such convolutions to combinatorics and computing, see [Birkhoff,
1971].

Now let ¢t be an indeterminate and consider the finitary multiplicative monoid
M = {t' | i € N}. In this case, for a semiring R, we follow the usual convention and
write R[t] instead of R[M]. This semiring is the semiring of polynomials in the
indeterminate ¢t over R. We will often follow the usual convention of denoting a
polynomial in f € R[t] by 3 f(i)t' rather than as a function. If 0 # f € R[t] and if
h is a maximal element of the support of f, then h is the degree of f and f(h) € R
is called the leading coefficient of f. We denote the degree of f by deg(f). If
f = 0 we set deg(f) = —oco. Semirings of polynomials over the schedule algebra
and their applications to graph theory and discrete-event dynamical systems are
discussed in detail in [Baccelli et al., 1992].

(3.17) EXAMPLE. Let R be a semiring and ¢ an indeterminate. If R’ is an entire
zerosumfree subsemiring of R then the set of all polynomials in R[t] having leading
coefficient in R’ and the set of all polynomials in R[t] having the coefficient of the
lowest nonzero term in R’ are both subsemirings of R[t].

Note that if S is an entire zerosumfree subsemiring of a semiring R and if ¢ is an
indeterminate then {p(t) € R[t] | the leading coefficient of p belongs to S}U{0gr} is
a subsemiring of i[t]. Similarly, the set of all polynomials p(t) € R[t] the coefficient
of the lowest nonzero term in which belongs to S, together with Og, is a subsemiring
of R[t].

A derivation on a semiring R is a function d: R — R satisfying d(r + ') =
d(r) +d(r') and d(rr') = d(r)r’ + rd(r') for all 7,7’ € R. If d and d’ are derivations
on a semiring R then for all ;' € R we have

(d+d)(r+7)=d(r)+d0") + d'(r)+ d(r") = (d + &)(r) + (d + d')(')
and

(d+ &) (rr')y = d(rr') + d'(rr") = d(r)r' + rd(r') + d'(r)r’
=rd'(r') = [(d+d) ()] + rl(d+ d)(r')]

and so d + d' is also a derivation on R. Since the function r — 0 is surely a
derivation on R, we see that the family of all derivations on R is a monoid under
the operation of componentwise addition. If Ris an additively-idempotent semiring,
then the identity map r — r from R to itself is also a derivation on R.
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(3.18) EXAMPLE. Let R be a semiring and let S be the subsemiring of Ms(R)
consisting of all matrices of the form [“ b] Then the function d: S — S defined by

[g Z] — [8 g] is a derivation on S. Since R can be identified with the subsemiring

of S consisting of all matrices of the form [g :}, we see that any semiring can

be embedded in a semiring with a nontrivial derivation. For the computational
implications of this fact, see [Ball, 1986].

If R[t] is the semiring of polynomials in the indeterminate ¢ over the semiring
R, and if d is a derivation on R, we can define a new multiplication on R[t] with
the aid of the rule ¢tr = rt + d(r) for all » € R and the distributivity of regular
multiplication over addition from both sides. Thus we obtain a hemiring, which, as
we have seen, can be embedded in a semiring. This semiring, denoted by R[t;d], is
called the differential polynomial semiring defined by d over R. The necessity
for using a Dorroh extension can be avoided if we insist that our derivations satisfy
the additional condition that d(1) = 0.

Let A be a nonempty totally-ordered set. We can induce a partial order on the
free monoid A* inductively as follows:

(*) If w = au and w’ = bv are nonempty words with u,v € A*, then w < v’ if
andonlyifa<bin Aora=>5band u<wv.

Note that if w < w’ and if u,v are arbitrary words then uw < vw’ and wv < w'v.
Also note that this order induces a total order on the set of all words of a given
length.

If w=ajas...a,is a word in A* then there is a permutation o of {1,...,n} such
that ¢{1) < 0(2) < --- < o(n). Denote the word a,(1)as(2)-..ag(n) by ws. Then
we can define a new operation ® on A* by w@w' = (w-w'),. Moreover, (A*,®) is a
commzutative monoid, called the symmetric free monoid on the totally-ordered
set A. If R is a semiring then the semiring R[(A, ®)] is called the semiring of
symmetric formal polynomials in A over R. It is not a subsemiring of R{A).
For the use of such semirings in number theory see [Cashwell & Everett, 1959].

Let A be a nonempty set and let A* be the free monoid of A. If R is a semiring
then the semiring of formal power series in A over R, denoted R{{A)), is defined
to be the set R4" on which addition is defined componentwise and multiplication
is defined by the Cauchy product (fg)(w) = Y {f(w')g(w") | w'w” = w}. This
sum is finite and so the product is well-defined. The addmve identity of R{(A)) is
the function which takes every element of A* to Og. The multiplicative identity
is the function f defined by f(w) = 1g if w = O and f(w) = O otherwise. An
element f of R{(A)) is quasiregular if and only if f(O) = 0. The semiring R{A)
subsemiring of R{A)). If R is additively idempotent or zerosumfree, then so is
R((A)) for all A. If @ # B C A then we can consider R{{B)) as a subsemiring of
R((A)) by identifying R{(B)) with the family of those functions in R{{A)) the support
of which is contained in B*.

If R is a semitopological semiring then R{{A)) is also semitopological under the
product topology induced by the topology on R. If f # g are distinct elements of
R{(A)), set m(f,g) = min{|w| | w € A" and f(w) # g(w)}. Pick a real number ¢
satisfying 0 < ¢ < 1 and define a function d: R{{4))2 — R* by setting d(f, f) = 0
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for all f € R((A) and d(f,g) = ¢™U9) for f # g. It is straightforward to verify
that this is a complete ultrametric on R{A) (i.e. d(f,g) < maz{d(f, h),d(h,g)}
for all f, g, h € R{(A))) which turns R{{A)) into a topological semiring. If f € R{{A))
is quasiregular, then the sequence (f, f2, f3,...) converges to 0 in this topology.

Thus we have seen that there are in fact two ways of defining multiplication on
RA™ in order to turn it into a semiring: the Cauchy product as given above and the
pointwise product (in various contexts also called the Hadamard product which
we considered before.

Formal power series over various semirings are an important tool in several fields
of applied mathematics and computer science. For an example of their application
to formal language theory, see [Chomsky & Schiitzenberger, 1963], [Eilenberg, 1974],
[Kuich & Salomaa, 1986], [Salomaa & Soittola, 1978], [Stanat, 1972], and [Wang,
1998].

(3.19) AppLicATION. One of the most important applications of semirings in
theoretical computer science is to automata theory. The use of semirings to study
automata goes back to [Conway, 1971] and was given its major impetus in [Eilen-
berg, 1974]. There are several ways of defining automata over semirings, and we
will use the approach given in [Kuich & Salomaa, 1986]. Also refer to [Lallement,
1979].

Let R be a semiring and let A be a nonempty set. An R{{A))-automaton
A = (S, M, s, P) consists of:

(1) A countable set S of states of A;

(2) A matrix M € Mg ,(R{(A))), called the transition matrix of A;
(3) An element sp of S called the initial state of A;

(4) A column vector P € (R(O))”, called the final state vector of A.

In variants of this definition, the automaton is allowed to have any of a finite
number of initial states and the transition matrix is restricted to having entries in
some predesignated subset of R containing 0 and 1. See, for example, [Kuich, 1387).

An automaton A is finite if the set S is finite. Initially, all automata studied
were finite automata. However, countably-infinite automata turn out to be useful
in certain situations, such as describing machines with pushdown stacks. As we
noted previously, the matrix M can also be thought of as a directed graph on the
set S. If M[s,t] # O then there is an arc of the graph from s to ¢ having label
M[s,t] € R{(A)). More generally, if s and t are elements of S then to any path
p=(s=s1,...5p, =t) we assign the label ||p|| = M([s1,s2]-...- M[sn_1,55]). If p
is a path from s to t and ¢ is a path from ¢ to u then pq is a path from s to v and
lIpall = lpll - l4ll-

If s € S and k € N let bx ; be Y {||p|| | p a path from so to s of length k}. Set
b, = Z,tozo bxs. The behavior of the automaton A is the formal power series
4| € R{A)) defined by [|A|| = > {bsP(s) | s € S}. Note that this power series
may not exist! We will come back to the existence of behaviors for automata later.
If f € R{{(A)) is the behavior of some R((A))-automaton A, then the power series f
is accepted by A. A language B C A* is recognized by an R{{A))-automaton A
if and only if ||.4|| exists and has support B.

An extension of the above construction to formal power series over trees rather
than over words is considered in [Berstel & Reutenauer, 1982] and is utilized in
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[Wechler, 1986a] for the study of fuzzy program schemata in connection with the
mathematical semantics of nondeterministic programs. Automata over semirings
other than semirings of formal power series are considered in [Mizumoto, Toyoda
& Tanaka, 1975], where several examples are given. Task resource modules using
automata over the schedule algebra are described in [Gaubert & Mairesse, 1998],
while representation of safe timed Petri nets by automata over the schedule algebra
is described in [Gaubert & Mairesse, 1999]. Such representations allow the au-
thors to obtain automata-based performance evaluations for such nets. For general
performance evaluation of automata over the schedule algebra, refer to [Gaubert,
1995].

If R is an arbitrary semiring and if —oco is an element not in R then we can
define the structure of a semiring on the set S = RU {—o00} as follows:

(1) If a,b € R then a + b and ab are the same as in R;

(2) a+ —oc0o=—-c0o+a=aforallaes;

(3) a(—o00) = (—o0)a = —oo for all a € S.

Moreover, one immediately sees that this new semiring, in which —oo is now the
zero element, is in fact entire and zerosumfree. Note that R is not a subsemiring of
S since the two semirings do not have the same zero element. We will denote the
semiring S by R{—oc0}.

This same construction can be used to construct entire zerosumfree semirings
when we are lacking is an additive identity. That is to say, if R is a nonempty set
on which we have operations of addition and multiplication defined so that (R, +)
is a commutative semigroup, (R, -) is a monoid, and multiplication distributes over
addition from either side, and if —co is an element not in R then, (R{—oo},+, )
defined as above is a zerosumfree semiring. Thus, for example, (R*, maz, +) is not
a semiring since 0 acts as both “additive” and “muitiplicative” identity. However,
as we have seen, (Rt U{—o0}, maz,+) is a semiring. which is a subsemiring of the
schedule algebra.

Similarly, let R = {r € R | r > 0} and define operations & and ® on R by
setting a®b = ab/(a+b) and a® b = ab. Then (R, D, ®) lacks an additive identity
but (RU {—0c0},®, ®) is an entire zerosumfree semiring.

(3.20) EXAMPLE. A partial function from a set A to a semiring R is a function
f from a subset dom(f) of A to R. If f is such a function then we can extend f to
a function f* from A to R{—oco} by setting f*(a) = —co for all a € A\ dom(f).
Thus the family of all partial functions from A to R can be identified with the
semiring R{—oco}4.

(3.21) ExamPLE. In [Park, 1981] and [Izumi, Inagaki & Honda, 1984] the con-
struction in Example 1.11 is extended to the set (sub(A*),+,-) of all formal oo-
languages on A in order to deal with automata which allow for the possibility of
concurrent interpretation of commands. If L and L’ are subsets of A then we set
L+ L' tobe LUL', while LL' = {ww' | w € LN A* and v’ € L'} U (L \ A*).
With respect to these operations, sub(A*) satisfies all of the conditions for being
a semiring except that L - & is not necessarily L, as one would need, but rather
L-@ = LNA*. However, this can be embedded in a zerosumfree semiring by adding
a new additive identity —oco as above.
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If R is an entire zerosumfree semiring and oo is an element not in R, then we
can extend the semiring structure on R to a semiring structure on the set RU {oco}
by setting

(1) atoco=00+a=o00+00 =00 for all a € R,
(2) aoco = coa = coco = oo for all 0 # a € R, and
(3) 0oco = 000 =0.

We will denote this semiring by R{co}. Clearly oo is a strongly-infinite element
of this semiring. Since R{co} is again zerosumfree and entire, this process can be
iterated. Let W), = {oo; | ¢ < h} be a family of indeterminates, where h is some
ordinal. Define R{W} by transfinite induction as follows:

(1) If h is a limit ordinal, then R{Wp} = U;<a R{W;};
(2) If h is not a limit ordinal then R{W,} = (R{Wx_1}){con-1}.

Let R be the semiring (N{oco}, maz, min). If (A, #) is a monoid then the convo-
lution (*) on R4 is called the multiproduct. See [Lake, 1976]; also see [Wongsee-
lashote, 1976, 1979] for further details concerning this semiring and for its uses in
graph-theoretic problems, including specific computational algorithms. For uses of
R in the theory of formal languages, see [Mascle, 1986).

A function é from a semiring R to itself is a reduction if and only if the following
conditions are satisfied:

(1) 6(0) = 0;

(2) () =1,

(3) 8(a+b)=6(6(a)+b) for all a,b € R;

(4) 6(ab) = 8(6(a)b) = 6(ab(b)) for all a,b € R.

Such a function is necessarily idempotent. Indeed, if @ € R then é6%(a) = §(8(a)) =
8(6(a) - 1) = é(a-1) = é(a). It is straightforward to see that if § is a reduction
of a semiring R then im(8) = {a € R | 6(a) = a} is a semiring with respect to
the operations @ and © defined by a ® b = §(¢ + b) and a © b = 6(ab). Note that
this is not necessarily a subsemiring of R, though it has the same additive and
multiplicative identities. If A is an additively- [resp. multiplicatively-] idempotent
element of R then é(a) is an additively- [resp. multiplicatively-]idempotent element
of im(6).

A special case of this construction was considered in [Wongseelashote, 1979] in
his analysis of various path problems on graphs and the construction of semirings
suitable for solving these problems, beginning from the semiring of all subsets of
the set of vertices of a given graph. For example, let R be a zerosumfree entire
semiring and let A be a nonempty set. Define a function é from RA to itself by
setting 8(f) to be the characteristic function on supp(f) for each f € RA. Then 6§
is a reduction on R4. This example was considered in [Wongseelashote, 1979] for
the special case of R = N{co}.

Finally, we observe that if R is a hemiring and if 0 # ¢ € R then we can define a
new operation *, on R by r+,7' = rar’. Then (R, +, *,) 1s a hemiring, which is not
necessarily a semiring, called the shift of R by a. We can embed it in a semiring
by taking its Dorroh extension.

Let A and B be nonempty sets and let h € R4XP be an R-valued relation
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between A and B. If f € R4 has finite support, we define h[f] € RB by setting

h(f]: b — Z f(a)h(a,b)

a€A

for all b € B and if g € RP has finite support, we define h~1[g] € R4 by setting

h='g):a— Z h(a,b)g(b)

beB

for alla € A. We note immediately that if f = f'+f" in R4 then A[f] = h[f']+h[f"]
in RB whileif g = ¢ +¢” in RP then h~'[g] = h~![¢'] + R~ [¢"] in RA.

Functions h +— h[f] can be considered as inference schemes in an uncertain
environment and as such include the fuzzy implication operators used in designing
fuzzy controllers and fuzzy microprocessors [Gupta & Yamakawa, 1988]. There are
several ways of doing this. For example, we can consider the following construction,
based [De Baets & Kerre, 1993a]: an implication on a semiring R is an operation
> on R satisfying the boundary conditions 050 =0p1=1p1=1and 1>0=0.
If A and B are nonempty sets and if fo € R* and go € R® are given R-valued
subsets of A and B respectively, then each implication > on R defines an R-valued
relation fo > go € RA*E by (fo > g0):(a,b) — fo(a) > go(b). The R-valued modus
ponens rule then becomes: if fo(a) then go(b) and if f(a) then (fo > go)[f](b). The
case of R = I was first considered, in several papers, by Lofti Zadeh. Also refer also
to [Fuller & Zimmermann, 1992] and [Hellendoorn, 1990].

Let R be a semiring. Any function u: A — B between nonempty sets defines an
R-valued function h, between A and B by setting

I ifu(a)=1b

0 otherwise

ua,t) = {
If u=1(b) is finite for b € B, then

halfl:b Y f(a)hu(a,b) = Y f(a)

a€A u(a)=b

for each f € RA. On the other hand, if g € RP then
hi'lgl:a— Y hu(a, b)g(b) = gu(a)
beB

for each a € A.
We note, in particular, that if the function u: A — B is bijective then

hu[f1:b = (fu™')(b)

for all b € B for which u=1(b) is finite.
Let R be a semiring and let u: A — B be a function between nonempty sets.
Then f € R4 is u-stable if and only if f(a;) = f(a2) whenever u(a;) = u(as).
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(3.22) PrOPOSITION. Let R be an additively-idempotent semiring and let A
and B be finite sets. If u: A — B is a surjective map then there exists a bijective
correspondence between RP and the set of all u-stable elements of R#.

ProoF. If g € RE then h ![g] € RA is easily seen to be u-stable and, moreover,
we have hy[h7![g]] = g since hy[hg1[g]](b) = Y u(a)=s 9u(a) = g(b) for all b € B,
by the u-stability of g and the additive idempotence of R.

Now suppose that fi, f» € R4 are u-stable functions satisfying h,(f1) = hu(f2).
If ap € A and by = u(ag) € B then, by the additive idempotence of R, we have

fila) = Y fi(a) = hu(f1)(bo) = hu(f2)(bo) = fa(ao)

u(a)=bo

and so fi = fo. O



4. SOME CONDITIONS ON
SEMIRINGS

We usually consider semirings on which some sort of additional conditions have
been imposed. Many such conditions were given in Chapter 1 and examples given of
semirings which do or do not satisfy them. We now want to consider consequences
of imposing some of these conditions on a semiring. In particular we will first look
at the condition of being an additively-idempotent semiring and at the stronger
condition of being a simple semiring. Then we will consider some weaker versions
of the condition that elements have additive or multiplicative inverses. Finally, we
will take up a condition which guarantees the existence of “enough” multiplicative
units.

First, however, we must state a number of standard notational conventions: if n
is a positive integer and a is an element of a semiring R, then we denote the sum
a+---+a of n copies of a by na and the product a-...-a of n copies of a by a”. We
set a® = 1g for each element a of R. The semiring R is algebraically closed if for
each b € R and for each positive integer n there exists an a € R satisfying a” = b.
Thus, for example, the schedule algebra (RU{—00}, maz,+) is algebraically closed.

An element a of R is nilpotent if and only if there exists a positive integer
n satisfying a” = 0. The smallest such positive integer n is called the index of
nilpotency of a. We will denote the set of all nilpotent elements of R by Ny(R).
Then Ny(R) # @ for any semiring R, since 0 is always nilpotent. If the semiring R
is commutative then No(R) is a submonoid of (R, +). Indeed, if a,b € No(R) are
nilpotent elements of R satisfying a™ = b* = 0 then

I nt k) ;
i=o N
since @/ = 0 if j > n and 6”t™~7 = 0 if j < n, we see that each summand is 0 and
so (a+ b)"*tF = 0.
If a and b are elements of a semiring R and if n and m are nonnegative integers
we define the symbol al™bl™] inductively as follows:

(1) al’lpl™] = b™ for all m > 0;
J. S. Golan, Semirings and their Applications
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(2) abl] = ¢” for all n > 0;

(3) aln+1lplm+1] — (a[n]b[m+1])a + (a["+1]b[m])b.
Intuitively, al®bl™ is the sum of all possible products of n of the a’s and m of the
b’s.

(4.1) PrROPOSITION. Ifa and b are elements of a semiring R while n and m are
nonnegative integers then:

(1) (a+b)r =30, a1,

(2) a7 = S (abtm = .

ProoF. This follows by a straightforward induction argument. [

If A and B are nonempty subsets of a semiring R, we define the subsets A + B
and AB of R as follows:

A+B={a+b|a€ Abe B}

and
AB ={a1b1 + -+ anb, | n < o0; a; € A,b; € B}.

We now begin by looking at simple and additively-idempotent semirings. Simple
semirings, as already observed in Chapter 1, are additively idempotent but the
converse is not true. Thus, for example, the semiring (R U {co}, rnin, +) mentioned
in Example 1.22 i1s additively idempotent but not simple.

(4.2) ProrosiTION. Ifa, b, ¢, and d are elements of an additively-idempotent
semiring R satisfying a+c="5b and b+ d = a then a = b.

Proor. By additive idempotence we have a =a+a =a+b+d=a+a+c+d=
a+c+d=btd+c+d=b+d+c=a+c=5 0O

We now turn to simple semirings.

(4.3) ProprosITION. The following conditions on a semiring R are equivalent:

(1) R issimple;

(2) a=ab+a foralla,b€ R;

(3) a=ba+a foralla,be R;

(4) ab=ab+ acb for all a,b,c € R.

PrOOF. Assume (1). If a,b € R then a = al = a(1 +b) = a + ab, proving (2).
Conversely, if (2) holds then 1+b = 1+1b=1for all b € R, proving (1). Similarly,
(1) (3)and (1) & (4). O

The identities (2) and (3) of Proposition 4.3 are noncommutative versions of the
“absorption laws” familiar from the axiomatic algebraic definitions of lattices. They
were studied separately in [Jordan,1949] in connection with the study of quantum
logic. Because of conditions (2) and (3) of Proposition 4.3, simple semirings are
sometimes refered to as distributive pseudolattices.
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(4.4) CorOLLARY. For a semiring R the following conditions are equivalent:
(1) R is simple and multiplicatively idempotent;

(2) (a+b)(a+c)=a+bcfor all a,b,c € R;

(3) Ifa,be Rthena+b=a< ab=">b=ba.

ProoF. (1) & (2): Assume (1). By Proposition 4.3 we have
(a+b)(a+c)=a®+ba+ac+bc=a+ba+ac+bc=a+bec
Thus we have (2). Conversely, assume (2). If ¢ € R then, by (2),
a®>=(a+0)a+0)=a+0-0=a

so I*(R)=R. Ifa,be Rthenab+a=(a+0)(b+1)=a+0-1=aand so, by
Proposition 4.3, R is simple.

(1) © (3): Assume (1) and let a and b be elements of R. If a+b = a then, by (2),
we have ab = (b+a)(b+0) = b+a0 = b. Similarly ba = (b+0)(b+a) = b+0a = b.
Conversely, if ab = b then, by Proposition 4.3, a + b = a + ab = a. Now assume
(3). If b € R then 16 = bso 1 + b = 1. Therefore R is simple. In particular, it
is additively idempotent. Hence for each a € R we have a + a = a and so a? = a.

Thus R is multiplicatively idempotent as well. O

(4.5) COROLLARY. A commutative semiring is a bounded distributive lattice if
and only if it is a simple multiplicatively idempotent semiring.

Proor. This is a direct consequence of Proposition 4.3 and the remarks in
Example 1.5. O

(4.6) COorROLLARY. If R is a simple semiring then (I*(R), +) is a submonoid of
(R,+) and I*(R) N C(R) is a bounded distributive lattice.

PROOF. If a and b belong to I*(R) then (a+5)? = a®? +ab+ba+b* =a+ab+
ba + b = a + b by Proposition 4.3. Therefore I*(R) is closed under addition and
hence, since it contains 0,.is a submonoid of (R, +). Furthermore, if a,b € C(R)
then a + b € C(R).

We also note that /*(R) N C(R) is nonempty since it contains both 0 and 1. If
a and b belong to I*(R) N C(R) then surely so does ab. By the above, a + b €
I*(R) N C(R), proving that I*(R) N C(R) is a subsemiring of R, which is simple
since 1 is infinite in it. The result now follows from Corollary 4.5. 0O

(4.7) PROPOSITION. For each element a of a simple semiring R, let S(a) =
{0}yu{re R|r+a=1}. Then:

(1) S(a) is a subsemiring of R for each a € R;

(2) S(a) N S(b) = S(ab) for alla,b € R.

ProOF. (1) Since R is simple, we clearly have 1 € S(a). Therefore we must
show that if r,7' € S(a) then r 4+ r’ and r7’ belong to S(a). This is immediate
if one of r,7’ is 0, and so we can assume that both are nonzero. In that case,
r+a=1=r"+aandso (r+r')+a = (r+r')+a+a = 1+1=1, establishing that
r+r' € S(a). Moreover, 1l =1+a=(r+a)(r'+a)+a=rr"+ra+ar +a®+a.
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By Proposition 4.3, this equals 77’ + a, proving that rr’ € S(a). Thus S(a) is a
subsemiring of R.

(2) If 0 # r € S(ab) then r + ab = 1 so, by Proposition 4.3, 1 = 1 +a =
r+ab+a = r+a, proving that » € S(a). Similarly r € S(b) and so r € S(a)NS(b).
Conversely, assume that 0 £ r € S(a) N S(b). Then

l=1l4r=(r+a)r+b)+r=r’4+ar+rb+ab+r=ab+r

and so r € S(ab). Thus S(ab) = S(a)N S(b). O
Note that for any simple semiring R we have S(0) = B and S(1) = R.

(4.8) ProOPOSITION. Ifa and b are elements of a simple semiring R and m,n € N

then there exist elements ¢ and d of R satisfying a® = alMbl™] 4 ¢ and b =
alolm] 4 4.

Proor. We will first claim that for any h, k € N there exists an element ¢ of
R such that a” = b*a”b* + ¢. Indeed, this is trivial if h = k = 0. By Proposition
4.3 we have a” = ba™ + a” and so the result is true if h = 1 and ¥ = 0. Now
assume that there exists an element ¢’ of R such that a® = b*a™ + ¢’. Then
a® = ba™ + a" = b(b*a™ + ¢') + a" = b" + 1a™ + ¢”, where ¢ = bc’ + a". Thus
the result is true for all values of h when & = 0. Similarly, the result is true for
all values of ¥ when h = 0. Finally, assume that both h and k are nonzero. Let
d and d’ be elements of R satisfying b"a® + d = a” and a"b* + d’ = a”. Then
a® = bha”b* + d”, where d” = b*d + d. This establishes the claim.

We next note that an arbitrary summand r in al®18l™ is of the form

pDgn(D . gr(Opmt+1)

where m(1)+---+m(t+1) = mand n(1)+- - -+n(¢t) = n. By repeated applications
of the claim, we see that there exists an element d, of R such that r + d, = a”.
Finally, we note that al®pl™] + >'d; =a” 4+ .-+ a" = a", since simple semirings
are additively idempotent.

The second equality 1s proven similarly. [J

(4.9) PrROPOSITION. Let R be a simple semiring for which there exists an integer
n satisfying v = r" + 1 for all r € R. Then:
(1) P +s"=(r+s)" forallr,s € R;
(2) If® is the operation on I* (R) defined by a®b = (ab)”, then (I*(R),+,0)
is a commutative simple semiring.

Proor. (1) Let r,s € R. By expansion, we see that there exists an element d
of R satisfying (r +5)" = r" 4+ s” + d. On the other hand, (r + s)* = (r + s)?" !
and this can be expanded in the form Y, riPl sl¥] where, in each summand, either
h > n or k > n. By Proposition 4.8, there exists an element e of R satisfying
™ 4+ 5" + (r 4+ s)® + e. By Proposition 4.2, this implies that r” + s™ = (r + s)”,
proving (1).

(2) Clearly 0 and 1 both belong to I*(R). By Corollary 4.6, we see that
(I*(R),+) is a commutative monoid. Moreover, a + 1 = 1 for all a € I*(R)
since this is true in R.
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If a,b,c € I*(R) then, by (1), we have
a®b+c=(afb+c]))" =(ab+ac)” = (ab)” +(ac)* =a®b+a®ec,

and similarly [b+c]©a =b®a+c®a. Thus © distributes over + from either side.
Moreover, by the proof of Proposition 4.8, we see that there exists an element d of R
satisfying (abc)® = (ab)” +d and by Proposition 4.3 we have (ab)” = (ab)”c+ (ab)".
Therefore there exists an element d’ of R with (abe)” = (ab)”c + d’ and so there
exists an element d” of R satisfying (abc)” = [(ab)"¢]”+d"”. An analogous argument
shows that there exists an element e of R satisfying (ab)”c” = [(abc)”(abc)]® + e =
(abe)™ + € and so (abe)™ = [(ab)™]c™ by Proposition 4.2. A similar argument shows
that [a(bc)?]” = (abe)” and so a ® (b ® ¢) = [a(be)?]* = [(ab)"c] = (a @ b) O c.
Thus the operation ® is associative. Finally, we note that (ab)? = abab = ba+d for
some d € R and so there exists an element d’ of R satisfying (ba)” = (ab)?” + d' =
(ab)” + d’. Similarly, there exists an element d” of R satisfying (ab)” = (ba)™ + d”
and so, by Proposition 4.2, a ® b = (ab)” = (ba)® = b ® a. This shows that
the operation ® is commutative and so (I*(R),+,®) is a commutative simple
semiring. O

While every simple semiring is additively idempotent there are, as we have seen,
additively-idempotent semirings which are not simple. We do, however, have the
following result.

(4.10) ProprosITION. Every additively-idempotent semiring has a simple sub-
semiring.

PRrRoOOF. Let R be an additively-idempotent semiring and let S = {a € R |
a+1=1}. Clearly 0 and 1 belong to S. If a,b € Sthena+b+1=a+1=1and
ab+1=ab+a+b+1=(a+1)(b+1)=1. Therefore S is a subsemiring of R,
which is clearly simple. O

(4.11) CoroLLARY. Every additively-idempotent semiring has a subsemiring
which is a bounded distributive lattice.

Proor. This is a direct consequence of Proposition 4.10 and Corollary 4.6. O

In Proposition 4.10 we saw that if R is an additively-idempotent semiring then
{a € R|a+1=1} is a subsemiring of R. The following proposition complements
this result.

(4.12) ProPoOSITION. If R is an additively-idempotent semiring then S = {0} U
{a € R|a+ 1.= a} is a subsemiring of R.

Proor. Clearly 0 € S, while 1 € S since R is additively idempotent. If 0 #
a,be Sthen (a+d)+1=a+(b+1)=a+bsoa+beS. Moreover, ab+ 1=
ab+1)+l=abta+l=(a+)b+tat+l=ab+bt+a+1=(a+1)(b+1)=ab
and so ab € S. This proves that S is a subsemiring of R. O

Finally, we want to establish something about the structure of the additive
monoid of an additively-idempotent semiring by proving an analog of a well-known
result for semigroups. First we need some notation: for an element a of a semiring
R, set H(a) = {b € R | there exists an element ¢ of R such that a + b+t = a}.
Note that H(a) # @ for each a € R since a + 0 + 0 = a implies that 0 € H(a).
Moroever, if a € IT(R) then a € H(a).
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(4.13) PrOPOSITION. If R is a semiring and a,a’ € It (R) then:

(1) (H(a),+) is a commutative semigroup;
(2) G(a)={a+b|be H(a)} is a subgroup of H(a);
(3) G(a)G(d') C G(ad).

Proor. (1) If b,8’ € H(a) then there exist elements ¢ and ¢ of R satisfying
a=a+bt+ec=a+¥V+c andsoa=a+a=a+ (b+¥)+(c+¢) Thus
b+b' € H(a). Since addition in R is associative and commutative, this implies that
H(a) is a commutative semigroup.

(2) We note that a = a+0 € G(a) and that, by (1) and the additive idempotence
of a, the sum of elements of G(a) is again in G(a). If a+b € G(a) then a+(a+b) =
(e +a)+b=a+bso ais the additive identity of G(a). Finally, if a + b € G(a)
then there exists an element ¢ of R (and hence of H(a)) satisfying a+b+c=a
and so a = (a+b) + (a + ¢). Thus a +b has an inverse in G(a).

(3)If a+ b € G(a) and a’ + b € G(a') then there exist elements ¢ and ¢/ of R
such that a = a+ b+ c and @’ = @’ + b’ + ¢’. Therefore

aa’ = (a+b+c)(a +b +c')=aa +ab +ac’ +ba’ +bb' + bc’ + ca’ +cb’ +cc
=aa + (a+b)(a’ +¥) + (ac’ + bc’ + ca’ + b + '),

proving that (a + b)(a’ + b’') belongs to H(aa’). But aa’ + (a + b)(a’ +¥) =
(a+b)(a’ +b') so it in fact belongs to G(aa’). Since G(aa’) is closed under taking
finite sums, this proves (3). O

As a consequence of Proposition 4.13, we see that an additively-idempotent
semiring R is the union of additive groups which are not, however, subgroups of
(Ra +).

We now turn to the matter of additive inverses. Let a be an element of a semiring
R. An element b of R is an additive inverse of a if and only if a+ b = 0. If a has
an additive inverse, then such an inverse is unique for if a + b5 = 0 = @ + b’ then
b=0b0+0=">b+a+b =0+ =b'. We will denote the additive inverse of an element
a, if it exists, by —a. Denote the set of all elements of R having additive inverses
by V(R); this set is nonempty since 0 € V(R), with —0 = 0 and, indeed, it is a
submonoid of (R, +) since it is closed under taking sums. Moreover, if a+b € V(R)
then both a and b belong to V(R). Clearly R is a ring if and only if V(R) = R
and R is zerosumfree if and only if V(R) = {0}. An infinite element of R cannot
belong to V(R).

(4.14) ExaMPLE. [Gardner, 1993] In an elementary calculus course one studies
partial functions on R, i.e. functions f: A — R, where A is a nonempty subset
of R called the domain of f. We will denote this domain by dom(f). Let S be
the set of all such functions. If f,g € S then f + ¢ is the function having domain
dom(f)Ndom(g) on which it is defined by the rule £ — f(x)+g(x). Similarly, fg is
the function having the same domain on which is defined by the rule x — f(z)g(z).
It is easy to check that (S, +,) is a semiring the additive identity in which is the
function £ — 0 with domain R and the multiplicative identity in which is the
function z — 1 with domain R. Howeover, note that if f € S then and if f~ is the
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function from dom(f) to R defined by z — —f(z), then f~ is an additive inverse
of f only if dom(f) = R. Thus V(R) = {f € S| dom(f) = R}.

For a more general approach to analysis using this approach, albeit without
explicit mention of semirings, refer to [Prezeworska-Rolewicz, 1988, 1998].

Since not every element of a semiring has an additive inverse, we look for a
weaker condition. An element a of a semiring R is cancellable if and only if
a+b=a+c=>b=cin R We will denote the set of all cancellable elements
of R by K*(R). This set is nonempty since V(R) C K*(R). An infinite element
of a semiring is never cancellable. Moreover, K*(R) is easily seen to be closed
under addition. Thus K*(R) is a submonoid of the additive monoid (R, +). If
K1 (R) = R then the semiring R is cancellative. Note that IT(R)NK*(R) = {0}
so that additively-idempotent semirings have no nontrivial cancellable elements and
are thus as far away from being cancellative as possible.

(4.15) ExaMPLE. The semiring N, which is not a ring, is cancellative. Thus we
may have R = K*(R) D V(R) = {0}.

(4.16) ExaMPLE. If X is a set having more than one element then the semiring
(sub(X),U,N) is not cancellative.

(4.17) ExaMPLE. Let co be an element not in N and let R = N{oo}. Then
K*(R) = N. This example is noted in [Smith, 1966].

(4.18) EXAMPLE. A subsemiring of a cancellative semiring is again cancellative.
If {R; | i € Q} is a family of cancellative semirings then x;cqR; is also cancellative.
Similarly, if R is a cancellative semiring and A is a nonempty set then R{{A) and
R(A) are cancellative.

(4.19) ExampLE. [H. E. Stone, 1977] If R is a cancellative semiring then M, (R)
is cancellative for every positive integer n. This is an immediate consequence of
the fact that addition in M, (R) is defined componentwise. Similarly, if 4 is a
countably-infinite subset then M4 (R), M4 (R), and M4 ,.(R) are cancellative
semirings.

We now present another weak version of the condition of having an additive
inverse - one which is also satisfied by infinite elements. If R is a semiring, set
W(R) = {a € R| if b€ R then there exists an element r of R such that a + r =
borb+r = a}. Clearly W(R) is nonempty since V(R) C W(R). Moreover, if
a € R is infinite then a € W(R) since a = b+ a for all b € R. If R = W(R) then
the semiring R is a yoked semiring.

(4.20) ExaMPLE. N and Q% are surely yoked semirings. Similarly, if R is a
totally-ordered set with unique minimal element 0 and unique maximal element 1
then (R, maz, min) is a yoked semiring. Thus I and NU {oo} are yoked semirings.

(4.21) PROPOSITION. If I and H are subhemirings of a yoked semiring R sat-
isfying the condition that IH C V(R) then either I? C V(R) or H? C V(R).

PROOF. Assume that I? ¢ V(R). Then there exist elements a and a’ of I such
that aa’ ¢ V(R). Let b,b’ € H. If there exists an element r of R such that a+r = b
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then a’a + a'r = a’b € IH C V(R) and so a’a € V(R), which is a contradiction.
Hence, since R is a yoked semiring, there must exist an element r of R such that
a=~>b+r. Butthen bb' +rb = ab’ € IH C V(R) and so bb’ € V(R). This proves
that H2 C V(R). O

The zeroid of a semiring R is Z(R) = {r € R | r+ a = a for some a € R}.
Thus if @ € R then b € H(a) implies that b + ¢ € Z(R) for some ¢ € R. Clearly
I*(R) C Z(R)so Z(R) # @. If Z(R) = R then the semiring R is zeroic. Otherwise
it is nonzeroic. If R has an infinite element then it is surely zeroic. A semiring R
is plain if and only if Z(R) = {0}. If R is a ring then it is surely plain. If S is a
subsemiring of a semiring R then Z(S) C Z(R). Thus, in particular, subsemirings
of plain semirings are plain. If R is cancellative then it is surely plain. The following
result provides a partial converse of this fact.

(4.22) PROPOSITION. A yoked semiring is cancellative if and only if it is plain.
Proor. This is an immediate consequence of the definition. O

As a consequence, we see that a semiring R is plain precisely when (R, +) is a
valuation monoid.

The size of the zeroid is a measure of how far, in some sense, a semiring is from
being a ring, and it will play a very important part in our considerations later on.

We now turn from additive inverses to multiplicative inverses. An element r
of a semiring R is a unit if and only if there exists an element ' of R satisfying
rr’ = 1 = r'r. The element 7’ is called the inverse of r in R. If such an inverse
7’ exists for a unit r, it must be unique. Indeed, if rv' = 7" = 1 = ¢"r = ¢'r
then » = 1 = ¢'(rr”) = (¢'r)r" = 1" = r”; we will normally denote the
inverse of r by r~!. It is straightforward to see that if » and 7’ are units of R
then (rr/)~! = #7'r=1. Thus, in particular, (r~1)~! = r. This implies that if
r~1 = ¢'~! then r = r’. We will denote the set of all uriis of R by U(R). This
set is nonempty since it contains 1 and is not all of R, since it does not contain 0.
Moreover, No(R) C U(R). Indeed, if » € No(R) satisfies r™ = 0 for some positive
integer n, then r"+! also equals 0. Therfore, replacing n by n + 1 if necessary, we
can assume that n is odd. In this case, we have

(1+r)(l—r+r2—--~—r"+2+r"_1):1+r":1

and so r € U(R).

(4.23) ExamMPLE. Let R be a semiring and let ¢ be an indeterminate over R. If
the leading coefficient of 0 # f € R[t] is not a zero divisor in R, then f € U(R][t]) if
and only if deg(f) = 0 and f(0) € U(R). The proof is essentially the same as that

for rings.
The following result is found in [LaGrassa, 1995].

(4.24) PrOPOSITION. Let t be an indeterminate over a commutative semiring
R. Then U(RJt]) = {p € R[t] | p(0) € U(R) and p(i) € No(R)NV(R) for alli > 0}.

PROOF. Assume p € RJ[t] satisfies the conditions that p(0) € U(R) and p(2) is
nilpotent for all i > 0. Set b = p(0)~! and let deg(p) = n > 0. For each 0 <i < n,
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we know that p(i) € No(R) N V(R) and so ¢ = bp — p1 € V(R][t]), where p1 € R[t]

is defined by
. 1 ifi=0
pii) = { 0 otherwise -

Also, bp(i)t' € No(R[t]) for all ¢ > 0 and so, ¢ € No(R[t]). Since p; is the multi-
plicative identity of R[t], this implies that p; + ¢ = bp € U(R[t]).

Conversely, assume that p € U(R[t]). Then deg(p) = n > 0 and there is a
9 € R[t] satisfying pg = p1. Say deg(g) = m. If Then (pg)(k) = 32, ;s P(i)9(j)
for all k < m+ n, and (pg)(k) = 0 if k > n + m. In particular, 1 = p(0)g(0) and so
p(0) € U(R). If n = 0 we are done, and so assume that this is not the case. Then
we must have m # 0 as well. If 1 < k < n then 0 = p;(k) = Eiﬂ.:kp(i)g(j) =
d + p(k)g(0) for some element d of R and so

0 = p(0)0 = p(0)d + p(0)p(k)g(0) = p(0)d + p(k),

proving that p(k) € V(R).
We also know that 0 = pi(n + m) = p(n)g(m) and

0=pi(n+m—1)=p(n)g(m—1)+p(n — 1)g(m).
Then
p(n)*g(m = 1) + p(n)g(m)p(n — 1) = p(n)[p(n)g(m — 1) + p(n — 1)g(m)] = 0.

Since p(n)g(m — 1) = 0 we have p(n)?g(m — 1) = 0. Now assume inductively
that we have shown that p(n)*g(m — (h — 1)) = 0 for all 1 < h < k. Then
pi(n—m— k) = p(n)g(m — k) + p(n — 1)g(m—k+ 1)+ -+ p(n — k)g(m) = 0 and
o p(n)*[p(n)g(m — k) + p(n — L)g(m — k + 1)+ -- -+ p(n — k)g(m)] = 0, proving,
by induction, that p(n)¥*+1g(m—k) = 0. Thus we see that p(n)*g(m—(h—1)) =0
forall 1 < h < m+1 and so, in particular, p(n)™*14{0) = 0. But g(0) € U(R) and
so we must have p(n)™*! = 0. Thus p(n) € No(R). Similarly, g(m) € No(R).

Now suppose that we have already establisdhed that p(n — h) and g(m — h)
belong to No(R) for all 0 < h < k. We must show that p(n — k) is nilpotent. We
know that g(m) is nilpotent and hence so is p(n — k)g(m). Therefore

pr(n—m—(k+1)) = p(n—k—1)g(m)+p(n—k)g(m—1)+- - -+p(n)g(m—(k-+1)) = 0

and so p(n — k)g(m — 1) = —p(n — (k + 1))g(m) + [—p(n — (k — 1))g(m — 2)] +
<-4 [=p(n — )g(m — k)] + [—p(n)g(m — (k + 1))]. By the induction hypothesis,
each of the summands on the right-hand side is nilotent and so p(n — k)g(m — 1)
is nilpotent. Now suppose inductively that we have already shown that p(n —
k)"g(m — h) is nilpotent for 1 <h < m —1. Then 0 = p1(n — k) = p(n — k)g(0) +
pn — (k 4+ 1)g(1) + -+ p(n — (k +m))g(m) s0 p(n — k)™ p;(n — k) = 0 Thus
pn — Y™ g(0) + - + p(n — k)™ 'p(n — (k + m))g(m) = 0. So p(n — k)"g(0) =
—p(n— k)™ 1p(n—(k+1))g(1)+- -+ [—p(n— k)™ i p(n—(k —m))g(m)]. Since each
of the summands on the right-hand side of this equation is nilpotent, we conclude
that p(n—k)™g(0) is nilpotent. But g(0) is a unit in R and so p(n — k) is nilpotent.
Thus p(7) is nilpotent for all 1 < ¢ < n, as desired. O
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(4.25) ExampLE. If S is the semiring in Example 4.14 then U(S) consists of
all functions f € S satisfying the condition that dom(f) = R and f(r) # 0 for all
r € R.

The above comments immediately show that U(R) is a submonoid of (R, -) which
is in fact a group. If U(R) = R\ {0} then R is a division semiring. Division
semirings are surely entire. A commutative division semiring is a semifield. If
{R; | i € Q} is a collection of division semirings, where |Q| > 1, then X;eqR; is not
a division semiring but 0<;cq R; 1s.

Note that if R is a simple semiring then U(R) = {1}. Indeed, if a € U(R) then
there exists an element b of R such that ab = 1. Hence, by Proposition 4.3, we have
a=a+ab=a+1=1.

(4.26) ExaMPLE. The semirings (QF,+,), (Qt,maz,-), (R*,+,:), and
(R*, maz, -) are clearly semifields. A subring S of (Q%,+, ) is a semifield if and only
if for each prime p € N there exists an integer n(p) € N such that n(p)/p € S\ N.
See [H. E. Stone, 1977] for details. Yoked subsemifields of (R*,+,-) are consid-
ered in [Eilhauer, 1968]. There it is shown that no two distinct yoked subfields of
(R*, 4+, ) are isomorphic. By the Krull-Kaplansky-Jaffard-Ohm Theorem [Gilmer,
1972], every additively-idempotent semifield is naturally isomorphic to the semifield
of finitely-generated fractional ideals of a Bezout domain.

(4.27) ExaMpPLE. Let G be a totally-ordered multiplicative group and let R =
G U {0}. Extend the order of G to R by setting 0 < g for all g € . Moreover,
define 0g = g0 = 0 for all ¢ € R. Then (R, maz, ") is a division semiring.

(4.28) EXxAMPLE. The semiring B is an additively-idempotent division semiring.
In fact, it is the only finite additively-idempctent division semiring. To see this,
assume that R is a finite additively-idempotent division semiring and let d be the
sum of all elements of R. By construction, =+ d = d for all » € R and so, in
particular, d2 + d = d. On the other hand, 14+ d = d and so d + d> = d?. Thus
d = d?. Since R is a division semiring, this implies that d = 1. If 0 # r € R
then there exists an element r’ € R satisfying v’ = 1. Since ' 4+ 1 = 1 we have
1=147r=r7r(r"+1)=r. Therefore R = {0,1} =B.

(4.29) ExampLE. [Cuninghame-Green, 1984] The schedule algebra
R = (RU{-o0},®,®) is a semifield. Indeed, if @ # —oo then a has a multiplicative
inverse a(~1) = —a. If n € N then the nth power of an element r of R is r(?) = nr.
If a and b are elements of R then min{a,b} = a+b—maz{a,b} = [a®b][a® b))

If ¢ is an indeterminate over R, then the elements of R[t] are of the form p(t) =
®F_obi ® 1) = maz{b; + it | 0 < i < n}. The algebra of such polynomials is
considered in detail in [Cuninghame-Green & Meijer, 1980]. In particular, they
note that each such polynomial p(t) has a factorization in the form

p(t) =a®@pi(t) @ @ palt),

where a € R and each p;(t) either equals t or is of the form ¢ @ b; for some b, € R.
Apart from order, this factorization is unique. An algorithm for the construction
of such a factorization is given, using the techniques of nonlinear programming.



SOME CONDITIONS ON SEMIRINGS 53

We also note that (NU {—oo},®, ®) is a subsemifield of R. If S = M,(R) for
some natural number n then A = [a;;] belongs to U(S) if and only if every row and
every column of A have precisely one element not equal to —oc.

(4.30) ExampLE. If S is a bounded distributive lattice and R = M,(S) for
some positive integer n then the elements of U(R) are characterized in several ways
in [Skornjakov, 1986]. Thus, for example, a matrix A = [a;;] belongs to U(R) if and
only if E?:1 a;j =1forall 1 <i<n and a;jap; = 0 for all i # h. Moreover, this
holds if and only if A* = 1 for some positive integer k. Indeed, we always have
k < n!. If S is entire then U(R) consists precisely of those matrices [a;;] satisfying
the condition that there exists a permutation o € S, such that a;; = 1 if j = o(7)
and a;; = 0 otherwise. Refer also to [Reutenauer & Straubing, 1984].

(4.31) ExamPLE. [Kaashoek & West, 1974] Let B be a complex Banach space.
A subhemiring A of B is a semialgebra if and only if ra € A for all a € A and
all 0 < r € R. A subalgebra A # {0} of B is locally compact if and only if
AN{b e B ||b]| <1} is a compact subset of B; it is closed if and only if it is a
closed subset of B. If A is a locally compact semialgebra containing a right minimal
idempotent element e then e Ae is in fact a division semiring. The zerosumfree closed
semialgebras of B which are division semirings are all of the form R*e for some
e=e?€B.

(4.32) EXAMPLE. Let R be the set of pairs (a,b) € R x R satisfying the condi-
tions that either a > 0 and b > 0 or a = b = 0. Define operations ¢ and ® on R as
follows:

(a,b) ifb>¥
(a,b) ® (a',b") = { (d',¥) ifb< ¥
(a+a',b) ifb=¥

and
(a,b) ® (a’, ') = (ad’, bb).

Then (R, ®,®) is a semifield with applications in the study of biopolymers. Refer
to [Finkelstein & Roytberg, 1993] and [Akian, Bapat & Gaubert, 1998].

(4.33) PROPOSITION. A division semiring R is cancellative if and only if
K*(R) # {0}.

ProOF. If R is cancellative then K+(R) = R # {0}. Conversely, assume that
0#r e K*(R)and let a,b, c € R be elements of R satisfyinga+b=a+c. Ifa =0
then surely b = ¢. Otherwise, we multiply both sides of the equation on the left
by ra~! to obtain r 4+ ra~'b = r + ra~!c from which, by cancellability, we obtain
ra~'b = ra~!c. Multiplying both sides of this equation on the left by ar~!, we
obtain the desired b=¢. O

(4.34) ProrosITION. A division semiring R is either zerosumfree or is a division
ring.

PRroOOF. Assume R is not zerosumfree. Then there exists a nonzero element a of
R having an additive inverse —a. If 0 # ¢ € R then c+ca™!(—a) = ca~!(a+—a) =
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ca™ !0 = 0 and so ¢ too has an additive inverse. Thus (R, +) is a group and so R is
a ring, which must be a division ring. O

As in the additive case, we can talk about cancellability as a weak version of
having an inverse. However, since multiplication in an arbitrary semiring is not
commutative, we must be careful to keep track of sides. Thus an element a of
a semiring R is right multiplicatively cancellable if and only if ba = ca only
when b = c. Left multiplicatively cancellable elements are similarly defined.
An element of R is multiplicatively cancellable if and only if it is both left
and right multiplicatively cancellable. Clearly any unit of R i1s multiplicatively
cancellable and no multiplicatively cancellable element of R is a zero divisor. We
will denote the set of all multiplicatively cancellable elements of R by K *(R). This
set is nonempty since 1 € U(R) C K*(R) and is not all of R since 0 ¢ K*(R).
Moreover, K*(R) is a submonoid of (R, ). If every nonzero element of R is [left,
right] cancellable then we say that the semiring R is [left, right] multiplicatively
cancellative. Division semirings are surely multiplicatively cancellative.

(4.35) ExamPLE. The semiring N is a multiplicatively cancellative semiring
which is not a division semiring. Indeed, U(N) = {1}.

(4.36) ExaMPLE. If R is a noetherian commutative integral domain then the
additively-idempotent semiring ideal( R) is multiplicatively cancellative if and only
if R is a Prufer domain. More generally, a commutative integral domain R is a
Prifer domain if and only if every finitely-generated nonzero ideal of R is multi-
plicatively cancellable [Larsen & McCarthy, 1971].

(4.37) ExampPLE. [Barbut, 1967] An element of a semiring R which is right
multiplicatively cancellable 15 surely not a right zero divisor. The converse is true for
rings but not necessarily true for semirings. Indeed, let R be the semiring M2(Q¥)

and let A = 1 i] Then A is not a right zero divisor since [‘c’ Z] A= [8 g] implies

thata+b=0=c+dandsoa=5b=c=d=0. On the other hand, A is not right

multiplicatively cancellable since [i g] A= [; 1] A.

(4.38) ExaMPLE. [Duchamp & Thibon, 1988] Let R be a semiring and let A be
a nonempty set on which we have defined a reflexive and symmetric relation ~. Let
M be the quotient monoid of the free monoid A* with respect to the congruence
generated by all pairs of the form (ab, ba) for a ~ b. Then the semiring R[M] is
cancellative and left multiplicatively cancellative if and only if R is. Moreover, it is
entire if and only if R is entire.

(4.39) ExamPLE. [H. E. Stone, 1977] Let R be the semiring of polynomials over
N in noncommuting indeterminates z and y satisfying the condition that yz = y.
Then R is a cancellative semiring which is right multiplicatively cancellative but
not left multiplicatively cancellative.
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(4.40) ProrosITION. If R is a right multiplicatively-cancellative semiring in
which there exists an element other than 1g having finite multiplicative multiplica-
tive order, then R is a ring.

PROOF. Assume that 1p # a € R satisfies r* = 1g for some n > 1 and let
b=14a+---+a"! Thenab=a+a*+ --+a"=14+a+..2 1 =b=1gb
Since a # 1g, this implies that # = 0 and so 1g € V(R), proving that V(R) = R
and hence R is a ring. O

(4.41) ProprosITION. If R is a cancellative yoked semiring then any element of
R which is not a zero divisor is multiplicatively cancellable.

ProOOF. Let a be an element of R which is not a zero divisor and let b and
¢ be elements of R satisfying ba = ca. Since R is a yoked semiring, there exists
an element d of R such that b = c+dorc = b+d. Say b = ¢+ d. Therefore
ca+0=ca=ba=(c+d)a=ca+da. Since R is cancellative, this implies that
da = 0 and, since a is not a zero divisor, we must therefore have d = 0. Thus b = ¢,
proving that a is right multiplicatively cancellative. A similar proof shows that a
is also left multiplicatively cancellative. O

(4.42) ProPOSITION. FEach of the following conditions on an element a of a
semiring R implies the next:

(1) a+1=1;

(2) a®+1=1foralln eN;

(3) a® +1=1 for somen € N.
The conditions are are equivalent if R is additively idempotent and multiplicatively
cancellative.

ProoF. (1) = (2): We will prove (2) by induction on n. If n = 1 the result
follows from (1). Assume now that n > 1 and that a* + 1 =1 for all ¥ < n. Then
l=(a+1)(a" '+ 1) =a"+a" ' +a+1=a"+a" 1+1=a"+ 1

(2) = (3): This is immediate.

(3) = (1): Assume that R is additively idempotent and multiplicatively cancella-
tive. f a”+1 = 1then (a+1)" =a"+a" '+ - - +1=a"" 1+ - +1=(a+1)" L.
By multiplicative cancellation, we then obtaina+1=1. O

(4.43) ProprosITION. If R is a multiplicatively-cancellative additively-

idempotent commutative semiring theén (a + b)" = a"” + b” for all a,b € R and
all positive integers n.

ProoF. If a + b = 0 then a = b = 0 since additively-idempotent semirings are
zerosumfree, and in this case the result is immediate. Hence we can assume that
a+b # 0. The result is clearly true for n = 1. Moreover, since R is additively-
idempotent, we have (a + b)3 = a® + a?b + ab? + b3 = (a® + b%)(a + b) and so, by
multiplicative cancellativity, (a + b)? = a? + b%. Now assume that n > 2 and that
the result has already been established for n — 1. Then

(a+b)" = (a+b)*(a+b)""" = (a+b)*(a" " +b"7)
= (a®+ab+b%) (" + 5" 1) = 0™t b+ ab” + b7
= (a+b)(a" +0")
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and so, by multiplicative cancellativity, (¢ + 5)” = a” + 4. O

As a consequence of this result, we see that if R is a multiplicatively-cancellative
additively-idempotent commutative semiring and if a,...,ar € R then

(a1 4+ a)"=al +---+a}
for each positive integer n.

(4.44) ProposITION. Let R be a multiplicatively-cancellative additively-
idempotent commutative semiring. If a # b are elements of R then a™ # b” for all
positive integers n.

ProoF. Assume that a™ = b", where n > 1. Then
a®=a"+b" =(a+b)"
= (a+b)(a+8)"" = (a+b)(a™ 4+ ")
—a" +ab" L+ 1p

so, adding a™~!b to both sides, we have a™ = a” + a"~'b = a”~'(a +b). Since R is
multiplicatively cancellative, this implies that a = a+b. A similar argument shows
that b = a + b and so @ = b, which is a contradiction. O

Thus, if R is a multiplicatively-cancellative additively-idempotent commutative
algebraically-closed semiring then any equation of the form X™ = b has a unique
solution on R.

Now let us consider a situation slightly more general than the one considered
in Proposition 4.42. In studying the Jacobson radical of a ring, it is important to
consider the quasiregular elements of the ring, namely those elements a for which
1+ a is a unit. For a semiring R, let G(R) = {r € R| 1+ r € U(R)}. This set
is nonempty since it contains 0 and, if R is a ring, contains the Jacobson radical
of R. (The term “quasiregular”, however, is used in the context of semirings in a
different sense, as we shall see later.)

(4.45) EXAMPLE. Let R be a semiring and let S = M, (R), where n is an
integer greater than 1. If 1 <i# j <n and if r € V(R), let e;;.» be the element of
S defined by (

r if (h, k)= (i,7)
(b, k) = .
€ijir (b, ¥) { 0 otherwise
Then [1s + €ij;7][Ls + €ij;—r] = Ls = [1s + eij;—r][ls + €ij;r] and so ej5;- € G(S) for
all1<i#j<nandreV(R).

(4.46) ProPosITION. The set U(R) N G(R) is closed under taking inverses.

PrROOF. Assume a € U(R) N G(R). Then a=! € U(R). Since a € G(R) we see
that 1 +a € U(R). Then a(l1+a ') =a+aa"l=1+a€U(R)sol+a"!=
(a=Y)(a+1) € U(R). Thusa™! € G(R). O

The semiring R is a Gel’fand semiring if and only if R = G(R). By an easy
induction argument, we see that if R is a Gel’fand semiring then nlg € U(R)
for each nonnegative integer n. Gel’fand [1941] first considered this condition for
Banach algebras; the generalization to semirings first appeared in [Slowikowski &
Zawadowski, 1955].
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(4.47) ExaMPLE. Simple semirings are surely Gel’fand rings. Thus the semir-
ings in Example 1.5 are Gel’fand semirings.

(4.48) ExaMPLE. The semiring N is a zerosumfree semiring which is not a
Gel'fand semiring. Indeed, G(N) = {0} and U(N) = {1} so this example also shows
that the set G(R) N U(R) may be empty for some semirings R.

(4.49) ExaMPLE. Let A be a nonempty set having more that one element and
let R = (R*)*. This is a semiring which is not simple. On the other hand,
UR)={f€ R]| f(a) >0 foralla € A} and so R is a Gel’fand semiring.

The semiring R7 is, up to isomorphism, the only cancellative locally-compact
connected topological Gel’fand semiring R having the property that translations of
R are open mappings [Bourne, 1962].

As an immediate consequence of the definitions one sees that the family of
Gel’fand semirings is closed under taking direct products.

(4.50) PROPOSITION. A semiring R is a Gel’fand semiring if and only if r+ ¢ €
U(R) for all c € U(R) and all r € R.

ProoF. If the stated condition holds, then R is a certainly a Gel’fand semiring.
Conversely, let R be a Gel'fand semiring, let » € R, and let ¢ € U(R). Then
d=c"!'r+1isaunit of R and so r + ¢ = ¢d € U(R), which is what we wanted to
prove. [

(4.51) PrOPOSITION. If R is a Gel’fand semiring for which there exist positive
integers n > m satisfying nlg = mlg, then R is additively idempotent.

PROOF. Set h = n — m. Without loss of generality, we can assume that h > 1
since if nlg = mlp then (n+ h)lg = mlg. If k > m then klg = k1g + thlg for
each nonnegative integer ¢t. Choose a positive integer w such that A* > m. Then
h“1p = h¥1g+ A" —1hlg = 2h¥ 1R since h* > m. Since R is a Gel’fand semiring,
h*1gr € U(R) and so 1g = 21g. Therefore a = 2a for all @ € R, proving that R is
additively idempotent. [

Since (h + k)1g = hlg + klg and hklg = (hlg)(klg) for all nonnegative
integers h and k, we see that, for any semiring R, the set B(R) = {hlg | h € N} is
a subsemiring of C(R), called the basic subsemiring of B. A semiring R is basic
if and only if R = B(R). Clearly N is basic. It is straightforward to check that the
semirings (B(n,?),®, ®) defined in Example 1.8 are basic.

By Proposition 4.51, we see that if R is a Gel’fand semiring then either B(R) =
{0,1} or B(R) is a copy of N. Moreover, if R is a Gel’fand semiring then, as we
have already noted, B(R) C U(R).

(4.52) PROPOSITION. Let R be a Gel’fand semiring and let h, k, m,n be non-
negative integers. Then h1g(k1g)~! 4+ mlg(nlg)~! = (hnlg + kmlg)(knlg)~1.

ProoF. Since R is a Gel’fand semiring we know that nlg € U(R) for each
natural number n. By distributivity and the commutativity of the elements of the
form nlg, we have [hl1g(klg)~! +mlg(nlg)~!](knlg) = hnlg+kmlg and so the
result follows by multiplying both sides by (knlg)~!. O



5. COMPLEMENTED ELEMENTS
IN SEMIRINGS

Complemented elements play an important part in the study of lattices, and
in particular in the study of frames. Since frames are examples of semirings, it
is worth looking at this notion in the more general context of semirings. As it
turns out, such elements play an important part in the semiring representation of
the semantics of computer programs, as emphasized in the work of Manes and his
collaborators.

If @ and b are elements of a semiring R then a is well inside b, written a < b,
if and only if there exists an element ¢ of R satisfying ac = ca =0 and ¢+ b = 1.
This is a generalization of a notion discussed for frames in [Johnstone, 1982]; it
formerly appeared in [Dowker & Strauss, 1974] in connection with the study of the
T3-separation axiom for frames. Also refer to [Golan & Simmons, 1988]. In any
semiring R we have 0 <1 0 and a <1 1 for each a € R. If R is a simple semiring then
we note immediately that 0 < b for any element b of R. If a € C(R) then a < b
implies that ra < b for all » € R.

(5.1) PROPOSITION. If a and b are elements of a semiring R satisfying a < b
then ab = a = ba. Moreover, if R is simple then this also implies that a + b = b.

PrOOF. Since a < b there exists an element ¢ of R satisfying ac = ca = 0 and
c+b=1. Hence a = a(c+ b) = ac + ab = ab. Similarly a = ba. Now assume that
R is simple. Then, by Proposition 4.3, we have a+b=a(c+b)+b=ac+ab+b=
ab+b=05. O

An element a of R is complemented if and only if ¢ <t a. That is to say, a is
complemented if and only if there exists an element ¢ of R satisfying ac = ca = 0
and a + ¢ = 1. This element ¢ of R is the complement of a in R. If a has
a complement, it is unique. Indeed, if both b and ¢ are complements of a then
b=(a+c)b=ab+cb=cb=cb+ca=c(b+a)=c. Wedenote the complement of
a complemented element a of R by at. Clearly, if a is complemented so is a* and
att =a.

Denote the set of all complemented elements of R is denoted by comp(R). This
set is nonempty since 0 € comp(R) with 01 = 1. If comp(R) = {0,1} then R is
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integral. If a € comp(R) \ {0,1} then at € comp(R) \ {0, 1} and so we see that
if R is entire then it is integral. Thus, for example, the semiring (I, maz, min) is
integral. Note that comp(R) C I*(R). Indeed, if a € comp(R) then a = al =
ala +at) = a® + aat = a% If a € comp(R), set aUb = a + atb. Note that
alat = a+atet = a+at = 1for all @ € comp(R). Also, if a +b = 1 then
at =at(a+b)=atat+atb=a*bsoalb=a+at =1

In passing, we note that if a € comp(R) and b € R then at Ub = at + ab corre-
sponds to the Saseki hook implication operation in quantum logic. See [Roman
& Rumbos, 1991b] for details.

(5.2) EXAMPLE. If R = X;eqR; is a direct product of semirings and if A is a
subset of 2, then the element e5 of R defined by

. 1 ifie A
em:{

0 otherwise
is complemented. Indeed, (ex)* = EQ\A-

(5.3) ExaMPLE. If R is a semiring and if A is a nonempty set which is either
countable or finite, then for each B C A the element ep of M4 r.(R) defined by

1 ifi=j€B
0 otherwise

e(i,j) = {

is complemented, with (ep)t = €A\B-

More generally, if 0 # e € I*(R) then e is integral if and only if the semiring
eRe is integral. That is to say, e is integral if and only if there do not exist elements b
and c of R such that ebe and ece are nonzero and satisfy ebece = 0 and e = ebe+ece.
Thus, if R is entire then every nonzero element of I*(R) is integral.

(5.4) ExaMPLE. If 7 is a topology on a nonempty set X then (7,U,N) is a
multiplicatively-idempotent semiring with additive identity @ and multiplicative
identity X. An element A of T is integral if and only if it is connected.

(5.5) ExaMPLE. We have noted that comp(R) C I*(R) for any semiring R. If
R is a plain simple yoked semiring then the converse is also true. Indeed, in such
a situation let e € I*(R). Then there exists an element b of R satisfyinge =1+
or e+ b= 1. In the first case, the simplicity of R yields e = 1 and so e € comp(R).
In the second case, e = e? = e(1 + b) = e + eb. By Proposition 4.22, this implies
that eb = 0. Similarly, be = 0 and so e € comp(R) with e+ = b.

(5.6) PrROPOSITION. If R is a zerosumfree semiring and if a, b € comp(R) then:
(1) abat =0;

(2) ab and a Ub belong to comp(R);

(3) ab = ba.

ProoF. (1) If a,b € comp(R) then aba* +abtat = a(b+b*)at = aat =0 and
so, since R is zerosumfree, we have abat = 0.
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(2) We claim that [aU bt = atbt. Indeed, [aUb] + atdt = a+atb+aldl =
a+at(b+bt) = a+at = 1. Also, by (1), [aU blatbl = [a@ + atblatbt =
aatbt + atbabt = 0. Similarly atb*[a U b] = 0, establishing the claim. Thus
alUb € comp(R).

Finally, we claim that [ab]t = at U bt = at 4 abt. Indeed, ab + (at U bL)
ab+at +abt = a(b+bt)+at = a+at =1 while ab(a* UbL) = ab(a* + ab?t)
abat + ababt = 0 and similarly (at U bt)ab = 0.

(3) By (1), abat = 0 = atbat’ = a‘ba and so ab = abl = ab(a + at) =
aba + aba* = aba = aba + atba = (a + at)ba = 1(ba) = ba. O

(5.7) ProprosITION. The following conditions on a zerosumfree semiring R are
equivalent:

(1) If a,b € comp(R) then a + b € comp(R);
(2) 141 € comp(R);

(3) comp(R) C I*(R);

(4) Ifa,b € comp(R) thena+b=alb;

(5) (comp(R),+,") is a subsemiring of R.

ProoF. (1) = (2): This is immediate.

(2) = (3): If a € comp(R) then, by (2) and Proposition 5.6, we have a + a €
comp(R). Set b = (a+a)t. Then ab+ab = (a+a)b = 0 and so, by zerosumfreeness,
ab = 0. Therefore a = al = a(a+a+b) = a®+a% = a+a, proving that a € I*(R).

(3) = (4): If a, b € comp(R) then, by Proposition 5.6, we have

a+b=(a+b)(a+ al)(b +bl)
= (a+b)(ab+ atb+ abt +atbt)
= ab+ ab* + ab + ath.

By (3),abe It(R)andsoa+b=ab+abt +atb=a+atb=aUlb.
(4) = (1) & (5): This is a direct consequence of Proposition 5.6(2). O

(5.8) PROPOSITION. If R is a zerosumfree semiring then (comp(R),U, ") is an
idempotent commutative simple semiring.

Proor. If a,b,c € comp(R) then
aU(uUe)=aU(b+btc)=a+at(b+bdte)
=a+atb+atbte=a+atb+[a+atb)te

=(a+atb)Uc=(aUb)Uec.

Thus U is associative. If a € comp(R) then a U0 = a+a*0 =a =0+ la =
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04 0ta = 0Ua. Finally, if a,b € comp(R) then

aUb=a+a*b=a+ atba+atbat
=a+a‘tbat =ba+bta+atbat
= bab + babt + bt ab + btabt + atba = bab + btabt + atbat
= bab + bt ab* + abat + atbat = bab + btabt + bat
= bab + bab* + bat + btabt = ba + bat + btabt
=b+btabt =b+btab+ bltabt
=b+bta=bUa.

Thus U 1s commutative.
We already know that comp(R) is closed under products and contains 1, so it is
a monoid. Finally, if a,b, ¢ € comp(R) then

a(bUc) = a(b+btc) = ab+ abte
=ab+abUac+ abtatc=ab+ abtac
=ab+atac+abtac = ab+ (at + abl)ac

=ab+ (ab)tac = abUac

and similarly (b U ¢)a = ba U ca. Thus (comp(R),U,-) is a semiring. We have
already noted that every a € comp(R) is multiplicatively idempotent. Moreover,
a € comp(R) implies that a Ua = a + ata = a and so comp(R) is additively
idempotent as well. It is commutative by Proposition 5.6(3). If a € comp(R) then
aUl=a+a*l=a+at =1 andso comp(R) is simple. O

(5.9) COROLLARY. If R is a zerosumfree semiring then (comp(R),U,-) is a
boolean algebra.

PROOF. As was noted in Example 1.5, a commutative idempotent simple semir-
ing is a bounded distributive lattice having unique minimal element 0 and unique
maximal element 1. Hence, by Proposition 5.8, we note that comp(R) is such a
lattice which is complemented as well and so is a boolean algebra. O

(5.10) ProrosITION. If R is a zerosumfree semiring then the relation < on R
defined by the condition r < s if and only if there exists an element e € comp(R)
satisfying v = es is a partial order relation on R.

ProoF. Clearly r < rfor all 7 € R since »r = 1r. If » < s and s <t then there
exist e, f € comp(R) with r = es and s = ft. Hence r = eft with ef € comp(R)
by Proposition 5.6(2), proving that r < t. Now assume that r < s and s < 7.
Then there exist €, f € comp(R) such that » = es and s = fr. This implies that
er = e?s = es = r and so, by Proposition 5.6(3),r = es =efr = fer = fr=s. O

For a semiring R, we define the symmetric difference of elements of comp(R)
by a Ab = ab* + atb. In particular, if R is a zerosumfree semiring satisfying
the condition that comp(R) is a subsemiring of R (refer to Proposition 5.7) then
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by Corollary 5.9 we see that comp(R) is a boolean algebra and this is just the
symmetric difference in the usual sense. Note that, under these cifcumstances, the
function é: comp(R) x comp(R) — comp(R) defined by §:(a,b) — a A b defines a
metric on comp(R) with values in R.

If R is an arbitrary zerosumfree semiring then it is still clear that 6(a,b) =
8(b,a) > 0 for all a,b € R and é(a,a) = 0 for all a € R. Conversely, assume
that 6(a,b) = 0. Since R is zerosumfree, this means that ab* = 0 = a*b and so
a = al = a(bt + b) = ab* + ab = ab, proving that a < b. Similarly, b < a and so
a=b.Ifa,bc€ Rthen (aAc)(aAb+bAc) = (act +atc)(abt +atb+bet +bte).
By Proposition 5.6, this equals abtct +abct +atbec+atblec = a(bt +b)ct +at(b+
bYye=act +atc=alAcandsod(a,c)=alc<alb+bAc=5b(a,b)+6(b,c).
Thus we see that é is a metric on comp(R) with values in R.

Note that if a € comp(R) the 6(a,0) = al + a*0 = a. Also, é(a,at) = aa +
atal = a+at =1 for all a € comp(R).



6. IDEALS IN SEMIRINGS

Ideals play a fundamental role in ring theory and it is therefore natural to con-
sider them also in the context of semiring theory. Here their role is no less im-
portant, though we will often have to restrict our consideration to special types of
ideals. In particular, we will show that, as in the case of rings, the family of all
ideals of a semiring is, in a natural way, a semiring. Formally, the definitions in the
two situations are the same.

A left ideal I of a hemiring R is a nonempty subset of R satisfying the following
conditions:

(1) Ifa,be I thena+be€ I

(2) If a € I and r € R then ra € I;

3y I#R.
Note that if R is a semiring then condition (3) is equivalent to the condition that
1 ¢ I. A right ideal of R is defined in the analogous manner and an ideal of
R is a subset which is both a left ideal and a right ideal of R. Note that ideals
are proper, namely R is not an ideal of itself. Also, 0 belongs to every [left, right]
ideal of R and hence {0} is an ideal of R contained in every [left, right] ideal of R.
Moreover, U(R)N I = @& for every [left, right] ideal of R. Any ideal of a semiring R
is a subhemiring of R which is not a subsemiring. We will denote the set consisting
of R and all left ideals of R by lideal( R), the set consisting of R and all right ideals
of R by rideal(R), and the set consisting of R and all ideals of R by ideal(R).

(6.1) ExamPLE. If R is a commutative semiring and if I = R\ U(R) then for
r € R and a € I we surely have ra € I. Therefore I is an ideal of R if and only if it
is closed under addition. A sufficient condition for this to happen is that if a,b € I
then a + b is either of the form ra or rb for some r € R.

If I is an ideal of R then it surely contains every other ideal of R and so is the
unique maximal ideal of R. In this case, the commutative semiring R is quasi-
local. The semirings of the form B(n,{) mentioned in Example 1.8 are quasi-local
if i = 0 and n = p” for some prime integer p and natural number k, or if i = 1 and
n — 1 = p* for some prime integer p and natural number h. Refer to [Alarcén &
Anderson, 1994a].

CONVENTION: In general, when we prove that a certain result is true for left
ideals of a hemiring, the corresponding result for right ideals and for ideals will also
J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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be assumed without specific mention.

A nonempty subset A of a hemiring R is semisubtractive if and only if a €
AN V(R) implies that —a € A N V(R); it is subtractive if and only if a € A
and a +b € A imply b € A; it is strong if and only if a + b € A implies that
a € Aand b € A. Every subtractive subset of R surely contains 0. Also, it is
clear that every strong subset of R is subtractive and every subtractive subset of
R is semisubtractive. The subtractive ideals of a semiring will be characterized in
Chapter 9. If R is a hemiring then the ideal {0} is always subtractive and, as we
have noted, is contained in every other subtractive ideal of R. It is strong if and
only if R is zerosumfree.

(6.2) ExaMPLE. If A is an infinite set then the family fsub(A) of all finite sub-
sets of A i1s a strong ideal of the simple idempotent zerosumfree semiring

(sub(A),U,N).

(6.3) ExaMPLE. In Chapter 2 we noted that multifunctions have important
applications in describing the semantics of computer programs. If f: A — sub(B)
is a multifunction from A to B then, in a natural manner, we can consider f as a
multifunction from AUB to itself by setting f(b) = @ for all b € B. Therefore we can
usually restrict ourselves to working with multifunctions from a set to the semiring
of its subsets. Let A be a nonempty set and let R = sub(A)* be the set of all
multifunctions on A with values in the semiring of subsets of A. Define operations
+ and o on R as follows: if a € A and f,g € R then (f + g)(a) = f(a) U g(a) and
(fog)a)=U{f(b) | b€ g(a)}. It is straightforward to check that R is a semiring
with additive identity z defined by z(a) = @ for all @ € A and multiplicative
identity j defined by j(a) = {a} for all a € A. If B is a proper subset of A then
Ip={f € R| f(a) C Bforall a € A} is a strong right ideal of R which is not a
left ideal.

(6.4) ExamPLE. [LaGrassa, 1995] Even in very small, “nice” semirings, not
every ideal need be subtractive. For example, let R = {0,1, u} be the idempotent
semiring in which 14+ u = u+ 1 = u. Then {0, u} is an ideal of R which is not
subtractive.

(6.5) EXAMPLE. If R is a ring then no ideal of R is strong. Indeed, if I is an
ideal of R then —14+ 1€ I but 1 ¢ I. If R is a semiring which is not a ring then
V(R) is a strong ideal of R. If {0} is the only ideal of R, R, this implies that
either V(R) = R, in which case R is a ring, or V(R) = {0}, in which case R is
zerosumfree. Thus we have another proof of Proposition 4.34.

(6.6) EXAMPLE. The set 2N of all nonnegative even integers is a subtractive
ideal of the semiring of all nonnegative integers. It is not strong since 3 + 5 € 2N
while neither 3 nor 5 belong to 2N. A complete study of the subtractive ideals of
N is given in [Noronha-Galvao, 1978a], where it is shown that these are precisely
the sets of the form kN for some k € N. Refer also to [Noronha-Galvéao, 1978b].

This result was generalized in [Alarcén & Anderson, 1994a]: let R be an integral
domain with total order compatible with addition and multiplication and let Rt
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be the semiring of nonnegative elements of R. Then R*a is a subtractive ideal of
Rt foralla € Rt.

(6.7) EXAMPLE. [Alarcén & Anderson, 1994a] Every ideal of the basic semiring
B(n, 1) is subtractive if and only if : < 1.

(6.8) ExaMpLE. [Iséki & Miyanaga, 1956b] If X is a Hausdorff topological space
then the set R of all continuous bounded functions from X to Rt is a commutative
semiring, which is in fact a Gel’fand semiring. Moreover, there exists a bijective
function ® from ideal(R) to the family of all filters of closed subsets of X defined
as follows: if I € ideal(R) and if Y is a closed subset of X then Y € ®(I) if and
only if for every closed subset W of X not meeting Y there exists a function f € I
such that inf{f(w) |we W} > 0.

(6.9) EXAMPLE. If R is a semiring which is not additively idempotent then
I*(R) is an ideal of R, since 1 ¢ I*(R). This ideal is not necessarily strong.
Indeed, if R = Z then IT(R) = {0} so -1+ 1 € I*(R) while —1,1 ¢ I*(R). If
I*(R) is a strong ideal then the semiring R is archimedian. It is immediate to
see that the family of all archimedian semirings is closed under taking products.

(6.10) ExaMPLE. If A is a nonempty subset of a semiring Rset (0: A) = {r €
R|lra=0foralla € A}. If A # {0} then this is a left ideal of R, called the
left annihilator ideal of A. Right annihilator ideals are defined similarly. If I is
the left annihilator ideal of a nonempty subset A of R other than {0} then I is a
subtractive left ideal. Indeed, if » and »’ are elements of R satisfying the condition
that » and r + ' are both elements of I then for each element a of A we have
0=(r+7)a=ra+r'a=r'aandso r € I. Similarly, right annihilator ideals are
subtractive right ideals. We note that if H is a left ideal of R then (0 : H) is an
ideal of R. If a € R, we write (0 : a) instead of (0 : {a}). Similarly, we note that if
a # b are elements of R then {r € R | ra = rb} is a left ideal of R.

(6.11) PrOPOSITION. [LaGrassa, 1995] The following conditions on an ideal I
of a commutative semiring R are equivalent:
(1) H+(0:I)=(HI:1) for all ideals H of R;
(2) HI = KI implies that (0: I)+ H = (0:I) + K for all ideals H and K of
R.

PrOOF. Assume [ satisfies (1). If (0: )+ H = (0 : I) + K for ideals H and K
of Rthen (0: 1)+ H = (HI:I)=(KI:I)=(0:I)+ K. Conversely, assume that
I satisfies (2). If a € (HI : I) then (a)] C HI and so [(a)+ H]I = (a)[+HI = HI.
By (2), this implies that () + H+(0: 1) = H+(0:I) and so (a) C H + (0 : I).
Therefore a € H+ (0 :I) andso (HI : I) CH+(0:1I) C (HI : I), establishing
equality. O

In greater generality, if I is a left ideal of a semiring R and A is a nonempty
subset of R, then (I : A) = {r € R | ra € I for each a € A} is a left ideal of R
provided that A is not a subset of I. The right-handed version of this is defined
analogously. If A = {a}, we write (I : a) instead of (I : {a}). It is easily seen that
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if I is a subtractive [resp. strong] left ideal of R then so is (I : A) for any nonempty
subset A of R not a subset of I. (If A C I then, of course, (I : A) = R.)

(6.12) EXAMPLE. Let n be a positive integer. A nonempty subset K of R” is
a proper cone if and only if:

(1) K+ K CK,;

(2) aK C K for all a € RY;

(3) KN (-K)={0};

(4) K+ (—-K)=R" and

(5) K is closed in the usual topology on R™.
A linear transformation ¢ from R™ to itself is a positive operator on K if and only
if Ko C K. The set of all positive operators on K is clearly a semiring under the
usual operations of addition and composition of linear transformations. The ideals
of this semiring are studied in detail in [Tam, 1981].

(6.13) ExaMPLE. If R is a nonzeroic semiring then Z(R) is a subtractive ideal
of R. In general, it is not necessarily strong. The zeroid of the semiring D defined
in Example 1.9 is strong. See [Pierce, 1972].

(6.14) EXAMPLE. An element a of a semiring R is left absorbing if and only
if ra = a for all 0 # » € R. Right absorbing elements are defined analogously.
Clearly, if a is left absorbing then {0,a} is a left ideal of R. The converse holds
when R is entire.

The element 1 of a semiring R is left absorbing if and only if R = Bor R = Z/2Z.
Every semiring has at least one left absorbing element, namely 0. Moreover, if a is
a strongly infinite element of R then a is also left absorbing. If a is a left absorbing
element of R then either a € IT(R) or a+a = 0. Thus, when R is zerosuinfree, we
conclude that every left absorbing element of R belongs to I*(R). The set of left
absorbing [resp. right absorbing] elements of a semiring R is easily seen to be an
ideal of R.

If A is a nonempty subset of a semiring R then the set RA consisting of all finite
sums Y r;a; with r; € R and a; € A is either equal to R or is the smallest left ideal
of R containing A. In the latter case, it is called the left ideal of R generated by
A. If A C B then surely RA C RB. Furthermore, as an immediate consequence of
this observation and the defintions, we see that if A and B are nonempty subsets
of R then R(AU B) = R(RAU RB).

Similarly, AR is either equal to R or is the smallest right ideal of R containing
A. The set (A) consisting of all finite sums of the form Y r;a;s; with r;,s; € R and
a; € A is either equal to R or is the smallest ideal of R containing A. If A = {a}
we write Ra [resp. aR, (a)] instead of RA [resp. AR, (A)]. A left ideal [resp. right
ideal, ideal] I of R is finitely generated if and only if there exists a finite subset
A of R such that I = RA [resp. I = AR, I = (A)]. It is principal if and only if
there exists an element a of R such that I = Ra [resp. I = aR, I = (a)).

(6.15) EXaMPLE. In general, if A is a nonempty subset of a semiring R then
UseaRa C RA but we do not necessarily have equality. A sufficient condition for
equality is that the set {Ra | a € R} be linearly ordered. This condition is not



— _ TDEALS IN SEMIRINGS 69

sufficient since the semiring R = (NU{—o0}, +, -) does not satisfy it but does satisfy
the condition that Use 4 Ra = RA for each nonempty subset A of R. The condition
that every left ideal of R be principal is also insufficient, as the example of (Z, +, -)
shows. A necessary and sufficient condition for Use 4 Ra = RA to hold for every
nonempty subset A of R is that for any a,b € R we have a + b € Ra U Rb. See
[LaGrassa, 1995] for details.

A semiring R is left noetherian if and only if it satisfies the ascending chain
conditions on left ideals.

(6.16) ProposiTION. The following conditions on a semiring R are equivalent:

(1) R 1s left noetherian;
(2) Any nonempty collection of ideals of R has a maximal element;
(3) Every ideal of R is finitely generated.

ProoF. (1) = (2): Let C be a nonempty collection of left ideals of R and pick
I, € C. If I is not properly contained in any element of C, we are done. If not, there
exists an element [ of C properly containing I;. If I3 is not properly contained
in any element of C, we are done. If not, there exists an element I3 of C properly
containing 5. Continue in this manner. By (1), the process must end after a finite
number of steps, and so C has a maximal element.

(2) = (3): Let I be a left ideal of R and let C be the collection of all finitely-
generated ideals of R contained in I. This collection is nonempty and so, by
(2), contains a maximal element H = R{aj,...,am}. For each b € I, let Hy, =
R{ai,...,am,b}. But maximality, H = H} for all & € I and so, in particular,
be H for all b € I. Thus H = I and so [ is finitely generated.

(3) = (1): Let Iy C I, C ... be an ascending chain of left ideals of R and let
I = US$2,L;. Then I is a left ideal of R and so, by (3), is finitely generated, say
I = R{ay,...,ax}. This means that there exists an index n such that I C I,, C I
and so I; = I, for all j > n, proving (1). O

Thus, we note that if a ¢ U(R) then Ra and aR are a left ideal and a right
ideal of R respectively. If a € C(R)\ U(R) then Ra is an ideal of R. If a and
b are distinct elements of I*(R) N C(R) then Ra # Rb. Indeed, if Ra = Rb
then there exist elements ¢ and d of R satisfying a = bc and b = da. But then
a=ch=cb?=ab=a’ = ada = da® = da = b.

(6.17) ExamPLE. [Dale, 1976a] Let I be the ideal of N[t] generated by t + 1.
Then (t +1)® € I. But (¢t +1)3 = (83 + 1) + 3t(¢t + 1), where 3t(t + 1) € I and
t3+1 ¢ I. Therefore I is not subtractive.

Now let I be the principal ideal of Z[t] generated by ¢ + 1. That is to say,
I'={f(t)(t+1)| f(t) € Z[t]}. Then I contains no nonzero strong ideals. Indeed,
assume that H # {0} is a strong ideal of Z[t] contained in I. Then there exists a
nonzero element a of Z and a positive integer k such that at¥ € H. Indeed, without
loss of generality we can assume that k is even. Since at* € I, there must exists
a polynomial g(t) in Z[t] satisfying at* = g(¢)(t + 1) and so, evaluating at —1, we
obtain a = a(—1)f = g(=1)(=1 + 1) = 0, which is a contradiction.

The structure of ideals in semirings of the form R(A), and in particular in the
semiring N[t], is discussed in [Dale & Allen, 1976]. In particular, they note that if
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I is a subtractive left ideal of a semiring R and if A is a nonempty set then I{A) is
a subtractive left ideal of the semiring R{A). The structure of ideals in polynomial
semirings of the form R[t], where R is a semiring, is discussed in [Dale, 1982]. Ideals
in polynomial semirings in several variables are discussed in [Dale, 1976b)].

(6.18) ExaMPLE. Let R be a semiring and A a nonempty set. The set of all
quasiregular elements of R{(A)) is clearly an ideal of R{{A)), which is subtractive.
It is strong if the semiring R is zerosumfree.

(6.19) ExaMPLE. The ideal I = N\ {1} of N is semisubtractive but is not
subtractive. Indeed, 2€ I and 3=3+1€ I but1¢ I

(6.20) ExaMPLE. [Hilton, 1967] Let H be a boolean algebra and let e be an
element not in H. Extend the addition on H to an operation on R = H U {e} by
settinge+e=e+0=0+e=canda+e=e+a=1fora¢ {0,e}. Similarly,
extend the multiplication on H by setting ae = ea = a for all a € R. Then R is a
commutative semiring with additive identity 0 and multiplicative identity e and H
is an ideal of R. Note that H is not subtractive since 1 + e and 1 both belong to
Hbuted¢H.

(6.21) ExaMPLE. If R is a simple semiring and 1 # a € R then I, = {b € R |
b+ a = a} is an ideal of R. Indeed, this set is clearly closed under addition. If
belandr€ Rthenrb+a=rb+b+a=(r+1)b+a=1b+a=b+a=aso
rb € I,. Similarly br € I,.

(6.22) ProrosITION. If R is a division semiring and n is a positive integer then
S = My, (R) has no nonzero ideals.

PrROOF. For each 1 < i,j < n let e;; be the element of S defined by

1 if (4,5) = (m,n) .

0 otherwise

eij(m,n) = {

Then for each f € S we have f =Y {f(i,j)e;j|1<¢,j<n}inS.
Assume that 7 is a nonzero ideal of S and that ¢ is a nonzero element of I. Then
there exist 1 < r, s < n such that g(r,s) # 0. If f is a nonzero element of S then

F=eif(i,5) =) leirgesilo(r, )™ f(i,4) € L.
i i,J

In particular, the multiplicative identity of S belongs to I, which is a contradiction.

Thus the semiring S can have no nonzero ideals. O

(6.23) ProposITION. If R is a multiplicatively-cancellative semiring then
{0}U[R\ K*(R)] € ideal(R).

PROOF. Set A= {0}U[R\ K+(R)]. f0# a,a’ € A and a+a’ € K*(R) then
a+b=a+c=>a+d +b=a+a +c=b=candsoa€ KT(R), whichis a
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contradiction. Thus, sums of elements of A are again in A. If 0 # a € A and if
0 # r € R satisfies ra € K*(R), then

a+b=a+4+c=>rat+rb=rat+rc=>rb=rce=>b=c

and so a € K*(R), which is a contradiction. Hence ra € A for all » € R. Similarly
ar € Aforallr € R. If 1 € A then A = R. Otherwise, A is an ideal of R. In either
case, A € ideal(R). O

If I is a left ideal of a semiring R then N(I) = {b&€ R |abe I foralla € I} is
clearly a subsemiring of R containing I as an ideal. Indeed, if S is a subsemiring
of R containing I as an ideal then surely S C N(I) so N(I) is the largest such
subsemiring of R. The left ideal I is an ideal of R precisely when N(I) = R. For
a right ideal H of R, we define N(H) = {b € R | ba € H for all a € H} to obtain
similar properties.

A semiring R having no nonzero subtractive left ideals is left austere. Right
austere rings are defined similarly.

(6.24) EXxaMPLE. The semiring defined in Example 1.6 is clearly left austere.
Indeed, let I be a left ideal of R satisfying {u} #1. fre R¢ ITandu#a€
then 0r =0 € I so r +a = 0 € I, showing that I is not subtractive.

(6.25) PrROPOSITION. If R is a left austere semiring then:

(1) R is entire;

(2) R is either zerosumfree or a ring;

(3) If R is cancellative then it is left multiplicatively cancellative as well.

PRrOOF. (1) Assume that R has no nonzero subtractive left ideals and let ¢ and &
be nonzero elements of R satisfying ab=0. Then 0 #a € (0:5) and so (0:b) = R
since otherwise (0 : b) would be a nonzero subtractive left ideal of R. But this is
impossible since 1 ¢ (0 : b). Thus R must be entire.

(3) If R is not zerosumfree then V(R) # {0}. Since V(R) is clearly a subtractive
left ideal of R, this means that V(R) = R and so R is a ring.

(4) Assume that R is cancellative. Then for a,b € R we see that I = {r € R |
ra = rb} is a subtractive left ideal of R or equals R itself. Indeed, if I # {0} we
must have ] = R and so 1 € I. This means that a = b, proving that R is left
multiplicatively cancellative. O

(6.26) COROLLARY. An austere commuative semiring which is not zerosumfree
is a field.

Proor. If R is an austere commuative semiring which is not zerosumfree then,
by Proposition 6.25, R is an integral domain. If 0 # a € R then Ra is a subtractive
ideal of R not equal to {0} and so is all of R. Therefore there exists an element b
of R satisfying ba = 1, proving that R is a field. O

(6.27) ProPOSITION. Let R be a hemiring and let S = R x N be the Dorroh
extension of R by N. Then a nonempty proper subset I of R is a [left, right] ideal
of R if and only if H = {(a,0) | a € I} is a [left, right] ideal of S. Moreover, I is
subtractive if and only if H Is too.

PrROOF. Assume that I is a left ideal of R. Then H is clearly closed under
taking sums and 15 = (0,1) ¢ H. If (a,n) € S and (b,0) € H then (a,n) - (b,0) =
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(nb+ ab,0) € H and so H is a left ideal of S. Conversely, if H is a left ideal of S
and a,b € I then (a +b,0) = (a,0) + (,0) € H andsoa+b € [. If »r € R then
(ra,0) = (r,0)-(a,0) € H and so ra € I. Thus [ is a left ideal of R. The proof for
right ideals and ideals is similar.

Now assume that I is a subtractive left ideal of R. If (a¢,0) € H and (b,n) € S
is an element satisfying the condition that (a,0) + (b,n) € H then we must have
n =0and a+b € I. Since I is a subtractive left ideal, this implies that b € I.
Thus H is a subtractive left ideal. The converse is immediate. O

(6.28) ExaMPLE. [Barbut, 1967] Let S = [R* x {0}] U [{0} x R*] and define
operations @ and ® on S as follows:

(1) (a,0)® (a',0) = (a + ', 0);

(2) (0,b6)®(0,b") = (0,b+b");

(3) (a,0)® (0,b) = (0,a+b) = (0,b) & (a, 0);

(4) (a,0)©(a',0) = (ad’, 0);

(5) (0,6) ®(0,b) = (0,b0);

(6) (a,0)©(0,6) = (0, ab);

(7) (0,5) ® (a,0) = (ba,0).
Then (S,®,®) is a hemiring having Dorroh extension R = S x N. Moreover,
I = {0} x Rt is a left ideal of S and so, by Proposition 6.27, H = I x {0} is a
nonzero left ideal of R. If H' is a nonzero left ideal of R contained in H and if
(0,5,0) € H' for some nonzero element b of R* then (5,0,0)&(0,5,0) = (0,25,0) =
(2,0,0)® (0,b,0) € H' and so (b,0,0) does not belong to H’. Thus H contains no
nonzero subtractive left ideals of R.

n

We now note a generalization of Example 1.4.

(6.29) PROPOSITION. For a semiring R, the sets lideal(R) and rideal(R) are
zerosumfree hemirings under the operations of addition and multiplication of non-
empty subsets of R, having infinite element R. Moreover, ideal( R) is a zerosumfree
simple semiring. If R is commutative then these are commutative semirings which
coincide.

ProoF. This is a direct consequence of the definitions; the only reason that
lideal(R) and rideal(R) are not semirings is that R is not a two-sided multiplicative
identity in them. [

In particular, we note that, since the semiring ideal(R) is simple, we have

U(ideal(R)) = {R}.

(6.30) EXAMPLE. The structure of ideal(N) has been extensively studied in
[Allen & Dale, 1975]. If 1 < n € N then {k € N| k > n} U {0} is an ideal of N and
the family of all such ideals is closed under taking unions and intersections. All
elements of ideal(N) are not necessarily principal, but for each I € ideal(N) there
exists a finite subset A of N such that 7 U A is a principal ideal of N or equals all
of N.
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(6.31) ExaMPLE. If R = M,(R") for some integer n > 1, then {Og} is the
only ideal of R. If S is a locally-compact zerosumfree subsemiring of a complex
Banach space with {Og} as its only ideal, then S must be isomorphic to M, (R™)
for some n > 1. See Theorem 3.1 of [Kaashoek & West, 1974].

(6.32) ProPposITION. If R is a commutative semiring then the set S of all
elements I of ideal(R) satisfying the condition that a € I implies a <1 b for some
b € I is a subsemiring of ideal(R).

Proor. In Chapter 4 we have already noted that 0 < 0 and @ < 1 for each
a € R. Therefore {0} and R belong to S. Assume that I and H are elements of S
and let a € I and @’ € H. Then there exist elements b € I and b’ € H satisfying
a < band a’ < ¥. This means that there are elements ¢ and ¢’ of R satisfying
ac=a'c =0 whileb+c=0b 4+’ = 1. Therefore, if d = bb' + bc’ +cb' € I + H we
have d + ¢¢’ = 1 while (a + a’)ec’ = 0, proving that a+ e’ <d. Thus I+ H € S.

Similarly, if I and H are elements of S and @ € IH then a € I N H and so there
exist elements b € I and & € H such that a <t b and a < b’. In particular, there
exist elements ¢ and ¢’ of R satisfying ac = ac’ = 0and b+c =+ ¢ = 1. Then
bb' € I and if d = be’ + cb’ + cc’ we have bb' + d = 1 while ad = 0, proving that
a <1 bb'. Therefore IH € S, proving that S is a subsemiring of ideal(R). O

(6.33) PropPosITION. If I and H are [left, right] ideals of a semiring R then
I + H is the unique minimal member of the family of all [left, right] ideals of R
containing both I and H and I N H is the unique maximal member of the family
of all [left, right] ideals of R contained in both I and H.

ProoFr. Clearly I + H contains both I and H. Conversely, if K is an ideal of
R containing both I and H then K contains all elements of R of the form a + b,
where a € I and b € H, and hence K contains I + H. The proof of the second par-
¢ similar. O

If I and H are ideals of a semiring R then surely IH C I N H but, in general,
we do not have equality. If R is a commutative semiring and I, H are ideals of R
satisfying I+ H = R then INH = (I+H)(INH) CIH CINH andso [H = INH.
In general, (ideal(R),+,N) is not a semiring, even if R is commutative. If it is a
semiring, then it must be simple. Therefore, we have the following result.

(6.34) PrROPOSITION. The following conditions on a commutative semiring are
equivalent:

(1) (ideal(R),+,N) Is a semiring;

(2) (ideal(R),N,+) is a semiring.

ProoF. This is a direct consequence of Corollary 4.4. O

If R is a multiplicatively-regular semiring and if I and H are ideals of R with
a € I N H then there exists an element b of R satisfying a = aba = a(ba) € T and
so for multiplicatively-regular semirings we have TH = I N H for all ideals I and
H. Indeed, more generally, we have the following.

(6.35) ProPosITION. The following conditions on a semiring R are equivalent:
(1) R is multiplicatively regular;



74 CHAPTER 6

(2) HI = HN T for all left ideals I and right ideals H of R;

(3) INH ={a€ H|ba€l for allb € H} for all left ideals I and right ideals
H of R;

(4) ideal(R) is multiplicatively idempotent;

(5) HNK C HK for all ideals H and right ideals K of R;

(6) If K is a right ideal of R contained in an ideal H of R then K C HK.

PROOF. (1) & (2): Assume (1). Let H be a right ideal of R and let I be a left
ideal of R. Then surely HI C H N I. Conversely, let a € H N I. Then there exists
an element b of R satisfying aba = a. Since ab € H, we have aba € HI, proving
that H NI C HI. Thus we have equality. Conversely, assume (2) and let a € R.
Then a € aRN Ra = (aR)(Ra) and so there exists an element b of R such that
a = aba. Thus R is multiplicatively regular.

(2) & (3): Assume (2) and let I and H be ideals of R. Then G = {a € H | ba €
I for all b € H} is an ideal of R and so, by (2), GNH = HG C HNI. The reverse
inclusion is trivial and so we have equality. Conversely, assume (3). If I and H
are ideals of R then, by (3), HIC HNIC{a € H |ba€ HI forallbe H} =
HINI=HI.

(2) & (4): Clearly (2) implies (4). Conversely, if (4) holds then for all ideals H
and I of R we have HI C (HNI)2 = HN1 C HI and so we have (2).

(2) = (5): If H is an ideal of R and K is a right ideal of R then, by (2),
HNKC{acH|abe HK forallbe HY = HKNH = HK.

(5) = (6) = (4): This is immediate. O

Proposition 6.33 can be extended to infinite sums. If {I; | ¥ € Q} is a set of
[left, right] ideals of a semiring R then we define ), . Iy to be the union of all
possible sums 7, -1 Ix, where A is a finite subset of Q. This is again a [left, right]
ideal of R, which 1s the unique minimal [left, right] ideal of R containing all of the
Ix. Similarly, Ngenlr is the unique maximal [left, right] ideal of R coatained in
each of the Iy. We thus see that lideal(R), rideal(R), and ideal(R) are complete
lattices. These lattices need not be modular, as the following example shows.

(6.36) ExaMPLE. The lattice ideal(N) has a sublattice consisting of the follow-
ing ideals:

(1) I = 2N\ {2};

(2) I =2N;

(3) Iz = N\ {1) 2) 5}5

(4) L =N\ {12}

(5) Is =N\ {1}.
Moreover, Iy C I C Is and I); C I3 C Iy C I5 and so this sublattice, and hence the
lattice ideal(N) is not modular.

From Example 6.36, we see that the ideal lattice of a semiring need not be
modular, even if the semiring is commutative. This is the major difference between
the ideal lattice of a semiring and that of a ring. On the other, ideal(IB) is trivially
modular, even though B is a semiring which is not a ring.

(6.37) ExaMPLE. [Alarcén & Anderson, 1994a] For i < 5, the lattice
ideal(B(N, 1)) is distributive, but for ¢ > 6 it is not even modular.
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(6.38) ProPosSITION. If R is a semiring then a sufficient condition for the lattice
lideal(R) [resp. rideal(R), ideal(R)] to be modular is that each of its members be

subtractive.

PrOOF. Assume that every element of lideal(R) is subtractive and let H,I, K
be left ideals of R satisfying INH =INK while I+ H=I14+ K and H C K. We
must show that H = K. Indeed, if a € K we can write a = b + ¢, where b € I and
¢ € H. Since ¢ € K we see, by subtractiveness, that b € IN K = I N H. Therefore
a € H, establishing the desired equality. O

(6.39) ExaMPLE. [Padmanabhan & Subramanian, 1968] The condition given
in Proposition 6.38 is not necessary. To see this, consider the idempotent semiring
R =1{0,1,a} in which 14+a = a+1 = a. Then ideal(R) has only two elements other
than R itself: {0} and {0,a} and thus is modular. However, one sees immediately
that the ideal {0, a} is not subtractive.

(6.40) EXAMPLE. [Alarcén & Anderson, 1994b] If R is a semiring and ¢ is an
indeterminate over R, then the lattice lideal(R[t]) is modular if and only if each of
its members is subtractive, and that is true if and only if R is in fact a ring.

Note that if {I; | k € Q} is a set of semisubtractive [left, right] ideals of R then
Nreqlr is also semisubtractive. Similarly, if each Ij is subtractive then Ngenly 1s
subtractive and if each Ip is strong then Ngeqlx is strong. Thus any subset of a
semiring is contained in a semisubtractive [resp. subtractive, strong] closure,
namely the intersection of R and all semisubtractive [resp. subtractive, strong]
ideals containing it. Hence R is left austere when it is the subtractive closure of
each of its nonzero left ideals.

(6.41) EXAMPLE. It is easily verified that the subtractive closures of the ideals
I =2N\ {2} and H = 2N\ {2,4} of N are both equal to 2N.

(6.42) EXAMPLE. Subtractive closures of ideals in semirings of the form R[t],
where R is a commutative semiring, are studied in detail in [Dale, 1977a]. Thus, for
example, if k and n are integers greater than 1 and H is the ideal of N[t] generated
by k and t" + k then H is not subtractive since t” ¢ H. Its subtractive closure is
the ideal generated by k and ™.

Now assume that 1 < k¥ < n in N and that n is not a multiple of k. The ideal I
in N[t] generated by k, n, and ¢ + n is not subtractive since ¢ ¢ I. Its subtractive
closure is the ideal generated by ¢ and the greatest common divisor of £ and n in

N.

Sums of subtractive ideals need not be subtractive. Indeed, 2N and 3N are
subtractive ideals of N but 2N + 3N = N\ {1} is not subtractive, as noted in
Example 6.19. On the other hand, if {I; | £ € Q} is a set of semisubtractive [left,
right] ideals of R and if @ € (} ;. Ix) N V(R) then there exists a finite subset A
of Q and elements b, € I; for each k € A such that a = EkEA by. If h € A then
bp + (—a + Zk?sh br) = 0so by € Iy NV(R). Since each I, is semisubtractive, this
implies that —a = ZkeA —br €D ren Ie- Thus Y7, o I is semisubtractive.
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(6.43) ExaMPLE. [Dulin & Mosher, 1972] Define operations @& and @ on N as
follows:

(1) a® b= maz{a,b}if a <6 or b <6 and a+ b otherwise;
(2) a®b=min{a,b} if a <6 or b <6 and ab otherwise.

Then (N,®,®) is a commutative hemiring having subtractive ideals I =
{0,1,2,3,4,5,6)U{2t+4|t € N} and H = {0,1,2,3,4,5,6}U{3t+9| ¢ € N}. The
ideal TH is not subtractive since 96 and 120 = 96 + 24 belong to IH but 24 ¢ IH.
Therefore, by Proposition 6.27, we see that if R is the Dorroh extension of this
hemiring, then I’ = I x {0} and H' = H x {0} are subtractive ideals of R but
I'H' = IH x {0} is an ideal of R which is not subtractive. Similarly, I’ + H' is not
a subtractive ideal of R.

(6.44) PROPOSITION. An ideal I of a semiring R is complemented in ideal(R)
if and only if I = (a) for some 1 # a € comp(R) N C(R).

PROOF. Assume that I = (a) for some 1 # a € comp(R) N C(R) and let H =
(a*). Since 1 = a+a*, we have [+ H = R. If b€ I N H then b = Y ¢;ad; for
some elements ¢; and d; of R. But since b € H, we have b = bat = Zc,-ad,-aL =
3> c;aatd; = 0. Therefore I + H = {0} and so I € comp(ideal(R)).

Conversely, assume that I € comp(ideal(R)) and let H be an ideal of R satisfying
I+H =Rand IH = HI = {0}. Then there exist elements a of I and b of H
satisfying a + b = 1. Moreover, ab = ba = 0 since ab € I H and ba € HI. Therefore
a € comp(R) and b = at. If r € R then ra € I so bra € IN H = {0}. Thus
ra = lra = bra + ara = ara. Similarly, ar = ara and so a € C(R). If r € I then
rbe INH ={0}andsor=rl =ra+rb=ra. Thusr € (a) andso I =(a). O

(6.45) PrROPOSITION. If R is a semiring and n Is a positive integer then there
exists an inclusion-preserving bijection between the set of ail ideals of R and the
set of all ideals of M, (R). Moreover, an ideal of R is subtraciive if and only if the
corresponding ideal of M, (R) is subtractive.

ProoF. We will denote the multiplicative identity of M,(R) by E. For each
1 < h,k < n, we will denote by Eji the matrix [a;;] in M, (R) defined by a;; =1
when (i,j) = (h,k) and a;; = 0 otherwise. If I is an ideal of R, set ¥(I) =
{laij] € Mn(R) | a;; € I for all 1 < i,j < n}. It is straightforward to verify that
U(I) is an ideal of M, (R). Moreover, I C I’ implies that ¥(I) C ¥(I') so ¥ is
inclusion-preserving. If K is an ideal of My,(R), set ®(K) = {a € R | aE € K}.
Then ®(I) = I for each ideal I of R. Moreover, if K is an ideal of M,(R) and if
A = [a;;] € K then for each 1 < 4,5 < n we have aj;E =) ,;_; Ex;AEj; € K and
so Y®(K) = K. Thus ¥ is a bijection.

Now assume that I is a subtractive ideal of R and let [a;;] and [b;;] be elements of
My (R) such that [a;;] and [ai;] + [bi;] are elements of ¥(I). Then a;; and a;; + b;;
belong to I for all 1 < 7,j < n and so b;; € I for all such ¢ and j. Hence [b;;] € ¥(I),
proving that ¥(I) is subtractive. Conversely, assume that ¥(I) is subtractive and
let @ and b be elements of R satisfying the condition that a and a + b belong to
I. Then aF and (a + b)E = aE + bE belong to ¥(I) and so bE belongs to ¥(I),
proving that b € I. Hence I is subtractive. O
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(6.46) PROPOSITION. If R is a Gel’fand semiring then K*(R) is a strong ideal
of R.

PRrROOF. We have already noted that K*(R) is always closed under addition.
Let ke K*(R)andlet r € R. If kr+a=kr+bthen k(1+7r)+a=k(l+r)+b
sok+a(l+7r)"'=k+b(1+r)"! and so a(l+r)~! =b(1 +r)~!, whence a = b.
Thus kr € K*(R). A similar argument shows that 7k € K*(R), proving that
K% (R) is an ideal of R. Now assume that r + 7' € Kt(R). If r+a = r + b then
r+r+a=r+7r +band soa=> Thus r € K*(R). Similarly »' € K*(R),
proving that K*(R) is strong. O

(6.47) ExaMPLE. If R is not a Gel’fand semiring then K*(R) need not even
be an ideal of R. For example, if R = N{oco} then, as noted in Example 4.15,
K*(R) =N and this is not an ideal of R.

An element a of a semiring R is small in R if and only if a + b ¢ U(R) for all
b € R\U(R). Note that if Rissimple then U(R) = {1} and so this definition reduces
to the usual definition in the case of bounded distributive lattices. If a € U(R) then
a is never small since a + 0 € U(R). On the other hand, 0 is always small. More
generally, if d € R then an element a of R is d-smallin R if and only if a+b € U(R)
implies that d + b € U(R). Thus a is small in R if and only if it is 0-small in R.
Clearly d is d-small in R for each d € R.

(6.48) ProOPOSITION. If R is a Gel’'fand semiring then the set I of all small
elements of R is an ideal of R. If R is a simple semiring and 1 # d € R then the
set I of all d-small elements of R is a strong ideal of R.

Proor. If R is a Gel’fand semiring then clearly I NU(R) = @ and so I # R.
Suppose that a,a’ € I and that b is an element of R satisfying a + o’ + b € U(R).
By the smallness of a, we have a’ + b € U(R) and then, by the smallness of a’,
we have b € U(R). Thus a + @’ € I. Now assume that a € I and that r and b
are elements of R satisfying the condition that ra + b = ¢ € U(R). Since R is a
Gel’fand semiring, we know by Proposition 4.50 that a + 1 and 7 + ¢ belong to
U(R). Therefore (r+c)a+b=c(a+1) € U(R) andso a+(r+c)~tc(a+1) € U(R).
Since a is small, this implies that (r+¢)~1bis in U(R) and so b € U(R). Therefore
ra € I. A similar argument shows that ar € I and so I is an ideal of R.

Now assume that R is simple. In this case, as we observed previously, U(R) =
{1}. Ifa,a’ € Isand a+a’ +b=1thend+a’+b=1and sod+d+b=1. Since
simple semirings are additively idempotent, this implies that d+ b = 1. If a € I
and ¢ € Rsatisfy ca+b=1thena+b=(c+1l)a+b=cat+a+b=a+1=1
and so d + b = 1. Thus ca € I;. Similarly, ac € I;. Since 1 # d we see that 1 ¢ I,
so I; is an ideal of R. Finally, we note that if a +a’ € I; and a + b = 1 then
a+a +b=1+ad"=1sod+b=1. Thus a € I;. Similarly, a’ € I;, showing that
I; is strong. 0O

(6.49) CoroLLARY. IfI is an ideal of a simple semiring R then I' = Ugerly Is
an ideal of R which is I-small in the semiring ideal( R).

Proor. Note first that I’ # Rsince 1 ¢ I, for each d € I. Suppose that a,a’ € I
and that d and d’ are elements of I satisfying a € I and a’ € I}. f a+a’+b=1
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then d+a’+b=1and so d+d'+b = 1, proving that a+a’ € Ijy4 C I'. Moreover,
if » € R then ra and ar both belong to I; and hence to I’. Thus I’ is an ideal of
R. Now suppose that H is an ideal of R satisfying I’ + H = R. Then there exist
elements a of I’ and b of H satisfying a + b = 1. Since a € I for some d € I we
have d + b = 1, proving that I + H = R. Thus I’ is I-small in ideal(R). O

A [left, right] ideal I of a semiring R defines an equivalence relation =y on R,
called the Bourne relation, given by » =; 7’ if and only if there exist elements a
and a’ of I satisfying r +a = r’ + a’. Note that if » =7 ' and s =; s’ in R then
r+s=rr +s. If Iisan ideal, then this also implies rs = r's’. We denote the
set of all equivalence classes of elements of R under this relation by R/I and will
denote the equivalence class of an element r of R by r/I. Note that if I C H are
[left, right] ideals of R then r =y r' surely implies that » =g 7’ for all elements r
and 7’ of R. If I is additively idempotent then r =; 7’ if and only if there exists an
element b € I such that » + b = v’ + b. Indeed, if » =7 r’ then there exist elements
a and @’ of I satisfyingr+a =r'+a’ andsor+(a+a') = (' +a')+a’ =r' +d' =
r+a=r+a+a=r"+(a+a).

Similarly, I defines an equivalence relation [=]r on R, called the Iizuka relation,
given by r [=]; v’ if and only if there exist elements a and a’ of I and an element
s of R satisfying r + a+ s = ' + a’ + 5. Note that if »[=];r’ and s[=];s’ in R
then r + s[=];r' + s’ and, if I is an ideal, rs[=];7's’. Also note that if » =1 r’ then
surely r[=]rr’. We denote the set of all equivalence classes of elements of R under
this relation by R[/]I and will denote the equivalence class of an element » of R by
r[/]I. Again, if I C H are [left, right] ideals of R then r[=];r’ surely implies that
r[=]gr’ for all elements r and ' of R.

If » and r’ are elements of a semiring R and if I is an ideal of R then, as noted,
r =7 v’ implies that r[=];7’. The converse does not necessarily hold. If R is a yoked
semiring, it is easy to see that the converse holds for those ideals I containing 7{ R).

(6.50) PROPOSITION. If I is a left ideal of a semiring R then 0/I is the sub-
tractive closure of I in R.

ProoF. If r,r’ € 0/I then there exist elements a, a’,b,b’ of I satisfying r + a =
0+band ' +a = 0+¥. Therefore (r+7')+(a+a’) =0+ (b+¥)sor+r' €0/1.
If " € R then r'r+ra = 0+r"bso r'r € 0/I. Similarly, r7” € 0/I. Thus 0/ = R
or 0/ is an ideal of R, which clearly contains I.

If » and 7 + ' belong to 0/I then there exist elements a,a’, b, of I such that
r+a=0+band (r+r')+ad =0+ s0o 0+ () +a)=(r+r)+a+ad =r' +b+d,
which proves that 7/ € 0/I. Therefore the left ideal 0/1 is subtractive.

Finally, let H be a subtractive ideal of R containing I. If » € 0/I then there
exist elements a and b of I (and hence of H) such that r+ e =0+b € H and so
re H. Thus 0/ICH. O

Thus we see, in particular, that an ideal I of a semiring R is subtractive if and
only if I = 0/I. We can define operations & on the set S of all subtractive ideals
on Rby setting I& H =0/(I+H) and I®H = 0/IH, and it is easily verified that
(5,®,0) is itself a semiring.

(6.51) CoROLLARY. A semiring R is left austere if and only if foreach0 # r € R
there exist a,b € R satisfying ar + 1 = br.
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PROOF. Assume that R is left austere and let 0 # r € R. Then 0/Rr = R and
so, by definition, the given elements a and b exist. Conversely, assume the stated
condition holds. If I is a nonzero subtractive left ideal of R and 0 # 7 € I then there
exist elements a and b of R satisfying ar+1 = br € I and so, by subtractiveness, we
have 1 € I. Thus I = R, which is a contradiction, proving that R is left austere. 0O

(6.52) PropPoSITION. If I and H are left ideals of a semiring R then we have
0/R(IUH)=0/R(0/IU0/H).

ProoF. Since I C 0/I and H C 0/H we have R(IUH) C R(0/IU0/H) and
so O/R(IUH) CO0/R(0/IU0/H). To show the reverse containment it suffices, by
Proposition 6.50, to show that the subtractive left ideal 0/ R(I U H) of R contains
R(0/IU0/H). Indeed, if a € 0/I then a belongs to every subtractive left ideal of
R containing I and hence, in particular, to 0/R(I U H) Thus 0/1 C 0/R(I U H).
Similarly 0/H C 0/R(IU H) and so, since 0/R(I U H) is a left ideal of R, we have
0/R(IUH)CO0/R(IUH), as desired. O

(6.53) PROPOSITION. A cancellative austere yoked semiring R Is a division
semiring.

PRrROOF. Let r be a nonzero element of R. By Corollary 6.51, there exist elements
a and b of R satisfying ar + 1 = br. Since R is a yoked semiring, there exists an
element ¢ of R satisfyinga =b+cora+c=5. fa=b+cthen ar =br+cr =
ar+1+c¢rso 0 =1+ cr since R is cancellative. Thus 1 € V(R), proving that R
is in fact a ring. Since every left ideal of a ring is subtractive, we conclude that
R has no nonzero left ideals and this suffices to show that R is a division ring. If
a+c=0bthenar+cr=>br =ar+1 and so cr = 1. Then ¢ # 0 and so a similar
argument shows that either R is a ring (in which case we are done) or there exists
an element ¢ of R satisfying ¢/c = 1. But then ¢/ = ¢/(er) = (¢’¢)r = », proving
that r € U(R) with ¢ = r=1. Thus every nonzero element of R is a uriz, proving
that R is a division semiring. O

(6.54) PROPOSITION. If I is a left ideal of a semiring R then the relations =;
and =g coincide. Similarly, the relations [=]; and [=]o/; coincide.

PROOF. Let r and 7’ be elements of R. Since I C 0/, we note that r = '
implies that r =q,; #'. Conversely, assume that r =g,; r’. Then there exist elements
b and b of 0/7 satisfying » + b = r’ 4+ &’. Moreover, since b and ¥’ belong to 0/1,
there exist elements a and a’ of I satisfying b + @ and & + @’ both belong to I.
Hence b +a+a’ and &' +a+a’ belong to I and r+ (b+a+a') =+ + (V' +a+a’),
proving that r = 7.

The second part is proven similarly. O

(6.55) PrOPOSITION. Let R be a plain yoked semiring with descending chain
condition on subtractive left ideals and having no nonzero nilpotent elements. Then
every subtractive left ideal of R is of the form Re for some e € I*(R).

Proor. By Proposition 4.22, we note that R is cancellative. Let I be a sub-
tractive left ideal of R. If I = {0} then I = R0 and we are done. Hence' we can
assume that I # {0}. By the descending chain condition, I contains a minimal
nonzero subtractive left ideal H. If 0 # ¢ € H then ¢? # 0 and so Hc is a nonzero
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left ideal of R, the subtractive closure of which is H. Hence ¢ € 0/Hc and so
there exist elements h, k' € H satisfying hc = ¢ + h’c. Since R is a yoked semiring,
there exists an element r of R satisfying r + h = A’ or r + B’ = h. Since H is
subtractive, we in fact have r € H. If » + h’ = h then ¢+ h’c = hc¢ = rc¢ + h’c and
soc=rc. f r4+h=~h then re+c+ h'c =rc+ hc = h'csorc+c=0. Hence
¢c=c+r(c+rc) = c+rc+ric = ric. In either case, there exists a nonzero element
e of H satisfying ¢ = ec.

Since R is a yoked semiring, there exists an element d of R satisfying d +e% = e
or 2 = d + e and, again, we must have d € H. By Example 6.10, the left ideal
(0 : ¢) of R is subtractive and hence so is H N (0 : ¢). Since ¢? # 0, we see that
HN(0:c) C H and so, by the minimality of H, we have HN (0 : ¢) = {0}. If
d+e? = e then de+ec = de+e?c = ecso dc = 0 and hence d € HN(0 : ¢), implying
that d = 0. Similarly, if e2 = d + e then d = 0. Thus e = ¢ € I*(R)N H, and so
I*(RyNn H # {0}.

We now claim that there exists an element f of INI*(R) satisfying the condition
IN(0: f)={0}. Indeed, for each e € INI*(R) let M, = IN(0:¢). Thisis a
subtractive left ideal of R and so, by the descending chain condition, we can pick
an element f of I N I*(R) such that M; is minimal. Suppose that M; # {0}.
Then, by the above, M; contains an idempotent element g. Moreover, gf = 0 since
g € My. Since R is a yoked semiring, there exists an element H of R satisfying
h+ fg=9g+ for fg=h+g+ f. Again, since I is subtractive we must in fact
have h € I. In the first case, we have hf + fgf = gf + f2, which implies that
hf = f?2 = f. Moreover, hg + fg> = g*> + fg so hg = g. Similarly gh = g. Thus
h?+ fg =h>+hfg=hg+hf =g+ f=h+ fg and so h2 = h. Furthermore,
My C Mj;. But this inclusion is proper since ¢ € My \ M}, contradicting the
minimality of M;. Hence we must have fg = h+g+ f. Set k = hfg3+ g+ f. Then
k* = hfghfg+hfg+hfof +ghfg+g+gf+fhfg+fg+f. Weknow that gf =0
and so 0 = gfg = gh+ g*>+ gf = gh + g, while fg = f?g = fh -+ fg + f implies
that fh+ f = 0. This, in turn, implies that 0 = ghf +gf = ghf. Thus k* = k and
so k€ I*(R)NI. If r € My we have 7k = 0 and hence

rg+rf=rhfhg+rhfg+rg+rf=rhfhg

sorf =rgf+rf2 = rhfhgf = 0. Thus r € M; and hence M; C M; where,
again, this containment is proper. Thus we have a contradiction in this situation
too, implying that M; = {0} and establishing the claim.

If a € I then there exists an element b of I satisfyingb+a=af ora=15b+af.
If b+ a = af then af = af? = bf +af so bf = 0 and hence b € My, yielding
b = 0. The other case yields the same result. Thus a = af for all a € I. Since
Rf CI=1If CRf, we then have I = Rf, as desired. O

A [left, right] ideal of a semiring R is maximal if and only if it is not properly
contained in any other [left, right] ideal of R.

(6.56) ExAMPLE. [Slowikowski & Zawadowski, 1955] Let X be a bicompact
Hausdorff topological space and let R be the commutative semiring of all continuous
functions from X to the semiring R*. Then for each z € X, theset {f € R | f(z) =
0} is a maximal ideal of R and all maximal ideals of R are of this form.
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(6.57) ExXaMPLE. [Sancho de Salas, 1987] The set R of complements of
bounded open sets in R” is a basis for the usual topology on R™ and so, as we
saw in Example 1.5, (R,N,U) is a semiring. This semiring has a unique maximal

ideal R\ U(R).

(6.58) ExaMPLE. [Alarcén & Anderson, 1994a] If ¢ is an indeterminate then
the commutative cancellative semiring B* [¢] has a unique maximal ideal consisting
of all polynomials of degree not equal to 0.

(6.59) ProPOSITION. Every [left, right] ideal of a semiring R Is contained in a
maximal [left, right] ideal of R.

PROOF. Let I be a [left, right] ideal of R. If I is maximal we are done. If not,
there is a nonempty set C of [left, right] ideals of R properly containing I. If C’
is a linearly-ordered subset of C then UC’ is again a [left, right] ideal of R and so
belongs to C. By Zorn’s Lemma, we then see that C has a maximal element. O

(6.60) ExaMPLE. The set N\ {1} is a maximal ideal of the semiring N which
contains all ideals of N. Note that this ideal is not principal. Similarly, if A is the
commutative semiring defined in Example 1.9 then A \ {[Z]} is a maximal ideal of
A which contains all ideals of A. See [Feigelstock, 1980] for details.

As an immediate consequence of Proposition 6.59 we see that an element a of a
semiring R belongs to every maximal ideal of R if and only if (a) is a small element
of the semiring ideal( R). Indeed, if a belongs to every maximal ideal of R and I is
an arbitrary ideal of R then, by Proposition 6.59, I is contained in a maximal ideal
H of R and so (a) + I C H C R. Conversely, if (a) is a small element of ideal(R)
and H is a maximal ideal of R then (a)+ H # R so (a) + H = H, whence a € H.

(6.61) PrROPOSITION. For an element a of a semiring R thae following conditions
are equivalent:

(1) a € U(R);

(2) a belongs to no maximal one-sided ideal of R.

PROOF. Assume that ¢ € U(R) and that H is a maximal left ideal of R. If
a € H then 1 = a~'a € H, which is a contradiction. Thus a ¢ H. Similarly,
a ¢ H for any maximal right ideal H of R. Conversely, assume that a belongs to
no maximal one-sided ideal of R. By Proposition 6.59, this implies that Ra is not
a left 1deal of R and so Ra = R. Similarly eR = R. Thus there exist elements b
and ¢ of R satisfying ba = 1 = ac. But then b = b1 = b(ac) = (ba)e = lc = ¢ so
a€U(R)andb=a"1'. O

(6.62) ProPOSITION. The following conditions on a semiring R are equivalent:

(1) R is a Gel’fand semiring;
(2) Every maximal one-sided ideal of R is strong.

PrROOF. (1) = (2): Suppose that I is a maximal left ideal of R and that r and 7/
are elements of R satisfyingr +r' € I and r ¢ I. Then H = {a+br|a € I,b € R}
is a subset of R closed under addition and under multiplication from the left by
arbitrary elements of R. By the maximality of I, we see that H is not an ideal of R



82 CHAPTER 6

and so we must have H = R. Therefore, in particular, there exist elements a of T
and b of R satisfying a+ br = 1. Therefore 1 +br' = a+br+br' = a+b(r+r') €1,
contradicting the fact that, by (1), 1 + br' € U(R). Thus we see that r 4+ ' € [
implies that » and 7 both belong to I. The proof for maximal right ideals is similar.

(2) = (1): By (2) we see that if » € R then 1+ r ¢ I for any maximal left ideal
or maximal right ideal of R. By Proposition 6.61, we conclude that 1+ r € U(R)
for each element r of R. O

(6.63) PROPOSITION. Let R be a Gel’fand ring.

(1) An element a of R is small if and only if it belongs to every maximal one-
sided 1deal of R;

(2) If R is simple and 1 # d € R then an element a of R is d-small if and only
if it belongs to every maximal one-sided left ideal of R containing d.

ProoF. (1) Assume that a is a small element of R and let H be a maximal left
ideal of R to which a does not belong. Then Ra + H = R and so there exist r € R
and h € H satisfying ra + h = 1. By Proposition 6.48, ra is also small in R and so
h € U(R). Therefore 1 = h='h € H, which is a contradiction. Thus a belongs to
every maximal left ideal of R. Similarly, it belongs to every maximal right ideal of
R.

Conversely, assume that a belongs to every maximal one-sided ideal of R. Let
b € R satisfy the condition that a+b = ¢ € U(R). If Rb is a left ideal of R then, by
Proposition 6.59, it is contained in a maximal left ideal H of R. But then a € H
and so ¢ = a4 b € H, which is a contradiction since ¢ € U(R). Thus we must have
Rb = R. Similarly, bR = R and so there exist elements d and d’ of R satisfying
bd = d’'b = 1. But then d = (d'b)d = d'(bd) = d’ and so b € U(R), proving that a is
small in R.

(2) Now assume that R is simple and that 1 # d € R. Let a be a d-small element
of R and assume that « ¢ H, where H is a maximal l»{t ideal of R containing d.
Then Ra+ H = R and so there exists an element r of R satisfying ra + h = 1.
Since a is d-small, so is ra by Proposition 6.48. Thus d+h =1 andso 1 € H,
which is a contradiction. Therefore a must be an element of H.

Conversely, assume that a is an element of R which belongs to every maximal
left ideal of R containing d. Let b be an element of R satisfying a+b = 1. If R(d+b)
1s a left ideal of R then it is contained in a maximal left ideal H of R. Moreover,
by Proposition 6.62, H is strong and so d,b € H. By the choice of a, this implies
that « € H and so 1 = a + b € H, which is a contradiction. Hence we must have
R(d+b) = R. In particular, there exists an element r of R satisfying r(d +b) = 1.
Then, by Proposition 4.3, we have 1 =1+d+b=(rd+d)+ (rb+b) =d + b and
so a is d-small in R. O

A [left, right] ideal I # {0} of a semiring R is minimal if and only if it does not
contain any [left, right] ideal of R other than itself and 0.

(6.64) ProPOSITION. If H is a minimal left ideal of a semiring R and if 0 #
e € I*(R)N H then eH is a division semiring with multiplicative identity e.

Proor. Clearly (eH,+) is a commutative monoid and (eH,-) is a semigroup,
and clearly multiplication in eH distributes over addition. Since He is a nonzero
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left ideal of R contained in H, we must have He = H and so for each element a of
H there exists an element b of H satisfying a = be. Hence (ea)e = (ebe)e = e(be) =
ea = e(ea), showing that e is the identity of (eH, ). Thus eH is a semiring.

If 0 # ea € eH then ea = e?a € Hea and so Hea is a nonzero left ideal of R
contained in H. Thus H = Hea and so eH = eHea. In particular, there exists an
element d of H satisfying (ed)(ea) = e. Similarly, there exists an element H of H
satisfying (eh)(ed) = e and so eh = ehe = eh(edea) = (ehed)ea = ea. Therefore
eH is a division semiring. O

(6.65) ProrosITION. If I is a minimal left ideal of R and a € R then Ia is a
left ideal of R which is either minimal or {0}.

ProoF. Clearly Ia is a left ideal of R. Assume that it is not equal to {0} and
that it properly contains a left ideal H of R not equal to {0}. Then H' = {r €
I | ra € H} is a left ideal of R properly contained in I and not equal to {0},
contradicting the minimality of I. Thus I'a must be minimal. O

(6.66) PrOPOSITION. If H is an ideal of a semiring R containing a minimal left
ideal then the sum of all minimal left ideals of R contained in H is an ideal of R.

ProOF. Let H' be the sum of all minimal left ideals of R contained in H. Then
H' is a left ideal of R. If a € R and if I is a minimal left ideal of R contained in
H, then Ie C H and so, by Proposition 6.65, Ia C H'. Thus H'a C H' for each
a € R, proving that H' is an ideal of R. O

A nonempty subset D of a semiring R is a coideal if and only if it is closed
under multiplication and satisfies the condition that d + » € D whenever d € D
and r € R.

(6.67) EXAMPLE. If A is a nonempty subset ¢f a semiring R then the set F(A)
of all elements of R of the form a; - ...- a, + 7. where the a; belong to A and
T € R, is a coideal of R containing R and, in fact, is the unique smallest coideal of
R containing A.

A zerosumfree semiring R must contain a maximal proper coideal. Indeed, let
C be the set of all coideals of R not containing 0. This set is nonempty since it
contains F'({1}) by zerofreeness. The set C is closed under taking unions of chains,
and so the result follows using Zorn’s Lemma.



7. PRIME AND SEMIPRIME
IDEALS IN SEMIRINGS

As in the case of rings, an ideal I of a semiring R is prime if and only if whenever
HK C I, for ideals H and K of R, we must have either H C I or K C I. The set
of all prime ideals of a semiring R is called the spectrum of R and will be denoted
by spec(R).

(7.1) ExaMPLE. [Feigelstock, 1980] Let A be the commutative semiring defined
in Example 1.9. Then {[G] | G a torsion abelian group} is a prime subtractive
ideal of A. Moreover, for each prime integer p, {{G] | the torsion subgroup of G is
p-divisible} is a prime subtractive ideal of A.

(7.2) ExaMPLE. [Sancho de Salas & Sancho de Salas, 1989] Let B be the family
of all subsets of I which are finite unions of singletons and closed subintervals of I.
Then B is a basis for the closed sets of the usual topology on I and so (B,U,N)
is a commutative simple semiring. Refer to Example 1.5 for details. The maximal
prime ideals of B are those of the form I, = {b € B | r € b} for each r € I. The
other prime ideals of B are of the form H, = {b € B | [r,7+ €] C b for some e > 0}
for each 1 # r € L or of the form K, = {b € B | [re,r] C b for some e > 0} for each
0#£rel.

(7.3) ExaMPLE. [Alarcén & Anderson, 1994a] For each A C N\ {0} let I(A) be
the ideal of B{X] generated by X and {1+ X" | h € A}. A necessary and sufficient
condition for I4 to be a prime ideal of B[X] is that N\ A be an ideal of N. In
particular, if A, = N\ (2") for each nonegative integer n then

(X) = I(Ao) C I(Ay) C ...

is an infinite ascending chain of prime ideals of B[X].
The following result generalizes the case for rings.

(7.4) ProPosITION. The following conditions on an ideal I of a semiring R are
equivalent:

(1) I is prime;
J. S. Golan, Semirings and their Applications
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(2) {arb|re R}CIifandonlyifa€el orbel;
(3) Ifa and b are elements of R satisfying (a)(b) C I then eithera € I orb e I.

Proor. (1) = (2): Let a,b € Rand set I’ = {arb|r € R}. Ifa€ Torbe I
then I’ C I since I is an ideal. Conversely, let H = (a) and K = (). These are
ideals of R and I’ C HK. Indeed, HK is clearly contained in any ideal which
contains I'. Therefore I’ C I implies, by (1), that H C T or K CI. Sincea € H
and b € K, this implies that a € T or b € I.

(2) =(1): Let H and K be ideals of R satisfying HK C I. Assume that H € I
and let a € H \ I. Then for each b € K we have {arb|r € R} C HK C I and so,
by (2), we must have b € I. Thus K C I.

(2) = (3): This is immediate. O

(7.5) CorROLLARY. If a and b are elements of a semiring R then the following
conditions on a prime ideal I of R are equivalent:

(1) Ifabe I thena€lorbeI;
(2) Ifab €1 then ba € I.

Proor. Clearly ((1) implies (2). Conversely, assume (2). If ab € I then abr € I
for all » € R. By (2), this implies that bra € I for all r € R and so, by Proposition
7.4, we observe that a € Torbe I. O

(7.6) COROLLARY. An ideal I of a commutative semiring R is prime if and only
if ab € I implies that a € I or b € I for all elements a and b of R.

Proor. Note that, by commutativity, ab € I if and only if arb € I for all r € R.
The result then follows from Proposition 7.4. O

(7.7) EXaAMPLE. [Alarcén & Anderson, 1994a] The ideal I = N\ {1} of N is
prime. However, if # is an indeterminate then the set I[t] of all elements of N[¢]
with coefficients in I is not prime, since (2 + t)(1 + 3t) = 2 + 7t + 3t2 € I[t] while
2+41t,14 3t ¢ I[t]. Note that I is semisubtractive but not subtractive.

(7.8) CoroLLARY. Every prime ideal of a semiring R is semisubtractive.

Proor. Let I be a prime ideal of R and let a € INV(R). If r € R then
(—a)r(—a) + ar(—a) = 0 and so (—a)r(—a) = —[ar(—a)]. On the other hand,
ara+ ar(—a) = 0 and so ara = —[ar(—a)]. By the uniqueness of additive inverses,
this implies that (—a)r(—a) = ara € I for all r € R and so, by Proposition 7.4,
—a€l. O

(7.9) ExampLE. If R is a bounded distributive lattice then both (R, V, A) and
(R,A,V) are commutative semirings. Moreover, an easy application of Corollary
7.6 shows that I is a prime ideal of (R, V, A) if and only if R\ I is a prime ideal of
(R, A,V). Thus there exists a bijective order-reversing correspondence between the
spectra of these two semirings, given by complementation.

A nonempty subset A of a semiring R is an m-system if and only if a,b € A
implies that there exists an element r of R such that arb € A.
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(7.10) EXAMPLE. Since we assume that any semiring R has a multiplicative
identity, any submonoid of (R,-) is an m-system. In particular, if R is a semiring
then U(R), C(R) and I*(R) N C(R) are m-systems. So, if R is a commutative
semiring then [*(R) is an m-system.

We now note the following immediate consequence of Proposition 7.4.

(7.11) CorOLLARY. An ideal I of a semiring R is prime if and only if R\ I is
an m-system.

(7.12) PrOPOSITION. If A is an m-system of elements of a semiring R and if
I is an ideal of R maximal among all those ideals of R disjoint from A then I is
prime.

PrOOF. Let H, K be ideals of R not contained in I but satisfying HK C I.
Then H + I and K + I properly contain I and so have nonempty intersection with
A. In particular, there exist finite subsets {ai,...,an,b1,...,0:} of I, {h1,..., hn}
of H, and {ki,...,k:} of K such that a = Y.  hi+a; € AN(H +I) and
b= Z;’:l ki +b; € AN(K +1I). Since A is an m-system, there exists an element
r of R such that arb € A. But

t n n
arb =" 1> (airb; + hirb;) + Y (airk; + hirk;)| € [+ HK C 1,
j=1 Li=1 i=1

contradicting the hypothesis that I N A = &. Thus [ is prime. O

(7.13) COoROLLARY. Any maximal ideal of a semiring R is prime.

Proor. This is a consequence of Proposition 7.12, Example 7.10, and the fact
that an ideal of R is maximal if and only if it is maximal among all those ideals of
R disjoint from U(R). O

(7.14) PropPosITION. Every prime ideal I of a semiring R contains a minimal
prime ideal.

PROOF. Let {H; | i € 2} be a descending chain of prime ideals of R (in other
words, 7 > j in Q if and only if H; C H;) and set H = NM;cqH;. Then H is an ideal
of R. Let a and b be elements of R satisfying {arb|r € R} C H and suppose that
a ¢ H. Then there exists an element % of Q such that a ¢ Hy. By Proposition
7.4, this implies that b € Hy and so b € H; for all { < k. Moreover, if ¢ > k then
H; C Hi and so a ¢ H;. Again, by Proposition 7.4 this implies that b € H;. Thus
b€ H; for all i in Q, proving that b € H. Thus, by Proposition 7.4, H is prime. The
result now follows from applying Zorn’s Lemma to the dual of the partially-ordered
set of all prime ideals of R contained in I. O

(7.15) ProPOSITION. If 1 is an ideal of a semiring R and if H is an ideal of R
minimal among those ideals of R properly containing I then K = {r € R |rH C I}
is a prime ideal of R.

ProOOF. It is straightforward to verify that K is an ideal of R. Let K’ and K"
be ideals of R satisfying K'K” C K and assume that K" ¢ K. We must show
that K’ C K. Indeed, since K'K” C K and K" € K we have K'K"H C I and
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K"H ¢ I. Therefore, I C I + K”H C H and so, by the minimality of H, we
have I + K”H = H. Therefore K'I + K'K"H = K'H C H and so K' C K, as
desired. O

(7.16) ProprosiTION. If I is a subtractive ideal of a commutative semiring R
which is maximal in the set of all ideals of R which are not finitely generated, then
I is prime.

Proor. Assume that a,b € R\ I satisfy ab € I. Then I + (a) and I + (b)
are ideals of R properly containing I and so both are finitely generated, say I +
(a¢) = ({dy + ria,...,dy + rpa}) and I + (b) = ({d} + r1b,...,d} + 7}.b}). The
set H = {r € R| ra € I} is an ideal of R. Moreover, if 1 < j < k we note that
(dj +rib)a =dja+riab€ H and so I C I +(b) C H. By the maximality of 7, this
implies that H is finitely-generated, say H = ({e1,...,em}). If ¢ € I then there
exist elements s1,...,s, of R such that

n

c= Z(d’ + ria) = zn: s;d; + zn: §;7r;a.
i=1 i=1

i=1

Since I is subtractive, Y .-, s;r;a € I and so Y., s;ri € H. Thus there exist
t1,...1p In R such that Y0 siri = Yoi- tie; and ¢ = Yo s;di + Yoiv, tiesa.
Therefore [ is generated by {dy, ...,dn,e1qa,...,ena}, contradicting the assumption
that I is not finitely-generated. Hence ab € I implies that a € I or b € I, and so
is prime. [

(7.17) ProrosITION. If R is a commutative semiring every ideal of which is
subtractive, then R Is noetherian if and only if every prime ideal of R is finitely
generated.

Proor. If R is noetherian then every prime ideal of R is finitely generated by
Proposition 6.16. Conversely, assume that this condition holds and let C be the set
of all ideals of R which are not finitely generated. By Proposition 6.16, we must
show that C is empty. Assume that this is not the case and let {I; | i € 2} be a
chain of elements of C. Then I = U;jeql; is an ideal of R which cannot be finitely
generated for, if it were, it would equal one of the I;, contrary to the assumption
that none of the I; is finitely generated. Therefore, by Zorn’s Lemma, C has a
maximal element Iy. By Proposition 7.16, Iy is prime, contradicting our hypothesis
that all prime ideals of R are finitely-generated. Therefore R is noetherian. 0O

(7.18) ProPOSITION. Let I be an ideal of a commutative semiring R and let t
be an indeterminate over R. Then I[t] is a prime ideal of R[t] if and only if I is a
subtractive prime ideal of R.

ProOOF. Assume that I[t] is a prime ideal of R[t] and let a and b be elements
of R satisfying ab € I. Then a € I[{JjN Rorb € I[tJN R But I[t) N R = I and so
we have shown that I is prime. Now suppose that a,b € R are elements satisfying
a+beIandac€l. Then b(a+b),a?+b(a+b),abe I and so

(bt + a)[(a + b)t + b] = (ab + b2)t2 + (b2 + a® + ab)t + ab € I[t].
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Since I[t] is prime, this implies that either bt + a € I[t] or (a + b)t + b € I[t], and
either of these implies that b € I. Thus I is subtractive as well.

Conversely, assume that I is a subtractive prime ideal of R and let f,g € R[t]
with deg(f) = n and deg(g) = k. Suppose that fg € I[t] and f ¢ I[t]. Then there
is some index h such that f(h) ¢ I. If f(0) ¢ I then (fg)(0) = f(0)g(0) € I implies
that g(0) € I. Similarly, (fg)(1) = f(0)g(1) + f(1)g(0) € I and f(1)g(0) € I so,
by subtractiveness, f(0)g(1) € I. Since f(0) ¢ I, this implies that g(1) € I. Now
assume inductively that we have shown that g(0),...,g(u) € I for some u < k.
Then

u+1 u+1
(fo)u+1) =3 fli)gu+1-i) = (Zf )gu+1—z))+f()(u+1)61

i=1

with ZUH (H)g(u+1—1¢) € I and so f(0)g(u + 1) € I, proving that g(u+ 1) € I.
Thus ¢ € I[t].
Now suppose that f(0),..., f(m — 1) € I but f(m) ¢ I. Then

(Fo)om) = 3 Flidg(m — i) + Fm)g(0) € 1

and so f(m)g(0) € I. Also,

s—1

(f9)(m +1) =" f(i)g(m + 1 —3) + f(m)g(1) + f(m + 1)g(0)

1=0

which implies, as before, g(1) € I. An induction argument similar tc the one in the
previous paragraph now shows that g € I[t]. O

(7.19) ExamMpPLE. The structure of the prime ideals of B[t], where ¢ is an in-
determinate, is studied in detail by La Grassa, [1995]. In particular, she notes
that every nonzero prime ideal of Bt] either contains ¢ or 1+ ¢ but that the ideal
I = (1 +1), itself, is not prime since 1 + ¢ + 3 and 14 t% + ¢3 do not belong to I
whereas (1 +t+3)(1+2+t3) =1+ )6 € I.

For each ideal I of a semiring R let V(I) = {H € spec(R) | I C H} and
(1) = spec(R) \ V(I). Also set V(R) = @ and D(R) = spec(R). It is easy to see
that V(I)UV(I') = V(II') for all ideals I and I’ of R and NkeaV (1) = V(Y 4cq Ir)
for every set {I; | k € Q} of ideals of R. Therefore, Zar(R) = {V(I)| I € zdeal(R)}
is the family of closed sets for a topology on spec(R), called the Zariski topology.
As a consequence of Corollary 7.13, we note that the set mspec(R) of all maximal
ideals of a semiring R is contained in spec(R) and so the Zariski topology on
spec(R) induces a topology on mspec(R). This topology is studied, for the case of
commutative semirings, in [Iséki & Miyanaga, 1956a).

If a € R we will write V(a) and D{a) instead of V((a)) and D((a)) respectively.
Note that {{a) | a € R} is a base of open sets for the Zariski topology. Indeed, if
I is an ideal of R then V(I) =N{V(a)|a € I}.
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(7.20) ProrosITION. If R is a semiring then spec(R), topologized with the
Zariski topology, is a quasicompact Ty-space.

Proor. We first note that spec(R) is a Tp-space. Indeed, if I € I’ are elements
of spec(R) then D(I) is an open neighborhood of I’ not containing I.

It is also quasicompact. Indeed, let {Ix | k¥ € Q} be a family of ideals of R
satisfying @ = MreaV (k) = V(3 peq k). I = D icqlx # R then, by Zorn’s
Lemma, [ is contained in a maximal ideal of R which, by Corollary 7.13, is prime
and so belongs to V(I). Since this is impossible, we must have I = R and so
1 € I. Hence there exists a finite subset A of  such that 1 € ZkeA I and so
g = ﬂ,‘EAV(Ik). O

An ideal I of a semiring R is semiprime if and only if, for any ideal H of R,
we have H? C I only when H C I. Prime ideals are surely semiprime.

(7.21) ProposITION. The following conditions on an ideal I of a semiring R
are equivalent:

(1) I is semiprime;

(2) {ara|r € R}CIifandonlyifacl.

PROOF. (1) = (2): Let a € Rand set I' = {ara|r € R}. fa€ I then I’ C I
since I is an ideal. Conversely, assume that I’ C I and let H be the set of all finite
sums of elements of R of the form rar’, where r, 7’ € R. Then H is an ideal of R and
H? consists of all finite sums of elements of the form rar”ar’, where », 7/, 7" € R.
In particular, I’ C H and H? is contained in any ideal of R which contains I’ and
thus H2 C I. By (1), this implies that H C I and so I’ C I.

(2) = (1): Let H be an ideal of R satisfying H?> C I and let a € H. Then
{ara|r € RC H?} C I and so, by (2), we must have a € I. Thus H CI. O

(7.22) CorOLLARY. Every semiprime ideal of a semiring ¥ is semisubtractive.
Proor. The proof is the same as that of Corollary 7.8. [}

Another way of stating Proposition 7.21 is the following: a nonempty subset A of
a semiring R is a p-system if and only if a € A implies that there exists an element
r of R such that ara € A. Then we have the following immediate consequence of
Proposition 7.21.

(7.23) CoROLLARY. An ideal I of a semiring R is semiprime if and only if R\ I
1s a p-system.

Any m-system of elements of a semiring R is a p-system. Also, it is clear that the
union of p-systems is again a p-system. Conversely, we have the following result.

(7.24) PrROPOSITION. A nonempty subset A of a semiring R is a p-system if
and only if it i1s the union of m-systems.

ProoOF. From the preceding remarks, we note that the union of m-systems is
certainly a p-system. Conversely, let A be a p-system of elements of R and let
ap € A. Then there exists an element ry € R such that a; = agroag € A. Similarly,
there exists an element r; € R such that as = a;ria; € A. Continue in this manner
to define the subset B = {ao, a1,az,...} of A. It is easily seen that B is in fact an
m-system, containing ap. Thus A is the union of m-systems. U
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(7.25) PROPOSITION. An ideal I of a semiring R is semiprime if and only if
I=nV(I).

Proor. Let I be a semiprime ideal of a semiring R and let A = R\ I. Then,
by Corollary 7.23, A is a p-system and so, by Proposition 7.24, A = N;en B;, where
each B; is an m-system contained in A. Since I N B; = @ for each i € Q, we note
by Zorn’s Lemma that I is contained in an ideal K; of R maximal with respect
to being disjoint from B;. By Proposition 7.12, each such K; is prime. Therefore
I CNjeaKi CNiea(R\ B;) = I, and so I surely equals the intersection NV(I) of
all prime ideals containing it.

Conversely, assume that 7 = NV(I). Then R\ I =n{R\ H | H € V(I)}. By
Corollary 7.11, each R\ H is an m-system and so, by Proposition 7.24, R\ [ is a
p-system. Therefore, by Corollary 7.23, I is a semiprime ideal of R. [

As a consequence of Proposition 7.25 we see that every ideal I of a semiring R
is contained in a unique minimal semiprime ideal of R, namely NV(I). If I is an
ideal of a semiring R then the semiprime ideal NV(I) of R is denoted by v/I. The
ideal 4/(0) is the lower nil radical of R.

(7.26) EXAMPLE. Let R be a semiring. If r € Ng(R) has index of nilpotency
n then r® = 0 € [ for every prime ideal I of R and so, by primeness, r € I. Thus
No(R) C +/(0). Conversely, assume that r ¢ No(R). Then A = {r* | i € N} is
an m-system not containing 0 so (0) N A = &. Then there exists an ideal I of R
maximal among all ideals disjoint from A and, by Proposition 7.12, I is prime and

r ¢ I. Therefore No(R) = +/(0).

For an ideal I of R we see that /I is precisely the set of all elements r € R such
that every m-system in R which contains » has a nonempty intersection with I.

{7.27) ProPosITION. If I and H are ideals of a semiring R then:

(1) I C H implies that /I C VH;

(2) VVI=VT;

3) VI+ H=+VI

ProOF. (1) and (2) are immediate consequences of the deﬁnition. Moreover, by
(1) we have I + H C I+ VH and so VI+ H C VVI Also by (1), we
have VI + VH C /T + H and so, using ( \/\/_+\/_C\/\/I+H VI+H.
Thus we have shown (3). O

(7.28) ProprosITION. (Krull’s Theorem) If I is an ideal of a commutative
semiring R then VI = {a € R | a" € I for some positive integer n}.

PROOF. Set K = {a € R | a” € I for some positive integer n}. If a,b € K there
exist m,n € P such that a™ and b” belong to I. Moreover, (a+b)"*™~! = Y a'b/,
where either i > m or j > n in each summand. Therefore (a + b)"t™~! ¢ [ and
so a+b € K. Similarly, if r € R then (ra)™ = r™a™ € I and so ra € K. Since
1 ¢ K, we conclude that K is an ideal of R.

Let ¢ € R\ K. If ¢ € K then there exists a positive integer n such that

" = (¢?)® € I and so ¢ € K, which is a contradiction. Thus ¢ € R\ K and so
R\ K is a p-system, proving that the ideal K is semiprime.
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Finally, let H be a prime ideal containing I. If a € K then there exists a positive
integer n such that ¢ € I C H and so a € H by Proposition 7.4. Hence K C H.
This shows that V(I) C V(K). The reverse containment is surely true and so we
have equality. Since K is semiprime, this implies that K = vVK =+I1. O

As with rings, we say that an ideal I of a commutative semiring R is primary
if and only if for each a € R\ I and b € R we have ab € I only when b* € I for
some positive integer k.

(7.29) CoroLLARY. If I is a primary ideal of a commutative semiring R then
VT is a prime ideal of R.

PrOOF. Let a,b € R satisfy a ¢ VT and ab € v/I. Then, by Proposition 7.28,
there exists a positive integer n such that a™b" = (ab)® € I. Since I is primary,
thee exists a positive integer k such that 4" = (b")* € I and so b € V/I. Therefore
VT is prime. O

(7.30) ProposITION. If I and H are ideals of a commutative semiring R then

VIH =VINnH=VInVH.

ProoF. Since IH C INH C I,H we have VIH C VINH C VINnVH.
Conversely, let a € VVINV/H. Then there exist positive integers n and m satisfying
a® € I and ™ € H. Thus a"*t™ € IH and so a € VIH. This proves the desired
equality. O

(7.31) ProPoSITION. Let I be an ideal of a commutative semiring R satisfying
the condition that \/T is finitely-generated. Then there exits a positive integer n
satisfying (\/I)* C I.

PRrOOF. Suppose that /T = ({ai,...,ax}). For each 1 < i < k there exists a
positive integer n; for which a:“ €l Letn= Zle n;. Ifb=ria1+---+rrax € VI
then

n n!
=2 m(rlal)h: o (reag)™,

where the sum is taken over all k-tuples (hy, ha,..., ki) satisfying Ele i = n.
In each summand, we must have h; > n;j for at least one index j, and so each

summand belongs to I. Therefore 4" € I for each b € VI. O

(7.32) ExaMPLE. If R is a semiring satisfying V(R) = 4/V(R), then LaGrassa
[1995] has shown that an element f € R[t] is nilpotent if and only if f(i) € R is
nilpotent for each ¢ € N.

An ideal I of a semiring R is irreducible if and only if, for ideals H and K
of R, we have I = HN K only when I = H or I = K. The ideal I is strongly
irreducible if and only if, for ideals H and K of R, we have HN K C I only when
H C1Ior K CI. A strongly irreducible ideal is surely irreducible.

A nonempty subset A of a semiring R is an i-system if and only if a,b € A
implies that (a) N (b)) NA # @.



PRIME AND SEMIPRIME IDEALS 93

(7.33) ProprosITION. The following conditions on an ideal I of a semiring R
are equivalent:

(1) I is strongly irreducible;

(2) Ifa,b € R satisfy (a)N(b) C I thena€lorbel;

(3) R\ I is an i-system.

ProoF. (1) = (2): This is an immediate consequence of the definition.

(2) = (3): If a,b € R\ I and (a) N (b)N[R\ I] = & then (a) N (b) C I and so,
by (2), (a) C I or b C I, which is a contradiction.

(3) = (1): Let H and K be ideals of R not contained in I. Then there exist
elements ¢ € H\ I and b € K \ I and so, by (3), there exists an element ¢ €
[(a) N (b)]\ I. In particular, c € HN K and so H N K ¢ I. Thus we have (1). O

(7.34) PROPOSITION. Let a be a nonzero element of a semiring R and let I
be an ideal of R not containing a. Then there exists an irreducible ideal H of R
containing I and not containing a.

Proor. If {H; | i € Q} is a chain of ideals in R containing / and not containing
a then U;cq H; is an ideal of R not containing a. Therefore, by Zorn’s Lemma, the
set of all ideals of R not containing a has a maximal element H. Suppose that
H = H'NH"”, where H' and H" are both ideals of R properly containing H. Then,
by .the choice of H, we have a € H' and ¢ € H”. Thus a € H' " H” = H, which is
a contradiction. Hence H must be irreducible. O

(7.35) ProOPOSITION. Any ideal I of a semiring is the intersection of all irre-
ducible ideals containing it.

PrOOF. Since 1 ¢ I, we know by Proposition 7.34 that there exists an irreducible
ideal of R containing I. Let I’ be the intersection of all irreducible id:als of R
containing I. Then I C I’. If this inclusion is proper then there exists an element
a of I’ \ I. But, by Proposition 7.34, there exists an irreducible ideal H of R
containing I but not a, which is a contradiction. Hence we must have I = I'. O

(7.36) PropPoOSITION. An ideal I of a semiring R is prime if and only if it is
semiprime and strongly irreducible.

Proor. If I is prime then surely it is semiprime. Moreover, if H and K are
ideals of R satisfying HNK C [ then HK C HNK CIso H CIor K C I
Therefore, I is strongly irreducible.

Conversely, assume that I is an ideal of R which is both semiprime and strongly
irreducible. If H and K are ideals of R satisfying HK C I then (HNK)? C HK C I
and so, by semiprimeness, H N K C I. Therefore, by strong irreducibility, H C I
or K C I, proving that I i1s prime. 0O

(7.37) ProPosITION. The following conditions are equivalent for an ideal I of
a multiplicatively-regular semiring R:

(1) I is prime;
(2) I is irreducible.
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ProoF. By Proposition 7.36 we see that (1) implies (2). Conversely, assume (2)
and let H and K be ideals of R satisfying HK C I. By Proposition 6.35 we see
that

H+DHn(K+I)={(h+a)k+b)|he H;k€ K;a,be I} C I

Therefore, by (2), H+I=ifor K+I=1I,namely HCIor KCI. O

(7.38) PrROPOSITION. A commutative semiring R is multiplicatively regular if
and only if every irreducible ideal of R is prime.

Proor. If R is multiplicatively regular then every irreducible ideal of R is
prime, by Proposition 7.37. Conversely, assume that every irreducible ideal of
R is prime. By Proposition 7.35, this implies that any ideal I of R satisfies
I = v/I. In particular, if H and K are ideals of R then, by Proposition 7.30
we have HK = VHK = VHNK = HN K and so, by Proposition 6.35, R is
multiplicatively regular. 0O

(7.39) ProPOSITION. A semiring R is multiplicatively regular if and only if
every ideal of R is semiprime.

Proor. If R is multiplicatively regular then every ideal of R is semiprime by
Propositions 7.35 and 7.37. Conversely, assume that R satisfies the conditiont that
every ideal of R is semiprime. Let I be an ideal of R. If I? = R then surely I is
idempotent. If I C R then I? = NV(I?). But this implies that I C H for each
H € V(I?) and so I C I?, proving that I = I2. By Proposition 6.35, this implies
that R is multiplicatively regular. O



8. FACTOR SEMIRINGS

In the category of rings, factor objects are determined by ideals. In the category
of semirings, as in the category of lattices, this is not so and we must look instead
at congruence relations. An equivalence relation p defined on a semiring R which
satisfies the additional condition that if » p 7' and s p s’ in Rthenr+s p 7' + s
and rs p 7's’ is called a congruence relation. The congruence relation p defined
by r p r' if and only if » = r’ is the trivial congruence relation on R. All other
congruence relations on R are nontrivial. The congruence relation p defined by
r p r' for all r,7/ € R is the improper congruence relation on R. All other
congruence relations are proper. Note that p is improper if and only if 1 p 0.
Indeed, if p is improper this is clearly true. Conversely, if 1 p 0 then for each r €R
we have r = r1 p r0 = 0 and so p is improper.

The family Cong(R) of all congruence relations on R is a complete lattice with
meets and joins defined as follows:

(1) If Y is a nonempty family of congruence relations on R then AY is the
congruence relation on R defined by r(AY)r’ if and only if r p #' for all
relations p in Y.

(2) Y is a nonempty family of congruence relations on R then VY is the con-
gruence relation on R defined by »(VY')r’ if and only if there exist elements
P = S0, 81,-..,5, =7 of R and elements p1,...,p, of Y such that s;_;p;s;
foralll <i<n.

Indeed, by an easy modification of a result of Funayama and Nakayama, Cong(R)
is in fact a frame, and hence a semiring. See [Birkhoff, 1973] for details.

(8.1) ExaMPLE. The Bourne relation =y and the lizuka relation [=]; defined
by an ideal I of a semiring R were shown in Chapter 5 to be congruence relations
on R. If the semiring R is simple then [=]; is improper for each ideal I of R.

(8.2) ExaMPLE. [Poyatos, 1977, 1980] An ideal I of a semiring R is additively
absorbing if and only if a+r € I for all 0 # a € I and r € R. Thus, for example,
if ¢ is a strongly-infinite element of R then {0, ¢} is an additively-absorbing ideal of
R. An additively-absorbing ideal I of a semiring R defines a relation ~(r) on R by
setting r ~(yy v’ if and only if r = 7’ or both r and 7 belong to I. This is easily seen
to be a congruence relation. Note that the family of additively-absorbing ideals of R
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is closed under taking arbitrary intersections and unions. If I and H are additively-
absorbing ideals of an entire semiring R then {0}U{a+b|0# a € Tand0#£bec H}
is also an additively-absorbing ideal of R.

(8.3) EXAMPLE. Let R be an austere commutative semiring and define a rela-
tion ( on R by the condition that a p b if and only if a = b = 0 or ab # 0. By
Proposition 6.25 it is easily seen that this is indeed a congruence relation on R
whenever R is zerosumfree. Moreover, if R has more than two elements and if p is
a congruence relation on R, then R must be zerosumfree. Indeed, in this situation,
it is the unique maximal proper element of Cong(R). See [Adhikari, Golan & Sen,
1994].

(8.4) EXAMPLE. If R is a simple semiring recall that, by Proposition 4.7, each
element a of R defines a subsemiring S(a) of R. Define a relation p on R by setting
a p b if and only if S(a) = S(b). Clearly this is an equivalence relation; we claim
that it is a congruence relation as well. Indeed, let a, b, ¢, and d be elements of R
satisfying a p cand b p d. If 0 # r € R then

reSa+b)or+atb=1&r+aecSO)
or+aeSder+at+d=1
or+deSa)er+deS()
Sr+cet+d=1reSl+d

and so S(a + b) = S(c + d). Therefore a + b p ¢ + d. Moreover, by Proposition
4.7(2), S(ab) = S(a) N S(b) = S(c) N S(d) = S(cd) and so ab p cd, establishing our
claim.

Let p be a congruence relation on R and, for each element 7 of R, let r/p be the
equivalence class of r with respect to this relation. Set R/p equal to {r/p | r € R}.
If p is proper we can define a semiring structure on R/p by setting (r/p) + (v’ /p) =
(r+")/p and (r/p)(r'/p) = rr'/p. Note that, for any congruence relation p, at
most one of the classes r/p can contain an ideal. Indeed, assume that r/p and r'/p
contain ideals I and H respectively. Without loss of generality we can assume that,
in fact, » € I and ' € H. Then v’ € IH CINH C (r/p) N (r’'/p), which implies
that this intersection is nonempty and so r/p = r'/p.

(8.5) AppLICATION. J. M. Anderson [1993] has formulated Mikusinski’s oper-
ational calculus in a semiring context. Let S be the set of all continuous functions
from R to C on which we have the operations of addition and convolution:

f*g:t— /0 f(t — w)g(u)du

for all t € Rt. Then (S, +, *) is a commutative and associative algebra over C. If
h € S is the constant function ¢ — 1 then h * f is the integral of f, for we see that
hx*f:t— fﬂt f(u)du. For n > 1, let h*”® denote h*---*h (n times). Then it is easy

to see, by induction, that h*":¢ — (—n—iT)!t”‘l. Let H = {h*" | n € N}. The Little
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Titchmarsh Theorem asserts that if 0 # f € S and k € H then k * f # 0. Now
consider the set S x H on which we have operations & and ® defined as follows:

(f’k)@(f,’k’):(f*k/+f’*k’k*kl)
(f,k)@(f’,k‘l):(f*f’,k*k/)

Then (S x H,®,®) is a semiring on which we can define a congruence relation p
by setting (f,k) p (f', k') if and only if f * k' = f’ x k. Denote the factor semiring
(Sx H)/p by Sy and write the equivalence class of (f, k) as f/k. Then the identity
element of Sy is k/k for any k € H. Moreover, we have a monic function ¢: S — Sy
given by ¢: f — (f * k)/k. This function is not surjective since k/k ¢ im(yp). The
elements of Sy \ im(p) are called hyperfunctions. Multiplication by s = h/h*?
in Sy behaves like differentiation, and so s * f is the generalized derivative of

fes.

(8.6) EXAMPLE. Let R be an additively-idempotent semiring and let M be a
group of order 2. Let R’ = R[M] be the semiring discussed in Example 3.3. Define
a relation p on R’ by setting

a+d=b+c faZbandc#d

(a’ b) p (C, d) < { (a, b) = (e, d) otherwise

Then p is a congruence relation on R’. Baccelli et al. [1992] consider this relation for
the special case of the schedule algebra R = (RU{—o00}, maz,+)and call S = R'/p
the symmetrized algebra over R. In particular, they distinguish three sorts of
elements of S:

(1) classes of the form (a,—00)/p = {(a,b) | b < a}, called positive elements
of S/;
{2) classes of the form (—o00,b)/p = {(a,b) | a < b}, called negative elements
of S;
(3) classes of the form (a,a)/p = {(a,a)}, called balanced elements of S.
They then associate each element a with the class (a,—o0)/p. Note that U(S)
consists precisely of all non-balanced (i.e. positive or negative) classes in S.

We have already noted that an ideal I of a semiring R defines a congruence
relation =; on R. We denote the set of all such equivalence classes of elements of
R by R/I and the equivalence class of an element r of R by r/I. Note that r/I
is not necessarily equal to the set r + I = {r 4+ a | a € I} but surely contains it!
Then R/I is a semiring if =, is proper, i.e. if 0/ # R. A semiring of the form
R/I is called the Bourne factor semiring of R by I. If @ # A C R, then we
set A/I = {r/I|r € A}. By Proposition 6.54, we note that R/I = R/(0/I) for
each ideal I of R. Thus, in taking Bourne factor semirings we can always assume
that we are doing so modulo a subtractive ideal. In a similar manner, if I is an
ideal of R satisfying 0[/]] # R then R[/]I is a semiring, called the Iizuka factor
semiring of R by I. For any semiring R, we note that Z(R) = 0[/]{0} and so the
congruence relation [=]{o} is proper if and only If R is nonzeroic.

If I is an additively-absorbing ideal of a semiring R then R/ ~(y) is just
(R\ I) U {0, c}, where c is infinite.
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It is in fact often convenient to represent a given semiring in the form R/p, where
R is a semiring which is in some sense “simpler” than the one we are interested
in studying. This is done, for example, in [Pierce, 1972] where the semiring D, as
defined in Example 1.9, is represented in the form N[M]/p, where M is a suitable
monoid.

(8.7) EXxaMPLE. If © is a nonempty set then a filter of subsets F of Q is a
nonempty family of subsets of Q satisfying the following conditions:

(1) 2 ¢ F;

(2) If A € F and A’ C A then A’ € F;

(3) If A,A' € Fthen ANA € F.

If R = X;eqR; is the product of a family of semirings indexed by a nonempty set
Q and if F is a filter of subsets of 2, then we can define a congruence relation p on
R by setting (r;) p (si) if and only if { € Q | r; = s;} € F. The semiring R/p is
called the F-reduced product of {R; | i € Q} and is usually denoted by R/F. If
F = {Q} then R/F = R.

Maximal filters of subsets of €2 are called ultrafilters and it is a well-known
result in set theory that any filter of subsets of €2 is contained in an ultrafilter of
subsets of Q. If F is an ultrafilter of subsets of Q then the semiring R/F is called
an ultraproduct of the semirings R;.

(8.8) EXAMPLE. If p is the relation on a semiring R defined by the condition
that a p b if and only if there exist elements » and s of R satisfying a + r = b and
b+ s = a then it is easy to verify that p is indeed a congruence relation. Note that
a p 0 if and only if a € V(R) and so p is improper if and only if R is a ring. If p is
trivial then the semiring R is reduced. If p is proper then the semiring R/p is the
reduced factor semiring of R. From Proposition 4.22 it is clear that a semiring
is clear if and only if its reduced factor semiring is clear.

(8.9) EXAMPLE. Let R be a commutative semiring and let Y be a nonempty
family of strong prime ideals of R. Then we can define the relation p on R setting
a p b if and only if, for each H € Y, both a and b either belong to H or do not
belong to H. This is clearly an equivalence relation. Moreover, if @ p a’ and b p ¥’
then for each H in Y we havea+ b€ H ©a,be H d, Ve Head +V € H
and similarlyabe H @ac Horbe H<ad' €¢ Hor b € H < a'b' € H and so p
is in fact a congruence relation on R.

A special case of this is considered in [Slowikowski & Zawadowski, 1955]. Let R
be the semiring of all continuous functions from a bicompact topological space X
to R*. This is a commutative Gel’fand semiring and so every maximal ideal of R
is strong and prime. Indeed, the maximal ideals of R are all of the form {¢ € R |
¢(zo) = 0} for some element zo of X. There exists a bijective correspondence 6
between R/p and the lattice of all open subsets of X given by ¢/p — {z € X |

o(z) > 0}.

(8.10) ExAMPLE. [Vandiver, 1939] Let 1 < h < k be natural numbers and
define a relation p on N as follows:

(1) Ifi < h and j € N then ¢ p j if and only if ¢ = j;

(2) Ifi>hand j € Nthenip jifand only if i =5 (mod k—h +1).
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Then p is a congruence relation and the semiring N/p is not cancellative.

The set of all congruences p on a semiring R such that R/p is a semilattice is
studied in [Rodriquez, 1980].

(8.11) ProrosITION. If R is a commutative semiring having no nontrivial
proper congruence relations then either R = B or R is a field.

Proor. If R has only two elements then either R = B or R is the field Z/(2)
and so, in this case, the result is surely true. Hence we need only consider the case
of R having more than two elements.

We first note that R is multiplicatively cancellative. Indeed, every element a of
R defines a congruence relation p, on R by r p, v’ if and only if ar = ar’. This
congruence relation is trivial when the element a is multiplicatively cancellable and
is proper if @ # 0. Since R has no nontrivial proper congruence relations, we see that
it must be multiplicatively cancellative. This implies that R\ {0} is a submonoid
of (R,").

Now assume that R is zerosumfree. Then R\ {0} is closed under both addition
and multiplication and so we have a nontrivial proper congruence relation p on
R defined by the condition that a p b if and only if a = b or a and b are both
nonzero. This is a contradiction and so R cannot be zerosumfree. Then V(R)
contains 0 and at least one nonzero element. Moreover, V(R) is an ideal of R. The
congruence relation =y (g) defined on R is not trivial and hence, by assumption,
it must be improper. In particular, 1 =y(g) 0 and so there exists an element b of
V(R) satisfying 1 + b = 0. For any r € R, this means that r +br = (1+b)r = 0
and so every element of R has an additive inverse, proving that R is in fact a ring.

If 0 # a € R and if I = (a) is the principal ideal of R generated by a then the
congruence relation = is nontrivial and so must be improper. In particular, 1 =; 0
and so 1 € I, proving that a is a unit. Hence R is a field. O

By Proposition 8.11, we see that a division semiring or even a semifield may
have proper nontrivial congruence relations: just consider Qt. If p is a proper
congruence relation on a division semiring R, then R/p is surely again a division
semiring.

We now turn to considering Bourne factor semirings.

(8.12) PrOPOSITION. If I is a subtractive maximal ideal of a commutative
semiring R then R/I is a semifield.

PROOF. Assume that 0/I # a/I € R/I. If a* € I then, by commutativity,
(a)? C I and so, by Corollary 7.13, we have a € I, which contradicts the choice of
a. Since a? € (a), this implies that I C I + (a) and so, by the maximality of I, we
have R = I + (a). Hence there exist an element b of I and an element r of R such
that 1 = b+raandso 1/I =ra/I =(r/I)(a/I). Thus a/I € U(R/I), proving that
R/I is a semifield. O

(8.13) ProposITION. If I is an ideal of a semiring R satisfying the condition
that R # H = 0[/]I then the semirings R[/]H and R/H are plain.

Proor. Let r[/]H € Z(R[/]H). Then there exists an element a of R such that
(r+ a)[/]1H = a[/]H and so there exist elements h and h’ of H and an element s
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of Rwithr+h+(a+s)=r+a+h+s=a+h"+s=h+(a+s), proving that
r[/JH = O[/1H.

Let r/H € Z(R/H). Then there exists an element a of R with (r+a)/H = a/H
and so there exist elements h and h’ of H satisfying r +a + h = a + h’. Since h
belongs to H, there exist elements ¢ and ¢’ of I and s of R satisfying h+c+s = ¢’ +s.
Similarly, there exist elements d and d’ of I and s’ of R satisfying b’/ +d+s' = d'+5'.
Therefore

r+(+d)+(a+s+s)=r+a+c+d+s+5¢
=r+a+h+c+s+d+s
=a+h+c+s+d+s
=a+c+s+d+5s
=(c+d)+(a+s+5),

proving that »[/]I = 0[/]I. Therefore r/H =0/H. O
(8.14) CoroLLARY. If R is a nonzeroic semiring then R/Z(R) is plain.
Proor. This is a direct consequence of Proposition 8.13. O

(8.15) ProprosITION. If R is a yoked semiring then a subtractive ideal I of R
contains Z(R) if and only if R/I is cancellative.

ProOF. Assume that Z(R) C I and that a/I+b/I =a/I+ ¢/Iin R/I. Then
there exist elements d and d' of I satisfyinga+b+d =a+c+ d in R. Since R
is a yoked semiring, there exists an element r of R satisfyingb+d+r=c+ d or
c+d +r =0b+d. In the first case, we have a+c+d = a+b+d+r=a+c+d +r
andso r € Z(R) C I. Thus b+(d+7) = c+d' implies that b =; ¢ and so b/I = ¢/I.
The second case yields the same result by a similar argument.

Conversely, assume that R/I is cancellative. If » € Z(R) then there exists an
element a of R satisfying r + a = a and so /I + a/I = a/I. Therefore /I = 0/1
andsorel. O

(8.16) ProPOSITION. If R is a cancellative semiring then R/I is cancellative
for every ideal I of R.

Proor. If Ris a cancellative semiring then R is plain and so this is an immediate
consequence of Proposition 8.15. O

The following construction, found in [Bourne, 1962] and [Bleicher & Bourne,
1965, shows how to construct a ring R® from any given nonzeroic semiring R. In
a later chapter, we will show how to further construct a canonical morphism of
semirings from R to R2.

Let R be a semiring and let S = R x R. Define operations of addition and
multiplication on S by (a, b)+(c,d) = (a+¢,b+d) and (a, b)(c, d) = (ac+bd, ad+bc)
for all @, b,c,d € R. These operations turn S into a semiring with additive identity
(0,0) and multiplicative identity (1,0). If the semiring R is commutative, so is S.
(Indeed, this is just the semiring R[M], where M is a group of order 2; refer to
Example 3.3.)
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Now set D = {(a,a) | a € R}. Clearly D is an ideal of S. We claim that 0/D # S
if and only if R is nonzeroic. Indeed, if R is zeroic then there exists an element r € R
such that 1 4+ 7 =7 and so (1,0) + (r,r) € D. Therefore, (1,0) € 0/D. Since (1,0)
is the multiplicative identity of S, this implies that S = 0/D. Conversely, suppose
that S = 0/D. Then there exists an element r of R such that (1,0)+ (r,7) = (r,7)
and so 1 + r = r, implying that 1 € Z(R) and hence Z(R) = R. We also note
that is a subtractive ideal of S if and only if the semiring R is cancellative and
that (a,b)/D = (c,d)/D if and only if there exist elements 7 and 7’ of R such that
(a,b) + (r,r) = (c,d) + (+',7"). That is to say, (a,b)/D = (c,d)/D if and only if
there exist elements r and 7 of R satisfyinga+r=c+ 7 andb+r=d+ 7. In
particular, (0,0)/D = {(a,b) | there exists an element r such that a+r =b+r} =
{(a,6) | a[=]qoyb).

In particular, we see that If R is nonzeroic then S/D is a semiring. We claim that
in this case S/D is in fact a ring. Indeed, if (a,b) € S then (a,b)/D + (b,a)/D =
(a4b,a+b)/D =(0,0)/D so V(S/D) = S/D and hence S/D is a ring, which we
will call the ring of differences of the semiring R. We will denote this ring by RA.
For the analogous construction for topological semirings, see [Botero & Weinert,
1971]. Note that (a,b)/D = (c,d)/D if and only if there exists an element " of R
satisfying a + d + 7/ = b+ ¢ + r”. Indeed, if (a,b)/D = (¢,d)/D and r,r’" are as
above, take 7/ = r + r’. Conversely, if such an element 7" exists, take r = d + "
and » = b+ r”. Thus the construction given here is the same as the one given in
[Poyatos, 1971].

If H is a [left, right] ideal of R then H® = {(a,b)/D | a,b € H} is a [left, right]
ideal of R®. Conversely, if I is a [left, right] ideal of R® then {a € R | (a,0)/D € I}
is a [left, right] ideal of R.

The above construction can be generalized. If I is an ideal of R and if S’ = Rx I,
then S’ is a subsemiring of the semiring S defined above. Moreover, D’ = 5’ Nd is
an ideal of . If 0/D’ # S’ then we can construct the semiring r2/ = S'/D’. In
general, this is not a ring.

(8.17) ExaMpPLE. [H. E. Stone, 1972] Let S be the ring of all functions from N
to @ with the operations of elementwise addition and multiplication, and let R be
the subsemiring of S consisting of the zero function and all functions f satisfying
the condition that f(i) > 0 for all i € N. Then S = R2.

(8.18) ExaMpPLE. [H. E. Stone, 1977] If R is a cancellative semiring and n is a
positive integer then, as remarked in Example 4.19, S = M, (R) is also cancellative.
Moreover, S& = M,,(R2).

Unlike the situation with rings, it is usally not very easily to visualize the struc-
ture of the Bourne factor ring. Under certain circumstances, however, it is easier to
do so. We will now describe one such circumstance which generalizes the situation
of rings. An ideal I of a semiring R is partitioning if and only if there exists a
nonempty subset Q(I) of R such that Rgry = {¢+ 1| ¢ € Q(I)} is a partition of
R into pairwise-disjoint subsets.

(8.19) ExaMmPLE. If R is a ring then every ideal of R is partitioning.
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(8.20) ExAMPLE. [Allen, 1969] If m is a positive integer then the ideal mN of
the semiring N is partitioning. The ideal N\ {1} of N is not partitioning.

If I is a partitioning ideal of a semiring R and if » € R then it is easy to verify
that there exists a unique element q of @Q(I) such that r + I C ¢+ I. Thus we see
that if I is a partitioning ideal of a semiring R there exists a surjective function
@r1: R — Rg(ry which assigns to each element r of R the unique element ¢ + I of
Rg(rysuch that r+ 1 C g+ I

(8.21) ProrposiTION. If I is a partitioning ideal of a semiring R then there
exists a unique element gy € Q(I) N V(R) satisfying I = qo + I.

PRrROOF. Since I is partitioning, there exists a unique element o of @Q(I) such
that 0 € go + I. Thus there exists an element ag of I satisfying ag + go = 0, which
shows that go € V(R) as well.

Iftb € I and b € ¢ + I for some ¢ € Q(I) then there exists an element a of I
satisfying g +a=b=50+0=¢o+ (b+ap) andso b € (¢g+ I) N (go + I). Since I
is partitioning, this implies that ¢ = ¢o and so b € qo + I. Hence I C qo + I. Since
I is partitioning, there exist an element ¢ of Q(I) and an element ¢ of I such that
g0+ qo = ¢+ c. Then

0=q+(gp+a)=qp+q+cta=q+ceq+1.

Thus (g0 + I) N(a + I) # @. This implies that ¢ = ¢o and so qo + g0 = qo + ¢.
Therefore

go+I=q+0+I=qp+q+a+I=qg+ct+ar+I=c+ICI

and so qo + [ = I, as desired. O

(8.22) PROPOSITION. Let I be a partitioning ideal of a semiring R. Tken
r = r' if and only if p1(r) = ¢1(r').

ProoF. If r = r’ then there exist elements a and a’ of I such that r+a = r'+a’.
Hence (r+ I) N (' + I) # @. This implies that ¢r(r) Nr(r') # @. Since Ryr)
is a partition of R, this means that ¢r(r) = ¢r(r’). Conversely, assume that
e1(r) = pr(r'") = ¢+ I. Then there exist elements a and a’ of I such that r = ¢+a
andr’ =q+a’. Thusr+a' =r'+aandsor=;r. O

(8.23) COROLLARY. Any partitioning ideal I of a semiring R is subtractive.

ProoF. By Proposition 8.21, we know that there exists an element gy of Q(I)
satisfying I = qo + I. If a and b are elements of R satisfying a + b,b € I then
a + b =5 a and so, by Proposition 8.22, qo = ¢r(a+b) = ¢r(a) soa € g0 + I =1,
proving that I is subtractive. 0O

By Proposition 8.22, we see that, if I is a partitioning ideal of a semiring R,
the function ¢ induces a bijective correspondence between R/I and structure on
Rq(ry under the operations @ and ® defined as follows:

(1) (g+I)® (¢ +I) = ¢"+ 1, where ¢” is the unique element of Q(I) such that

(¢+d)+I1C¢"+[;
(2) (g+1)®(¢ +1I)=g¢"+1, where q” is the unique element of Q(I) such that

¢ +1Cq"+ 1
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Note that the set Q(I) is not uniquely determined by the partitioning ideal I.
However, the above result shows that if Q(I) and Q’(I) are two possible such sets
then the semirings Rqg(r) and Rg/(r) are isomorphic, and so it is immaterial which
of them we choose to work with.



9. MORPHISMS OF SEMIRINGS

If R and S are semirings then a function y: R — S is a morphism of semirings
if and only if:

(1) 7(0r) = 0s;

(2) v(1g) = 1s; and

(3) 9(r + ') = 5(r) +9(r") and 1(r1") = 3(r) - /(") for all r,' € R.
A function v satisfying conditions (1) and (3) is a morphism of hemirings. A
morphism of semirings [hemirings] which is both injective and surjective is called
an isomorphism. If there exists an isomorphism between semirings [hemirings] R
and S we write R = S. If y: R — S is a morphism of semirings [resp. hemirings]
then im(y) = {y(r) | » € R} is a subsemiring [resp. subhemiring] of S.

(9.1) ExaMpPLE. [Heatherly, 1974] Let R be a semiring and let Endo(R) be the
set of all endomorphisms a of the commutative monoid (R, +) satisfying «(0) = 0
which, as we have already noted in Example 1.14, is also a semiring. For each
r € R, let §,: R — R be the function defined by 8,:+' — rr’. Then 8, € Endy(R)
for each element r of R and the map r — b, is a morphism of semirings. Indeed,
this morphism is injective since 3, = G, implies that r = 3,(1) = 8, (1) = r'.

(9.2) EXaAMPLE. The semiring (R*, maz, -) is isomorphic to the schedule alge-
bra (R U {—oo}, maz,+) via the map a — In(a). Similarly, the semiring
(RU {0}, min, +) is isomorphic to the schedule algebra via the map a — —a.

(9.3) ApPLICATION. Let R = RU {—o0} and let a be a positive real number.
Define operations of @, and ®, on R by setting r &, 7 = a- ln(e’/“ + e’l/"), where
we take e”° =0, and r©®, 7' = r+r'. Then (R, &4, ;) is a semiring and we have
a morphism of semirings v: Rt — (R, @4, ®,) given by ¢+ a - In(c). Note that

limg—or ®, v = maz{r,r'}

for all r, 7" € R. This construction is used to reduce problems in probability calculus
to problems in optimal control. See [Akian, Quadrat & Viot, 1994] for further
details.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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(9.4) EXAMPLE. For any semiring R we have a canonical morphism from the
semiring N to R given by n — nlg. Note that the image of this morphism is a
subsemiring of R which is clearly contained in every subsemiring of R. Thus it is
just the basic subsemiring B(R) of R, and that it is contained in C(R).

(9.5) EXAMPLE. Let k be a positive integer and let M be the monoid (N¥, 4).
The semiring sub(M), as defined in Example 1.10, is additively-idempotent. More-
over, Shubin [1992] has shown that it is a free additively-idempotent semiring with
k generators, in the sense that if R is any additively-idempotent semiring and if
P1,...,7% € R then there exists a unique morphism of semirings v: sub(M) — R
satisying y({a;}) = r; for all i, where a; = [0,...,0,1,0,...,0] (the 1 being in the
ith position). Moreover, any other additively-idempotent semiring with k£ genera-
tors having this property is isomorphic to sub(M).

(9.6) ExamPLE. If R is a multiplicatively-cancellative additively-idempotent
commutative semiring and if n is a positive integer then, by Proposition 4.43,
the function y,:a — a™ from R to itself is a morphism of semirings which, by
Proposition 4.44, is in fact monic. This happens, for example if R is an additively-
idempotent semifield, such as the schedule algebra.

(9.7) ProprosITION. If R is a semiring then B(R) is isomorphic to N or to a
semiring of the form B(n,i) for somen >1 and n > i > 0.

PrRooOF. Let v:N — R be the morphism of semirings given by y:n +— nlg. As
we have already noted, im(y) = B(R). Three posibilities exist:

(1) The map 7 is injective. In this case, B(R) is isomorphic to N.

(2) The map 7 is not injective and there exists a positive integer k& such that
v(k) = Or. Let n be the least such positive integer. Then one checks that B(R) is
isomorphic to B(n,0) = Z/(n).

(3) The map v is not injective and y(k) # Ogr for all & > 0, but there exist
m # m’ € N such that y(m) = y(m’). Let n be the least positive integer for which
there exists an integer n > i > 0 such that y(n) = (). Then it is straightforward
to check that B(R) is isomorphic to B(n,7). O

We will say that the characteristic of a semiring R equals 0 if B(R) is isomor-
phic to N and equals (n,?) if B(R) is isomorphic to B(n,?). Note that if R has
characteristic B(n,0) for some n > 1 then 1g € V(R) and so R is in fact a ring.
Thus, as was observed in Chapter 3, a Gel’fand semiring must have characteristic
0 or characteristic (2,1).

We also can extend Example 9.4 by noting that if R is a subhemiring of a semiring
S then we have a morphism of semirings 4 from the Dorroh extension R x N of R
by N to S defined by v:(r,n) — 7+ nlg, the image of which is clearly the smallest
subsemiring of S containing R as a subhemiring.

(9.8) ExampPLE. If R is any semiring and M is a monoid with identity element
e then we have an injective morphism of semirings v: R — R[M] given by

T fm=e

Ar):m {

Or otherwise
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(9.9) ExaMPLE. If R is a semiring then we have already seen that sub(R) has
the structure of a semiring, with addition and multiplication defined by A + B =
{a+b|ae€ A;be B} and AB = {ab | a € A;b € B}. The function from R to
sub(R) defined by a — {a} is then surely a morphism of semirings.

(9.10) ExaAMPLE. Let R be a semiring. The function y: R — B defined by

{0 ifr=0
Yir—

1 otherwise.

is a surjective morphism of semirings if and only if R is both zerosumfree and entire.
In particular, such a morphism exists from N, Q*t, or Rt to B. Conversely, the
function 6: B — R from B to a semiring R defined by §(0) = 0 and é(1) = 1 is
a morphism of semirings precisely when 1+ 1 = 1 in R, i.e. precisely when R is
additively idempotent. Note that in this case ¢ is the only possible morphism from
B to R and that it is injective. Moreover, it is straightforward to verify that if S is
a subhemiring of an additively-idempotent semiring R which is not a subsemiring
then & induces an injective morphism of semirings from the Dorroh extension of S
by B to R defined by (s,i) — s + 6(i). See [Haftendorn, 1979] for details.

This construction can be generalized for commutative semirings. Indeed, in such
a situation the condition that R be zerosumfree and entire is equivalent to the
condition that the ideal {0} be strong and prime. Thus, more generally, if H is any
ideal of a commutative semiring R which is both strong and prime, then H defines
a surjective morphism of semirings y: R — B by y(r) = 0if r € H and y(r) = 1 if
r¢ H.

(9.11) ExaMPLE. Let M = R* partially-ordered with the Pareto partial order
and if A € sub(M), let min(A) be the set of all minimal elements ot the closure of
Ain M. Let R={A € sub(M) | A = min(A)}. Then the operations & and ® on
R defined by A ® B = min(A U B) and A® B = min(A + B) define the structure
of a semiring on R.

Now let L = {[b1,...,b;] € R¥ | 2521 b; = 0}, which is a submonoid of (M, +).
Let S be the semiring of all functions from L to the semiring (R U {o0}, min, +)
under the operations of pointwise addition and convolution (+). Let f € S be the
function defined by

f: [bl,...,bk] — maa:{—bl,‘ ..,—bk}.

Then f(+)f = f. Theset S’ = {g € S| f(+)g = g(+)f = g} is a subsemiring of
S which is isomorphic to R.

For applications of these semirings to multicriteria optimization, refer to [Kolo-
kol’tsov & Maslov, 1998].

A morphism from a semiring R to B is called a character of R. The set of all
characters on a semiring R will be denoted by char(R).



108 CHAPTER 9

(9.12) ExXAMPLE. Let R be a semiring and let S be the semiring
(sub(char(R)),U,N). For each a € R, set x(a) = {y € char(R) | v(a) = 1}. Then
for a,b € R we have x(a + b) = x(a) U x(b) and x(ab) = x(a) N x(b). Moreover,
x(0) = @ and x(1) = char(R). Thus x is a morphism of semirings. It is injective
if and only if R is a bounded distributive lattice [Priestly, 1970].

(9.13) ExaMPLE. If A and B are nonempty sets and if 9: A — B is a func-
tion then any morphism of semirings ¥: R — S defines a morphism of semirings
7. RB — 5S4 by (v f)(a) = 7(f(6(a))). In particular, if A C B are nonempty sets
and if R is a semiring then we have a canonical morphism of semirings R® — RA
given by restriction of functions. Similarly, for each nonempty set A and each
morphism of semirings 7v: R — S, the identity map on A induces a morphism of
semirings v4: R4 — S4 given by f — vf. Also, we have a morphism of semirings
Y{(A): R{A)) — S{A) for every nonempty set A. If f € R{A)) has finite sup-
port then so does v f and so this morphism restricts to a morphism of semirings
v(R): R(A) — S(R).

If A is a set which is either finite or countably-infinite and if M(_) is M4 (J),
Ma (), ot M4 (), then a morphism of semirings 4: R — S defines a morphism
semirings M(y): M(R) — M(S) by f — gf. If M is a monoid with identity e then
v defines a morphism of semirings y[M]: R[M] — S[M] by f — gf. We note that
if f € RM has finite support then so does vf € SM.

In particular, if R is a zerosumfree entire semiring then there exists a character
8 of R defined by é(a) = 1if a # 0 and 6(0) = 0. If A is a set which is either finite
or countably-infinite and if M(-) is M4 (=), Ma,c(-), or M4 rc(-), then the image
of a matrix C' in M(R) under M($) is called the pattern of C.

(9.14) ProrosiTiON. If R is a commutative zerosumiree semiring then
char(R) # @.

ProoF. We have already noted in Chapter 5 that if R is zerosumfree then it has a
maximal proper coideal D and that 1 € D. Set I = R\D. We claim that [ is an ideal
of R. As before, we denote the smallest coideal of R containing a set A by F(A).
If a,b € I then, by the maximality of D, we have F(DU {a}) = R = F(D U {b}).
Thus there must exist elements d,e € D, elements r,s € R, and positive integers
h,k such that a®d +r = 0 = b*¥e + 5. Since R is zerosumfree, this implies that
a*d = b*e = 0 and so (a + b)"**de = 0. Therefore F(D U {a + b}) = R, whence
a+be I Similarly, if a € I and r € R then a”d = 0 for some positive integer h
and d € D. Therefore (ra)"d = 0 and so F(D U {ra}) = R, proving that ra € I.

We now define the function v: R — B by ¥(r) = 1 if and only if » € D. The
proof that this is indeed a morphism of semirings i1s immediate. O

(9.15) ExampLE. [Golan & Wang, 1996] The commutativity condition in
Proposition 9.14 is necessary. Ineed, let R be the noncommutative semiring M2 (IB)

and let us assume that v € char(R). We claim that ¥ ([é g]) = 0. Indeed, if

v([s0]) = v ehen v ([32]) =osince [35] [23] = [£5]- Thus

(8 3L 8-reees
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10] _[11]foo0
But [10] = [01] [10] and so

(=0 D -

which is a contradixtion that establishes the claim. Similarly, we must have

¥ ([0 0]) = 0. Therefore

B T T

which is also a contradiction.
We now return to other examples of morphisms of semirings.

(9.16) ExaMPLE. [Loh & Teh, 1966/7] More generally, if y: R — S is a mor-
phism of semirings and if §: M — M’ is a morphism of monoids satisfying the con-
dition that §=1(m’) is finite for each m’ € M’ then we have a morphism of semirings
v[0]: RIM] — S[M'] defined as follows: y[f](f):m' — S {yf(m) | m € =1 (m')}
for each f € R[M] and m' € M'.

(9.17) ExaMPLE. If R is a semiring and if A and B are nonempty sets then
there exists an isomorphism of semirings v: R{A)® — RP((A)) defined as follows:
if f e R(ANE, we A*, and b € B then v(f)(w)(b) = f(b)(w).

(9.18) ExaMPLE. [Thornton, 1972] Define a topology on N by taking the fol-
lowing as open sets: @, N, and {0,1,...,k} for each £ € N. Let X be a finite
To-space and let C(X) be the family of all continuous functions from X to N. This
is a subsemiring of NX which, moreover, uniquzly characterizes the topology on X.
If Y is another finite Tp-space, then any morphism of semirings vy: C(Y) — C(X) is
induced by a unique continuous function ¢,: X — Y. If v is an isomorphism then
g7 is a homeomorphism.

(9.19) EXAMPLE. Let R be a semiring, let A be a nonempty set, and let ¢ be a
function from A to the center C'(R) of R. Then ¢ defines a function €,: R{4) — R

given by
eg,:fr—}Z{f(alaz~...-an)<p(a1)~...~<p(an) l aias - ... ay EA*}

(which is well-defined since f has finite support). Indeed, €, is a morphism of
semirings, called the p-evaluation morphism. In particular, if R is a semiring
and if r € C(R) then there exists a morphism of semirings ¢,: R[t] — R given
by S a;it! — Y a;r'. The complexity of computing the evaluation morphism for
commutative semirings has been considered in detail in [Jerrum & Snir, 1982].

If we consider the special case of the function ¢: A — C(R) defined by ¢p(a) = 0
for all @ € A then ¢, defined by €,: f — f(0), is the augmentation morphism
on R(A). In fact, this function can be extended to a map from R{{(A)) to..R given

by f— f(O).
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(9.20) ExaMPLE. Let R be a subsemiring of a semiring S, let I be an ideal of
R, and let H be an ideal of S satisfying I € RN H. Then we have a canonical
morphism of semirings v: R/I — S/H defined by vy:r/I — r/H. This map is well-
defined since if » =7 ' in R then » =g 7' in S. As a consequence of this, it is
also easy to see that if I C H are ideals of a semiring R then we have a canonical
morphism of semirings R*! — RAH_ If S = R, this morphism is surjective. As
a special case of this, we note that for any ideal H of a semiring R we have a
surjective morphism of semirings from R to R/H given by r — r/H.

(9.21) ExaAMPLE. Let R be the schedule algebra (RU{—c0}, maz, +). For each
k € N, let 44: R — R be the map given by vx(a) = ka for each a € R. Clearly
vk 1s a morphism from R to itself which is both injective and surjective and so is
an isomorphism. If S = (R U {oo}, min,+) then the function v: R — S defined
by v¥(a) = —a is an isomorphism of semirings. Now let S = NU {—o0}, which is
a subsemiring of R. For each positive integer n, let X,, be the semiring given in
Example 1.8 and let é,: S — X,, be the function given by

. i ifi<n
bpit— .
n otherwise

Then 6, is a surjective morphism of semirings for each n.

(9.22) EXAMPLE. Let R be the semiring (Rt U {oo}, min,+) and let S be the
semiring (I, max, -). Then we have a morphism of semirings v: R — S defined by
y:7r +— 27" (where, by definition, 27 = 0).

(9.23) ExaMPLE. Let f: X — Y be a continuous function between topological
spaces. Let (R,N,U) be the semiring of all closed subsets of X and let (S,N,V)
be the semiring of all closed subsets of ¥ (see Example 1.5). Then the function
v7:S — R defined by 74:a +— f~'(a) is a morphism of semirings. If R’ is a basis for
the semiring (R, N,U) and if X’ is a subspace of X then {X'Nb|b € R'} is a basis
for the semiring (R”, N, V) of all closed subsets of X’ and the function y: b — X' Nb
is a morphism of semirings from R’ to R".

(9.24) ExaMPLE. In Proposition 6.29 we saw that if R is a semiring then the
set ideal(R) 1s a semiring under the operations of addition and multiplication of
ideals. Similarly, in Chapter 6, we defined the set Zar(R) of subsets of spec(R).
This was the family of closed subsets for the Zariski topology on spec(R) and so
it too is a semiring if we take addition to be intersection and multiplication to be
union. Moreover, the map ideal(R) — Zar(R) given by I — V(I) is clearly a
surjective morphism of semirings.

(9.25) ExaMPLE. If I is a nonzero ideal of a Dedekind domain R, then to
each prime ideal H € spec(R) we can assign a natural number n(l, H) such that
I =T[{H"H) | H € spec(R)}, where, by convention, H® = R for all H € spec(R).
We furthermore define n(R, H) = 0 and n((0), H) = oo for all H € spec(R). For a
fixed element H of spec(R) and for ideals I and I’ of R, we then have:

(1) n(I+I',H) = min{n(I,h),n(I', H)};
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(2) n(INTI',H)=maz{n(Il,H),n(l', H)};

(3) n(II'H)=n(I,H)+n(l’, H).
Therefore, for each fixed prime ideal H of R we have a function n(_, H) which
is both a surjective morphism from the semiring (ideal(R), +,N) to the semiring
(NU {oo}, min, maz) and a surjective morphism from the semiring (ideal(R), +, -)
to the semiring (N U {oc}, min,+). By allowing negative exponents as well, we
can extend this map to corresponding morphisms from fract(R) to Z U {oo}. See
[Gilmer, 1972] for details.

(9.26) ExaMmPLE. If A is a nonempty set then the function supp:B{(A) —
sub(A*) is an isomorphism of semirings.

(9.27) ExaMpPLE. If b,k € BN, let h Uk be the greatest common divisor of h
and k. By Example 1.17, we see that (N, U, -) is a semiring. Moreover, we have an
isomorphism of semirings 7: N — ideal(Z) defined by v:n — Zn.

(9.28) EXxaMPLE. Let R be the commutative semiring (N U {co}, maz, min).
Then ideal(R) = {R,N}U{R, | r € R}, where K, = {a € R | a < r}. The function
v: R — ideal(R) given by v: R — K, is a morphism of semirings which is injective
but not surjective since N is not in the image of 7.

(9.29) ExaMpPLE. [Cao, Kim & Roush, 1984] If R is a simple semiring for
which there exists a positive integer n satisfying the condition that r* = r?+! for
all r € R then, by Proposition 4.9, we saw that (I*(R),+,®) is a commutative
simple semiring, where ® is the operation defined by a ® b = (ab)”. Moreover, it
is easy to see that the function v:7 — 7" is a morphism of semirings from R to

I*(R).

(9.30) ExaMPLE. Let X and Y be topological spaces and let R and S be ine
semirings of all closed subsets of X and Y respectively. If R =2 S it does not
necessarily follows that X and Y are homeomorphic. A sufficient condition for
this to happen is that X and Y satisfy the T separation axiom. The problem of
when an isomorphism between R and S implies the existence of a homeomorphism
between X and Y is studied in detail in [Thron, 1962].

We now begin considering some properties of morphisms of semirings.

(9.31) PROPOSITION. If R — S is a morphism of semirings then
7(comp(R)) C comp($).

ProoF. If a € comp(R) then y(a) + v(at) = y(a + a*) = v(1g) = 1s while
v(a)y(at) = y(aat) = 7(0r) = Os and, similarly, y(a*)y(a) = 0s. Thus y(a) is
complemented, with y(a)! = y(at). O

If {R; | i € Q} is a family of semirings having direct product R = x;cqR; then for
each h € Q we have a surjective morphism of semirings v5: R — Rj, which assigns to
each element of R its hth component and an injective morphism of hemirings (but
not of semirings!) Ap: Ry, — R which assigns to each element a of R; the element
of R the value of whose hth component is a and the value of all of whose other
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components is 0. Note that the image of the multiplicative identity of R}, is not 1g
but does belong to C(R) N I*(R). A subring S of R is a subdirect product of
the R; if and only if the restriction of v, to S for each h € Q is still surjective.

A set {e1,...,en} of nonzero elements of C(R) N I*(R) is a complete set of
orthogonal central idempotents of R if and only ife;+---+e, =1 and e;e; =0
for all i # j. Let {e1,...,e,} be a complete set of orthogonal central idempotents
of R and set ey = EzeU e; and fy =Y, qu €i for any proper nonempty subset U
of {1,...,n}. Then eU + fu = 1 while ey fy = 0 = fyey. Thus, for each such U,
ey € comp(R) and ez = fy. In particular, e; € comp(R) for each 1 < i < n.

(9.32) ProrosiTION. The following conditions on a semiring R are equivalent:

(1) There exist semirings Ry, ..., R, and an isomorphismy: R — %[ R;;
(2) There exists a complete set {e1,...,e,} of orthogonal central idempotents
of R.

ProoOF. (1) = (2): Let S = x}_,R;. Foreach 1 < ¢ < n, let 1; be the
multiplicative identity of R;, let A;: B; — S be the canonical injective morphism of
hemirings defined above. Note that since ¥ is an isomorphism, it is both injective
and surjective and so for each element s of S there is a unique element r = y~1(s)
satisfying v(r) =

For each 1 <i < n, let e; = y71(Xi(L;)). Then

7(61 ++en) = /\1(11)+ R An(ln) =15 = 7(1R)

and so e; + -+ e, = 1g. If ¢ # j then y(eie;) = (Xi(1:))(A(1;)) = 0s = ¥(Or)
and so e;e; = Ogr. Also, y(e?) = v(ei)y(e;) = Xi(1i)Xi(li) = Ai(1i) == 7(e;) and
so €2 = e;, proving that e; € I*(R). Finally, if » € R then y(re;) = ~{r)X;(1;) =

/\Z-(lz-)'y( ) = y(e;r) and so e; € C(R).

(2) = (1): If r € R then r = rlg = re; + - - - + re,, where re; € Ke; for all 4.
Thus every element of R can be written as a sum of the elements of the Re;. This
sum is unique in the sense that if » = rie; + - - + rpe, then re; = (rie;)e; = rie;
for each 1 < i < n. Thus we have an injective and surjective function y: R — x R;
given by y(r)(i) = re;. As noted in Chapter 1, each Re; is a semiring, and it is
straightforward to show that v is a morphism of semirings. O

(9.33) CoroLLARY. If R is an integral semiring then there do not exist semir-
ings R’ and R" such that R is isomorphic to R’ x R".

Proor. This is a direct consequence of Proposition 9.32 and the remarks before
it. O

We now extend the notion of a derivation, introduced in Chapter 3. Let R be a
semiring and let v: R — R be a morphism from R to itself. A y-derivation is a
function d: R — R satisfying d(r+7') = d(r) + d(r’) and d(rr’) = y(r)d(r'") + d(r)r’
for all r,7' € R.

(9.34) EXAMPLE. [Brzozowski, 1964] Let A be a nonempty set, let R = sub(A*)
be the semiring of all formal languages on A introduced in Example 1.11, and let
v: R — R be the morphism defined by v: L — LN{O}. Every word w in A* defines
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a function d,,;: R — R by dy: L — {w' € A* | ww’ € L} and it is easy to verify that
this is a y-derivation of R.

If R[t] is the semiring of polynomials in the indeterminate ¢ over R then we
can define a new operation of multiplication on R[{] with the aid of the rule ¢tr =
¥(r)t+d(r) for all » € R and the distributivity of multiplication over addition from
both sides. This semiring, denoted R[t;7,d], is called the @re extension of R
by ¥ and d. In the special case that d is taken to be the zero map, we obtain the
semiring R[t;v], called the skew polynomial semiring over R. In the special case
7 is taken to be the identity map we obtain the differential polynomial semiring
R[t; d] defined in Chapter 3.

We now return to the rings of differences introduced in Chapter 8. Let R be a
nonzeroic semiring and let R® = S/ D be the ring of differences of R. Then we have
a morphism of semirings v: R — R?, called the canonical morphism, defined by
v:r s (r,0)/D. This morphism need not be injective. Indeed, if v(r) = v(r’) then
(r,0)/D = (+',0)/D and so there exists an element a of R such that (r + a,a) =
(" 4+ a,a) and hence r + @ = ' + a. Thus we see that a necessary and sufficient
condition for » to be injective is that R be cancellative. Furthermore, we note that
an arbitrary element (a,b)/D of R® is v(a)v(b) and so every element of R? is the
difference between two elements in im(v). In particular, we conclude that if R is
a cancellative semiring then R is isomorphic to a subsemiring of a ring R® such
that every element of R is the difference between two elements in the image of R.
It is this property of cancellative semirings which leads some authors to call them
halfrings. We will, in general, identify a cancellative semiring with its image in its
ring of differences, and thus consider it as a subsemiring of that ring.

(9.35) PrROPOSITION. If I is a left ideal of a nonzeroic semiring R then I® =
{v(a)v(b) | a,b € I} is a left ideal of R®.

ProOOF. If a,d’,b,b' € I then [v(a)v(b)]+ [v(a)v(})] = v(a+ a')v(b+b') € TA.
If, furthermore, r, 7' € R then

[v(r)v(F)]lr(a)v(b)] = v(r)v(a)v(r)v(b)r(r)v(a) + v(r)v(b)
=v(ra+ r'b)v(rb+r'a) € I*

Thus I2 is a left ideal of R2. O

It is clearly true from the above construction that I® is the smallest left ideal
of R® containing v(I).

(9.36) ProPosITION. If R is a nonzeroic semiring then the function
v:ideal(R) — ideal(R®) defined by I — I® is a morphism of semirings.

Proor. Clearly ¥({0}) = {0} and y(R) = R®. If I and H are ideals of R
then (I + H)? is the smallest ideal of R® containing I + H and hence surely
(I + H)A C I* + H®. Conversely, suppose that s = [v(a)v(a’)] + [v(b)v(')]
belongs to I® + H?, where a,a’ € I and b,b' € H. Then s = via+ bv(a' +
b') € (I + H)?, proving equality. Similarly, (IH)A C I*HA. Conversely, if s =
[v(a)v(a')][v(b)v(b')] belongs to I* H® then s = v(ab+ a'b')v(ab’ + a’b) € (IH)?,
again proving equality. O
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(9.37) ExaMmPLE. [Dale, 1981] If R is a nonzeroic semiring and I is an ideal of
R, it does not follow that I = v=1(I®), even if R is cancellative. For example, let
R=Nandlet I = {0}U{2i+6|ic N}. Then I® =2Z andsov™}([*)=2N D I.

Example 9.37 shows that the morphism v given in Proposition 9.36 need not be
injective even if v is injective.

If R is a cancellative semiring then its ring of differences is also a morphic image
of the semiring of polynomials R[t] over R. To see this, consider the element
u = (0,1)/D of R®. This is an element of the center of R® satisfying 1 + u =
0. Therefore, by Example 9.19, there exists an evaluation morphism of semirings
€ R[t] — R® determined by the function ¢ ~— u. Note that if a,b € R then
ab = a + bu € im(¢). Since every element of R is the difference between two
elements of R, we thus conclude that im(e) = R2.

Let R be a nonzeroic semiring having ring of differences R = S/D and let
v:R — R® be the canonical morphism. If R — R’ is a morphism from R
to a ring R’ then 7 defines a morphism of semirings ¥’ from S to R’ given by
v':(a,b) — v(a)y(b). Moreover, ¥'(a,a) = 0 for all @ € R and so 4’ induces
a ring homomorphism 7/: R® — R'. If a € R then v"v(a) = 7"((a,0)/D) =
7'(a,0) = y(a) and so ¥ = y"v. The map ¥ is unique with this property. Indeed,
if 6: R® — R’ is a ring homomorphism satisfying the condition that ¥ = év then
for each element (a,b)/D of R® we have §((a,b)/D) = §((a,0)/D)é((b,0)/D) =
5v(a)6v(8) = 1(a)1(b) = 77 ((a,8)/D) s0 6 = 7"

In particular, if R; and R, are cancellative semirings contained in their respective
rings of differences R® and RS then every morphism of semirings v from R; to R
can be extended to a unique ring homomorphism 74 from R® to R2. Moreover,
+8 is injective if and only if 7 is injective and it is surjective if and only if v is
surjective.

(9.38) ProPoOSITION. If R is a cancellative seniiring then there exists an in-
Jjective morphism of semirings v: R — S from R to an entire ring if and only if R
satisfies the following condition:

(*) Ifa,d’, b,V € R satisfy ab+ a'b' = ab/ + a’b thena =a' or b=V

PROOF. Assume that such an injective morphism v exists and identify R with
its image in S. If a,a’, b, b’ are elements of R satisfying ab+ a’b’ = ab’ + a’b then in
S we have (aa’)(bb’) = 0. Since S is assumed to be entire, we deduce that a = a’
orb=1¥.

Now, conversely, assume that R satisfies (*). It suffices to show that the ring
R? is entire. Indeed, suppose that (a,a’)/D and (b,b')/D are two elements of R®
satisfying 0/D = [(a,a’)/D][(b,b')/D] = (ab+ a'V’,ab’ + a’b)/D. Then we must
have ab + a’b’ = ab’ + a’b and so, by (*), a = a’ or b =¥/, i.e. either (a,a’) € D or
(b,b") € D. Thus R? is entire. O

(9.39) EXaMPLE. [Mitchell & Sinutoke, 1982] Let R = {(a1, a2, a3, as) € N* |
a; = 0 for all 7 or a; # 0 for all i}. Then R is a subsemiring of N* which is can-
cellative and entire. On the other hand, R cannot be embedded in an entire ring.
To see this, note that we have distinct elements a = (2,1,1,1), ' = (1,2,1,1),
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b=(1,1,2,1), and ¥ = (1,1,1,2) satisfying ab + a’b’ = ab’ + a’b, so R does not
satisfy condition (*) of Proposition 9.38.

(9.40) ExampLE. [H. E. Stone, 1972]) If R is a cancellative semiring and if ¢ is
an indeterminate over R then there exists a canonical morphism of rings v: R[{]® —
RA[t] given by v: 3 a;t’ — Y bitt v+ Y (a;b;)t’ for all 3 a;t* and 3 b;t* in R[t]. It
is straightforward to show that v is in fact an isomorphism of rings.

(9.41) PrOPOSITION. If R is a cancellative semiring with ring of differences R
then a proper subset I of R is a subtractive left ideal if and only if it is of the form
RN H for some left ideal H of RA.

PROOF. Assume that I is a subtractive left ideal of R and let H = I* C RA.
Then H is an left ideal of R satisfying I C RN H. Conversely, if r € RN H then
there exist elements a and b of I such that » + b = a. Since I is subtractive, this
implies that » € I. Hence I = RN H.

Conversely, assume that I = RN H for some left ideal H of R®. Then clearly I
is an left 1deal of R. If a and b are elements of R such that a + b and b belong to I
then a = (a+b)b € RN H = I. Thus I is a subtractive left ideal of R. 0O

We have thus seen that cancellative semirings have very nice properties. The
following result shows that there are “enough” such semirings around.

(9.42) PropPosITION. IfR is a semiring then there exists a cancellative semiring
S and a surjective morphism from S to R.

ProoF. Let R be a semiring and let A = {a, | r € R} be a set indexed by R.
Let S be the free monoid on A, written additively. Define a new operation - on S

by )
(Ze) (So)-E T
reA SEN ,/’ reAsefl
Then (S, +, -) is a cancellative semiring with additive identity O and multiplicative
identity a;. Moreover, the function v: S — R given by v(O) =0 and v: ) 4 ar —
ErEA r for A # @ is clearly a surjective morphism of semirings. O

(9.43) PROPOSITION. A zerosumfree semiring R is either additively idempotent
or contains a subsemiring isomorphic to Q7.

PROOF. Let 7 be the function Q* — R defined by y:m/n — (mlg)(nlg)~!.
Using Proposition 4.52, it is easy to verify that this is a morphism of semirings.
Moreover, if y(h/k) = y(m/n) then hlr(klg)~! = mlgr(nlg)~! and so hnlg =
mklp. If R is not additively idempotent then, from Proposition 4.51, we conclude
that hn = mk and so h/k = m/n. Thus, in this case, v is an isomorphism from
Q* to a subsemiring of R. O

Note that if R is a zerosumfree semiring which is not additively idempotent
then the subsemiring of R constructed in Proposition 9.43 contains B(R) and is
contained in U(R).

If : R — S is a morphism of semirings and if p is a congruence relation on S
then, as an immediate consequence of the definitions, the relation p’ on R defined
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by r p' 7' if and only if y(r) p g(r’), is a congruence relation on R. In particular,
each morphism of semirings v: R — S defines a congruence relation =, on R by
setting r = r’ if and only if y(r) = ().

(9.44) ExaMpPLE. If R is a nonzeroic semiring and v: R — R® is the canonical
morphism then =, and [=]y¢} are equal.

(9.45) PrROPOSITION. A morphism of semirings y: R — S induces an injective
morphism of semiringsy': R/ =,— S defined by ¥'(r/ =) = v(r). Ify is surjective
then %' is an isomorphism.

ProoF. The function 7’ is well-defined since r/ =,= '/ =, implies that y(r) =
v(r'"), and it is clearly a morphism of semirings. If v/(r/ =,) = ¥'(r'/ =) then
¥(r) = ¥(r') and so r/ =y=r'/ =,. Thus ¥ is injective. O

(9.46) PROPOSITION. Let v: R — S be a morphism of semirings.

(1) If H is a left ideal of S then y~1(H) is a left ideal of R. Moreover, if H is
subtractive then so is y~(H).

(2) If v is a surjective morphism and if I is a left ideal of R then y(I) is a left
ideal of S.

PROOF. (1) Assume that H is a left ideal of S. If a,b € y~'(H) then y(a+b) =
v(a) + y(b) € Hsoa+be€ vy }(H). If r € R and a € y"!(H) then y(ra) =
y(r)y(a) € Hsora € y~1(H). Finally,if 1lg € y~!(H) then 15 = y(1g) € H, which
is impossible. Thus 1g ¢ vy~ !(H) and so y~!(H) is a left ideal of R. Now assume
that H is subtractive. If a,a+b € y~!(H) then y(a) and y(a)+7y(b) = v(a+b) € H
and so v(b) € H. Hence b € y~1(H).

(2) Assume that [ is a left ideal of R. If a,b € I then y(a)+7(b) = y(a+b) € y().
Ifa eI and s € S then s = y(r) for some r € R and so sy(a) = y(r)y(a) = y(ra) €
¥(I). Thus v(I) is a left ideal of S. The proof for right ideals and for ideals is
similar. O

(9.47) ProPosSITION. Ify:R — S is a surjective morphism of semirings and |
is an ideal of R then:

(1) 2(0/1) € 0/(1); and

(2) ¥(0[/11) C O[/](1).

PrOOF. (1) Ifr € 0/I then there exist elements a and a’ of I satisfying r+a = a’.
Then 4(r) + 7(a) = ¥(a') = 0 + y(a') and so y(r) € 0/5(1).

(2) If r € 0[/]] then there exist elements a and a’ of I and " of R satisfying
r+a+7r" = a + . Therefore v(r) + y(a) + v(r'") = y(a’) + y(r"") and so
3(r) € 0/l(D). O

(9.48) PROPOSITION. Let v: R — S be a surjective morphism of semirings. If
R is a yoked semiring then so is S.

ProoF. Let s and s’ be elements of S and let » and »' be elements of R satisfying
y(r) = s and y(r') = ¢'. Since R is a yoked semiring, there exists an element a of
R satisfying r +a =" or 7’ + a = r. Hence s +v(a) = s’ or s +y(a) = s, proving
that S is also a yoked semiring. [
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(9.49) PropoOSITION. If R is a plain yoked semiring satisfying the descending
chain condition on subtractive left ideals and having no nonzero nilpotent elements
and if I is a nonzero subtractive ideal of R then I is itself a semiring and there
exists a surjective morphism of semirings y: R — I.

Proor. By Proposition 4.22, the semiring R is cancellative. By Proposition
6.55, we know that there exists an element e € I*(R) N I satisfying I = Re.
In fact, from the proof of that result we see that a = ae for all a € I. Let
H ={a € 1]|ea=0} Then H is a right ideal of R satisfying He = H and so
H? = (He)H = H(eH) = {0}. Since R has no nonzero nilpotent elements, this
implies that H = {0}. If a € I then, since R is a yoked semiring, there exists an
element b of R satisfying b + a = ea or a = b+ ea. Since I is subtractive, we in
fact have b € I. If b+ a = ea then ea = e?a = eb + ea and so, by cancellation,
eb=0. Thus b € H and so b = 0. Similarly, b = 0 if a = b + ea as well. Therefore
a = ea for all a € I, proving that (I,+,) is a semiring with multiplicative identity
e. If a € I then a = eae and so the function y: R — I defined by 4: R — ere is a
surjective morphism of semirings. 0O

The following is an adaptation of a well-known result for rings.

(9.50) ProrosiTiON. The following conditions on a semiring R are equivalent:

(1) There exist a positive integer n, a semiring S, and an isomorphism v: R —
M, (S).

(2) There exists a set {e;; | 1 < 4,7 < n} of elements of R satisfying the
conditions that Y, e;; = 1 and

iie { €ip fOl‘j =k
i1 €kh = . .
“ 0 otherwise

PROOF. (1) = (2): For each 1 < i,j < n let E;; be the matrix [anr] € M, (S)
defined by
{1 forh=iand k=7
apk = . .
0 otherwise

Set e;; = y~!(Ejj) for each 1 < 1,5 < n. Then {e;;} clearly satisfies the conditions
in (2).

(2) = (1): Let S = {}_h_;en1aein”| a € R}. This set is clearly closed under
addition. Moreover,

(Z 6h1a€1h) (Z €h1be1h) = Zem(aeub)em

and so S is closed under multiplication as well. Surely 0 € S, while we also have
1 =3 enlein €S. Thus S is a subring of R. Define the function v: R — M,(S)
by y:7 — [ci;], where ¢;; = Y enirejn = Y- eni(erireji)ern. It is straightforward
to check that y(r + ') = v(r) + y(r') for all »r € R. Moreover, if 7, € R then
v(rr') = [e;5], where

n n
_ / — / . /
Cij = €iirrej; = eir ( E ehh) rlejj = E (eiirenn) (ennr’ejj),

h=1 h=1
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and this is the value of the (i,j)-entry of y(r)y(r'). Thus v is a morphism of
semirings. It is straightforward to see that 7 is both surjective and injective, and
s0 it is an isomorphism of semirings. O

We now generalize another well-known result for rings to the case of semirings.
Ideals I and H of a semiring R are comaximal if and only if I + H = R. A family
{I; | j € Q} of ideals of R is pairwise comaximal if and only if every pair of
distinct elements of the family is comaximal.

(9.51) ProprosiTION. (Chinese Remainder Theorem) Let {I,,..., I} be
a finite set of pairwise comaximal ideals of a semiring R. Then the morphism of
semirings v: R — x?_, R/I; given by r — (r/I1,...,r/I,) is surjective.

ProoF. It suffices to show that for each 1 < k < n, the element
0,...,0,1/I,0,...,0)

belongs to im(y). We will show this for the case £ = 1, the proof of the other cases
being similar. Since the given ideals are pairwise comaximal, we know that for each
k > 1 there exist elements ay € I; and by € I such that 1 = ay + bg. Therefore
1=1F1= H::Z(ah + bp). By distributivity, this product becomes a’ + r, where
a€lyandr =bybs-...- by € IyN---N1I,. Therefore r/I; =1/I; and r/I}; = 0/1}
for 1 < K < n, proving that y(r) = (1/11,0,...,0), as desired. O

A semiring R is separative if and only if a+a = a+b=b+bin R implies that
a = b. Cancellative semirings are certainly separative. This condition is defined
for semigroups in [Clifford & Preston, 1961]. Moreover, it is shown there that a
commutative semigroup is separative if and only if it is embeddable in a semigroup
which ie a union of groups. An analogous result can be proven for semirings.

(9.52: PROPOSITION. A semiring R is separative if and only if there exists an
injective morphism of semirings 4y: R — S, where S is a semiring satisfying the
property that its additive monoid is the union of groups.

PRrROOF. Assume that R is separative. Define a relation p on R by setting a p b if
and only if there exist positive integers m and n and elements r and s of R such that
a+r = mb and b+ s = na. This can be easily checked to be a congruence relation.
Let R’ = {(a,b) € R x R | a p b} and define operations & and ® on R’ by setting
(a,b)® (c,d) = (a+c¢,b+d) and (a,b) ® (¢, d) = (ac+bd, ad + bc). Then (R, ®,®)
is a semiring with additive identity (0,0) and multiplicative identity (1,0). Define
a relation ¢ on R’ by setting (a,b) ¢ (¢,d) if and only if a pcand a +d =b+c.
This is also a congruence relation and so S = R'/( is a semiring.

Define a function v from R to S by v: a — (2a, a)/¢. Clearly y(a+b) = v(a)+7(b)
for all @, b € R. Moreover, ab p 2ab p 4ab p 5ab and so 2ab+4ab = ab+5ab, proving
that (2ab, ab) ¢ (5ab,4ab). Thus

y(a)y(b) = [(2a,a)/¢] @ [(2b,)/¢] = (5ab, 4ab)/¢ = (2ab, ab) /¢ = y(ab).

Also, ¥(0) = 05 and ¥(1) = (1 +1,1)/¢ = (1,0)/¢{ = 1s. Hence v is a morphism of
semirings. It is injective since y(a) = y(b) implies that (2a,a) ¢ (2b,b). But then
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2a papbp2band 2a+ b = a+ 2b, whence a = b, since R is separative. We are
thus left to show that S has the desired property.

Indeed, if (a,b)/¢ € S then a p b p 2a p a +b so (a,b)/¢ d (a,a)/¢ = (a,b)/<.
Similarly (a,b)/¢ ® (b,a)/¢ = (a,a)/¢. Therefore (a,b)/¢ generates an additive
subgroup of (S,®) with identity element (a,a)/¢{. Hence (S,®) is the union of
groups.

Now, conversely, assume that there exists an injective morphism of semirings
v:R — S, where S satisfies the property that its additive monoid is the union
of groups. For each ¢ € R, let H(a) be a maximal group contained in (S,+)
containing y(a). If a, b are elements of R satisfying a + a = a+ b = b+ b then
y(a) + y(b) € H(a) N H(b). Moreover, y(a) = [y(a) + v(b)]v(b) € H(b) and so
v(a) € H(b), which implies that H(b) C H(a) by the maximality of H(a). Similarly,
H(a) C H(b) and so we have equality. Therefore, by cancellation in the group H(a)
we have y(a) = 7(b) and hence a = b since 7 is injective. Thus R is separative. O

A preordered set is a nonempty set together with a reflexive and transitive
relation, usually denoted by <, defined on it. If 2 is a preordered set then a direct
system of semirings over € is a family {R; | ¢ € Q} of semirings together with
morphisms of semirings v;;: R; — R; for all ¢ < j in Q satisfying the following
conditions:

(1) 9:; is the identity map for all ¢ € Q;

(2) vjr7i5 = vir foralli < j <kin Q.

If {R; | i € Q} is a direct system of semirings the the direct limit li_r)nRi of the
system is a semiring R together with morphisms é;,: R; — R for each ¢ € Q such
that:

(3) 6;vi; = 6; for alli < jin © and

(4) For any semiring S and any set of morphisms 7;: R; — S (7 € Q) satisfying

the condition that #;7;; = n; for all ¢ < j in Q there exists a unique

morphism of semirings 7: R — S satisfying né; = n; for all ¢ € Q.
Directed limits of directed systems of semirings always exist. Indeed, if {R;, 7:;;Q}
is such a system let S be the disjoint union of the R; and define a binary relation
¢ on S by setting a ¢ b if and only if there exists ¢,j < k in Q such that a € R;,
b € R;j, and yix(a) = 7jx(b). Then v;,(a) = vjn(b) for all n > k, from which we
can easily verify that ¢ is an equivalence relation on S. Moreover, R = S/{ can be
checked to be a semiring and we have canonical morphisms of semirings 6;: R; — R
given by é;:a — a/¢ which have the required properties.

(9.53) EXAMPLE. Let R be a semiring and, for each positive integer ¢, let
k(i) = 2" and S; = My;)(R). Then there exists an injective morphism of semirings
¥i:S; — S;41 defined by A — [‘3 2] If ¢ < j are positive integers, define v;; to be
the identity map and v;; = vj_17j-2...7 if i < j. Then {S; | i € P}, together with
the morphisms {7;;} is a directed system and so the semiring S = lim S; exists.

Dually, if Q is a preordered set then an inverse system of semirings over 2 is a
family {R; | i € Q} of semirings together with morphisms of semirings v;;: R; — R;
for all ¢ < j in  satisfying the following conditions:

(1) 9 is the identity map for all ¢ € ;
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(2) vijvjx =vik forall t < j <k in Q.
If {R; | i € Q} is an inverse system of semirings then the inverse limit lim R; of
the system is a semiring R together with morphisms §;: R — R; for each ¢ € Q such
that:

(3) vij6; = 6; for all £ < jin Q; and

(4) For any semiring S and any set of morphisms 7;: S — R; (i € Q) satisfying

the condition 7;;m; = #; for all 7 < j there exists a unique morphism of
semirings 7: S — R satisfying é;n = 5; for all : € Q.
Inverse limits of semirings always exist. Indeed, if {R; | ¢ € 2} is an inverse system
of semirings then we can take @Ri to be {(r;) € xieqRi | ri =7ij(rj)} foralli <
i}

Let R be a semiring and let I; D I D ... be a descending chain of ideals of R.
For each j > 1, set Rj = R/I;. Then for all ¢ < j we have a canonical surjective
morphism of semirings v;;: Rj — R; and this turns {R; | ¢ > 1} into an inverse
system of semirings. Thus we can form the semiring 13211?4, which is called the
completion of R with respect to the given chain of ideals. In particular, if there
exists an ideal I of R such that I; = I for all j > 1 then this inverse limit is called
the I-adic completion of the semiring R. The elements of the I-adic completion
S of R are sequences of the form (r + I?) for r € R. Therefore we have a canonical
morphism of semirings v: R — S given by r — (r/I7).
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By Proposition 9.8 we see that if y: R — S is a morphism of semirings then y~1(0)
is an ideal of R, called the kernel of v, and denoted by ker(y). By Proposition
9.46, ker(v) is an ideal of R. If R is a ring, we know that any ideal of R can be the
kernel of a morphism from R to some ring S but, as we shall see, this is not the case
for arbitrary semirings. Also, unlike the case of rings, we note that a morphism
of semirings v: R — S need not be monic when ker(y) = {0}. To see an example
of this, consider the totally-ordered set R = {0,a,1} on which we define addition
to be maz and multiplication to be min. This is a semiring by Example 1.5. Let
v: R — B be the character of R defined by y(0) = 0 and y(a) = 7(1) = 1. This
map has kernel {0} but is not monic.

(10.1) ExaMPLE. [Shubin, 1992] Let S and .S’ be entire zerosumfree semirings
and let R = S va S’. Then the function v: R — S defined by 7:0 — 0s and
v:(s,s') + s is a morphism of semirings which is not monic, having kernel {0}.

We note that if R is a division semiring and v: R — S is a morphism of semirings
then ker(y) = {0}. Indeed, if 0 # a € ker(7) then 15 = y(1r) = v(a)y(a™?) = 0s,
which is a contradiction. In this case, the image of v is again a division semiring.
Nonetheless, ¥ may not be monic. Indeed, if the semirings S and S’ in Example
10.1 are both division semirings then R is a division semiring and im(y) = .S, but
nonetheless v is not monic.

(10.2) ExaMPLE. If I is an ideal of a semiring R and if y: R — R/I is the sur-
jective morphism defined by r — r/I then ker(y) = {r € R | r+a € I for some a €
I} =0/1.

(10.3) EXAMPLE. Let R be a semiring and let {S; | j € Q} be a family of
semirings. For each j € Q, let 7;: R — S; be a morphism of semirings. Then we
have a morphism of semirings v: R — X;eqS; given by r — (v;(r)). The kernel of
this morphism is Njenker(y;).

(10.4) ExaMPLE. If R is a nonzeroic semiring then the kernel of the canonical
morphism R — R2 is precisely Z(R).

J. S. Golan, Semirings and their Applications
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(10.5) ExaMPLE. Let (S,0,-) be the hemiring defined in Example 1.18. Then
the function y: S — S defined by y:a — a® is a morphism of semirings the image
of which is contained in Z(S) since, for each a € S, the self-distributivity condition
implies that a® o a® = a® + a®a® = a®. The kernel of v is precisely {a € S | abe =
0 for all b,c € S}.

(10.6) ExaMPLE. We now generalize the construction given in Example 9.18.
If R is a semiring andM is a monoid then the function €pr: R{M] — R defined
by eamr: f — Y {f(m) | m € M} is a surjective morphism of semirings called the
augmentation morphism. The kernel of ¢y is called the augmentation ideal

of R[M].
(10.7) ProOPOSITION. If R is a semiring and v € char(R) then ker(y) is prime.

PROOF. Let a and b be elements of R satisfying the condition that arb € ker(y)
for all » € R. Then, in particular, ab € ker(y). If a € ker(y) then 0 = y(ab) =
7(a)7(b) = y(b) and so b € ker(y). Thus, by Proposition 7.4, ker(y) is prime. [

(10.8) PropPoSITION. If v: R — S is a morphism of semirings then ker(y) N
UR)=a.

PROOF. If a € ker(y) N U(R) then there exists an element b of R satisfying
ab = 1g and so 0s = 0s7(b) = y(a)y(b) = y(ab) = y(1gr) = 1s. This is a
contradiction, and so ker(y) N U(R) must be empty. O

We have already seen that any morphism of semirings v: R — S defines a con-
gruence relation =, on R by setting r =, ¢/ if and only if y(r) = y(r'). Another
congruence relation defined on R by 7 is the relation =g..(,). It is clearly true that
r =, r’ whenever r Zker(y) ' but the converse need not be true. If the relations
=, and =jer() coincide, then the morphism v is steady. A steady morphism
v: R — S is monic if and only if ker(y) = {0}. Morever, by Proposition 9.45 we see
that if v: R — S is a steady surjective morphism of semirings then S is isomorphic
to R/ker(y).

A surjective morphism of semirings v: R — S is a semiisomorphism if and
only if ker(y) = {0}. Isomorphisms of semirings are clearly semiisomorphisms but
the converse is not true, as we have seen. However, a steady semiisomorphism is
an isomorphism. By combining Proposition 8.16 and Proposition 9.42, we see that
for each semiring R there exists a cancellative semiring S and a semiisomorphism

S — R.

(10.9) ExaMPLE. Let R be the semiring (N U {—c0}, maz,+). Let t be an
indeterminate over a zerosumfree semiring S and let v: S[t] — R be the degree
function given by y(p) = sup{i | p(¢) # 0} if p # 0 and ¥(0) = —oo, which
we defined previously. Then v is a surjective morphism of semirings. Moreover,
ker(y) = {p € S[t] | v(p) = —oco} = {0} so v is a semiisomorphism but is clearly
not an isomorphism.

(10.10) ProPOSITION. Ify: R — S is a semiisomorphism of semirings then:

(1) R is entire if and only if S is entire; and
(2) R is aring if and only if S is a ring.
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ProOOF. (1) Assume R is entire and let s,s" € S be elements satisfying ss’ = 0.
Then there exist elements r and 7' of R satisfying y(r) = s and v(r') = s’. Thus
¥(rr’) = 0 and so rr' € ker(y) = {0} so 7' = 0. Since R is entire, this means that
r=0or 7 =0, and hence s = 0 or s/ = 0. Now assume that S is entire and that
r and 7' are elements of R satisfying ' = 0. Then y(r)y(r') = y(rr') = 0 and so
¥(r) = 0 or ¥(r') = 0. Thus either r or 7 belongs to ker(y) and sor =0 or ' = 0.

(2) Now assume that R is a ring. If s € S and if » € R is an element satisfying
¥(r) = s, then 0 = 4(0) = y(—r +r) = y(—r) + ¥(r) = 7v(—7) + s and so s € V(S).
Thus S is a ring. Conversely, assume S is a ring. If » € R then there exists an
element ' € R satisfying y(r') = —y(r). But then

y(r+7) =v(r) + (') =7(r) + =7(r) =0
so 7+ r’ € ker(y) = {0}. This implies that »r € V(R) and so R is a ring. O

We now characterize those ideals of a semiring which can be kernels of mor-
phisms.

(10.11) ProPOSITION. An ideal I of a semiring R is the kernel of a morphism
of semirings if and only if it is subtractive.

Proor. Assume that I is the kernel of a morphism v: R — S. If a and b are
elements of R satisfying a,a + b € I then 0 = v(e + b) = y(a) + v(b) = 4(b)
and so b € I. Thus [ is subtractive. Conversely, if I is a subtractive ideal and if
v: R — R/I is the surjective morphism of semirings defined by r +— r/I then surely
I C ker(7y). On the other hand, if r € ker(y) then there exist elements a and a’ of
I such that r+a =0+ a’ € I. Since I is subtractive, this means that » € I and so
I=ker(y). O

In particular, we note that if R is an austere semiring then any morphism vy: R —

S has kernel {0}.

(10.12) PrROPOSITION. Let R be a yoked semiring, let S be a plain semiring, and
let v: R — S be a surjective morphism of semirings. Then there exists a bijective
correspondence between the set of all subtractive left ideals of R containing ker(y)
and the set of all subtractive left ideals of S. This correspondence is given by
I—y(I).

Proor. If I is a left ideal of R then, by Proposition 9.46, we know that (I)
is a left ideal of S. Now assume that I is subtractive and contains ker(y). If
5,5 +t € y(I) then there exist elements a,b € I and d € R satisfying y(a) = s,
y(b) = s+, and y(d) = ¢. Since R is a yoked semiring, there exists an element r
of R such that r+b=dorr+d=5b.

Case I: Assume that r + b = d. Then y(r + a) + v(d) = () + y(a) + v(d) =
7(r) +v(a +d) = 4(r) + 7(b) = 7(r +b) = 7(d) and so y(r + a) € Z(S) = {0},
Hence r + a € ker(y) C I. Since I is subtractive, this implies that r € I and so
d=r+be€l. Hencetey(I).

Case II. Assume that 7 + d = b. Since R is a yoked semiring, there exists an
element 7’ of R satisfying ' +a=rora=7r"+r. If '+ a = r then

v(a+d) = v(b) = y(r +d) = y(r) + v(d)
= (") +v(a) + 7(d) = (") + v(a + d)

4
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so y(r') € Z(S) = {0} and so r' € ker(y) C I. Thus r = ' +a € I. Since
r+d =0b € I and I is subtractive, this implies that d € I and so t € y(I). If
a=r"+rthen y(b) = y(a +d) =y(r' +r+d) = 7(r') +7(r + d) = 7(") + 7(b)
so, again, 7’ € ker(y) C I. Hence r € I and, as before, t € y([).

Thus we have shown that if I is a subtractive left ideal of R containing ker(y)
then y(I) is a subtractive left ideal of S. Conversely, by Proposition 9.46(1), we
see that every subtractive left ideal of S is of the form y(y~!(H)), where y~1(H)
is a subtractive left ideal of R containing ker(y).

Finally, let I and I’ be subtractive left ideals of R containing ker(y) and satisfy-
ing y(I) = y(I'). If b € I then there exists an element a of I satisfying v(b) = 7(a).
Since R is a yoked semiring, there exists an element r of R satisfying r +a = b
or r+ b = a. In the first case, y(a) = 4(b) = ¥(r + a) = y(r) + v(e) and so
¥(r) € Z(S) = {0}. Thus r € ker(y) C I and so b= r + a € I. In the second case,
1(a) = 7(r) +7(6) = 7() +7(a) 50, again, ~(r) € Z(S) = {0} and r € ker(y) C I.
Since I is subtractive, this implies that b € I. Thus, in both cases, we have shown
that I’ C I. A similar argument shows that I C I’ and so we have equality.

Thus the correspondence I — (I is bijective. O

(10.13) ExaMPLE. [Dulin & Mosher, 1972] Let R = (NU {00}, maz, min) and
let S be the subsemiring of R given by S = {2¢ | i € N} U {1,00}. Define the
function y: R — S by

. i+1 ifl<i<ooandiisodd
() = :

) otherwise

Then v: R — S is a surjective morphism of semirings having kernel {0}. However,
I=1{0,1,2,3} and H = {0,1,2,3,4} are subtractive ideals of R satisfying y(I) =
v(H) = {0,1,2,4}. We note that, since S is simple, we have Z(S) = S # {0}.

A morphism of semirings v: R — S is tame if and only if the following conditions
are satisfied:

(1) For each s € im(y), the family {r + ker(y) | r € y~!(s)}, partially ordered
by set inclusion, has a unique maximal member; and
(2) The unique maximal member of {r+ker(y) | r € y~!(1s)} is 1r + ker(y).

(10.14) EXaAMPLE. Any homomorphism from one ring to another is tame.

(10.15) ProPOSITION. Ify: R — S is a tame morphism of semirings then ker(7)
is a partitioning ideal of R.

PROOF. Set I = ker(y). For each element s € im(7y), let ¢; be the element of
y~1(s) satisfying the condition that g, + y~!(s) is maximal. Set Q = {g, | s €
im(7)}. Then surely R = U{q; + I | s € im(y)}. Suppose that s # t are distinct
elements of im(7) satisfying the condition that (¢s + I) N(q; + I) # @. Then there
exist elements a, a’ € I such that q;+a = q:+a’ and sos = ¥(gs +a) = y(¢:+a') = ¢,
which is a contradiction. Thus I is a partitioning ideal of R. O
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(10.16) ProPOSITION. Ifv: R — S is a surjective morphism of semirings then
there exists a semiisomorphism from R/ker(y) to S. If, in addition, v is tame then
there exists an isomorphism from R/ker(y) to S.

PRroOF. Set I = ker(y) and define the function §: R/I — S by é:a/I — v(a).
This is well-defined since a/b = b/I if and only if there exist elements ¢ and d of I
satisfying a4+ ¢ = b+ d and in that case y(a) = y(a)+7(c) = y(a+¢) = y(b+d) =
v(b)+7v(d) = y(d). Moreover, § is clearly a morphism of semirings which is surjective
since v is. If 6(a/I) = 0 then y(a) = 0 so @ € I. Thus ker(6) = {0/I}, proving
that é is a semiisomorphism.

Now assume that v is tame. For each element s of S, let ¢, be the unique element
of y~1(s) satisfying the condition that g, +v~'(s) is maximal. By the hypothesis of
tameness, ¢; = 1g and it is easy to verify that ¢g = Or. Set @ = {¢; | s € S}. By
Proposition 10.15 and the discussion in Chapter 7, we see that I is a partitioning
ideal of R and that the semiring R/I is isomorphic to Rg.

Define a function 6: Rg — S by 6:¢, + I — s. This function is well-defined
and is clearly both monic and surjective. Therefore, all that remains for us to
show is that it is an isomorphism. Indeed, let s and t be elements of S. Then
6((¢s+I)®(g: + 1)) = 6(qu + I) = u, where u is the unique element of S satisfying
(¢s+ ¢:)+ I C qu + I. From this condition, we know that there exists an element a
of I satisfying ¢, +¢: = qu+a. Thus s+t = v(¢;)+7(q:) = v(¢s +¢:) = Y(qu +a) =
v(qu)+7(a) = u. Therefore 6(q; +I)+6(g: +1) = s+t =u=6((gs +1)®(q: +1)).
A similar argument shows that 6(q, + I)é(q; + I) = 6((gs + I) ® (g: + I)). Thus §
is an isomorphism of semirings. O

(10.17) ExaMPLE. [Cao, Kim & Roush, 1984] Let R be a commutative simple
semiring and let n be a positive integer satisfying the condition that a® = a™*! Jor
all a € R. Let y: R — R be the function defined by y:a + a”. Then y(e) = ¢
for each e € I*(R). In particular, this is so for e = 0 and e = 1. Since R is
commutative, y(ab) = v(a)y(b) for all a,b € R. Moreover, if a,b € R then

v(@a+b)=(a+b)" = (a+b)™ = Z a‘bh.
i+h=2n

Thus we see that if 4 + h = 2n then either i > n or h > n. In the first case,
a?™ +a'b" = a™ 4+ a"(a’~"b") = a” by Proposition 4.3; while in the second case, by
similar reasoning, we have 42" + a’b" = b™. This implies that y(a + b) = a™ +b" =
7(a) +¥(b) and so 7 is a morphism of semirings, the image of which is I*(R). The
kernel of v is the set N of all nilpotent elements of R which is thus an ideal of R.
Therefore, by Proposition 10.16, there is a semiisomorphism from R/N to I*(R).

(10.18) PROPOSITION. A semiring S is subisomorphic to a subdirect product
of a family {R; | i € Q} of semirings if and only if for each i € Q there exists a
surjective morphism of semirings v;: S — R; such that N;eqker(y;) = {0}.

PROOF. Set R = x;eqR;. By Example 10.3, we have a morphism of semirings
7:S — R given by y:7r — (v;(r)), the kernel of which is {0}. Therefore S is
subisomorphic to the subsemiring R’ = im(7) of R. Since +; is surjective for each
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1, we see that for each h € £2 the restriction of the canonical projection v;: R — Rp
to R’ is a surjection. Thus R’ is a subdirect product of the ;. O

We now prove versions of the Second Isomorphism Theorem and Third Isomor-
phism Theorem for semirings.

(10.19) ProPosITION. If S is a subsemiring of a semiring R and I is an ideal
of R then:

(1) S+ I is a subsemiring of R;

(2) SN 1 is an ideal of S;

(3) There exists a surjective morphism of semirings v: S/(SNI) — (S + I)/I,
which is a semiisomorphism if I is subtractive.

Proor. (1) and (2) are clear. Define the function vy by v:s/(SNI) + s/I. This
is clearly a surjective morphism of semirings. If I is subtractive and s/(SN1I) €
ker(y) then there exist elements a and a’ of I satisfying s + @ = 0 + a’ and so, by
subtractiveness, we have s € I, which implies that s/(SNI) = 0/(SNI). Therefore
v 1s a semiisomorphism. O

(10.20) ProrosITION. If I C H are ideals of a semiring R and if H' = 0/H,
then R/H is isomorphic to (R/I)/(H'/I).

PRroOOF. Define a function y: R/I — R/H by y:r/I — r/H. This function is
well-defined since I C H and, indeed, it is straightforward to show that v is a
surjective morphism of semirings having kernel {r/I € R/I | r/H = 0} = {I €
R/I | r € H'} = H'/I. By Proposition 10.16, 4 induces a semiisomorphism 4/
from (R/I)/(H'/I) to R/H. If y((r/I)/(H'/1)) = +'((+'/1)/(H'/1)) then r/H =
r'/H so (r/I)/(H'/I) = (¢'/I)/(H'/I). Therefore v is monic and so is in fact an
isomorphism. O

If y: R'— S is a morphism of semirings then v~ 1(15) = {r € R | y(r) = 15}
is not, in general, closed under sums and so is not necessarily an ideal of R. If
r,r’ € g71(1s) then y(rr') = v(r)y(r') = lsls = ls and so v~ !(1s) is closed
under multiplication. Since 1g also clearly belongs to this set, we see that it is a
submonoid of (R, ‘). The following result shows that it is sometimes an ideal of R.

(10.21) ProPOSITION. If y: R — S is a morphism of semirings and if S is a
strongly-infinite element of S then y~!(s) is an ideal of R.

PrOOF. Note that y71(s) # R since Og ¢ 77 1(s). On the other hand, if a,b €
7 1(s) and if r € R then v(a + b) = ¥(a) +7(b) = s + s = s while y(ra) = y(r)s =
s=sy(r) =v(ar). O

(10.22) APPLICATION. Let A be a finite set, let M be the idempotent monoid
(sub(A),N), and let R = R*[M]. Let epr: R — Rt be the augmentation morphism
of semirings. Then €3, (1) is the set of all probability distributions on sub(A4). These
functions are called “unnormalized belief states” in [Hummel & Landy, 1988] and
are used to form a space of “belief states” for a statistical theory of evidence used in
the design of expert systems which is a modification of the Dempster/Shafer theory
of evidence [Shafer, 1976].
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If y: R — S is a morphism of semirings we define the multiplicative kernel of
v to be mker(y) = v~ 1(1s) NU(R) = {a € U(R) | v(a) = 1s}. This set is always
nonempty since it containa 1g. It is a proper subset of R since 0 ¢ mker(y) for
any morphism 7.

(10.23) PropoSITION. If y: R — S is a morphism of semirings then mker(y)
is a normal subgroup of the group (U(R), ).

Proor. If a,b € mker(y) then ¥(ab) = y(a)y(d) = 1ls - 1s = 1lg so ab €
mker(y). If a € mker(y) then 1s = y(1g) = v(aa™!) = y(a)y(a™!) = y(a?!) so
a~! € mker(y). Thus mker(y) is a subgroup of U(R). Finally, if »r € U(R) and
a € mker(y) then y(rar=!) = y(r)y(a)y(r=1) = y(r)y(r~!) = y(rr~1) = v(1g) =
ls so rar~! € mker(y). Hence mker(y) is normal in U(R). O

If R is a division semiring then we see by Proposition 10.23 that mker(y) is a
normal subgroup of the multiplicative group R\ {0} for each morphism of semirings
v:R — S. In such a situation a normal subgroup of (R \ 0,-) is called a normal
divisor of R.

(10.24) ProPOSITION. A normal divisor N of a division ring R is of the form
mker(y) for some morphism of semirings v: R — S if and only if for all elements
r,7" € R satisfying r + v’ = 1 and for all a,b € N we havear +br' € N.

Proor. If N = mker(y) for some morphism v: R — S and if r,7/,a,b are as
stated then y(ar + br") = v(a)y(r) + y(b)y(r") = v(r) + ¥(»') = v(r + ') = 15 and
so ar + br' € mker(y) = N.

Conversely, assume that N satisfies the desired condition. Define a relation =y
on R by setting r =y 7' if and only if » = ¢/ or #/r~! € N. This is clearly an
equivalence relatisn, and we claim that it is a congruence relation as well. Indeed,
ifa=xnyband cz:y din R then

r=(a+ec)(b+d)™" = (ab )b+ d)'] = (cd™)[d(b+ d)7'].

But ab~! and ¢d~! belong to N while b(b+ d)~! + d(b+ d)~' = 1 so, by the
assumed property of N, » € N. Therefore a + ¢ =y b+ d. Finally, ac(bd)™! =
acd 171 = (ab=1)b(ed~1)b~! and this belongs to N since ab~! € N, ed~! € N,
and b(cd=1)b~! € N by normality. Thus ac =y bd.

The congruence relation =y is proper since clearly 0 and 1 are not related under
it. Therefore we can define the factor semiring S = R/ =xn and the morphism of
semirings y: R — S given by r — r/ =y. For this morphism, mker(y) = {r € R |
r=N ].} =N. O

(10.25) ProPoSITION. If R is a division semiring then a morphism of semirings
v: R — S is monic if and only if mker(y) = {1}.

Proor. If v is monic then surely mker(y) = {1}. Conversely, assume that y
is not monic. Then there exist elements a # b of R satisfying y(a) = y(b). One
of these, say a, must be nonzero. Therefore 15 = ¥(1) = y(aa™!) = y(a)y(a™}) =
v(b)y(a=!) = y(ba~1), and so 1 # ba~! € mker(y). O



11. SEMIRINGS OF FRACTIONS

In this chapter we build the classical semiring of fractions of a semiring using a
straightforward adaptation of the method used for rings. This is a special case of
the more general method of constructing semirings and semimodules of quotients,
to which we will return in Chapter 18.

Let R be a semiring. A left @re set of elements of R is a submonoid A of (R, -)
satisfying the following conditions:

(1) For each pair (a,r) € A x R there exists a pair (a/,7') € A x R satisfying
ar=ra;
(2) If ra = r'a for some r,7’ € R and a € A then there exists an element a’ € A
satisfying a’r = a'r/;
(3)0¢ A.
Right Ore sets are defined analogously.

(11.1) ExaMPLE. If R is a semiring then any submonoid of (C(R), -) not con-
taining 0 is a left and right @re set. If y: R — S is a morphism of semirings then
this is true, for example, of y7!(15) N C(R). In particular, if R is commutative
then any submonoid of (R\ {0}, ‘) is a left and right @re set. Thus, if [ is a prime
ideal of a commutative semiring R then R\ [ is a left and right Ore set.

A semiring R is a left [resp. right] @re semiring if and only if R\ {0} is a left
[resp. right] Qre set. Note that @re semirings are necessarily entire.

(11.2) EXAMPLE. Any commutative entire semiring is a left and right Ore
semiring; thus, in particular, N is a left and right Qre semiring.

For a left @re set A of elements of a semiring R define the relation ~ on A x R
by setting (a,r) ~ (a’, ') if and only if there exist elements u and u’ of R such that
ur = u'r’ and ua = v'a’ € A. If (a,r) € Ax R and if u is an element of R satisfying
ua € A then by taking u’ = 1 we see that (a,r) ~ (ua,ur). We also note that if
r,7 € R then (1,7) ~ (1,7') if and only if there exists an element a € A such that
ar = ar'.

(11.3) PROPOSITION. Let A be a left Ore set of elements of a semiring R. If
(a1,71) ~ (az,r2) iIn A x R and if there exist elements u and u' of R satisfying
ua; = u'ay € A then there exists an element v of R satisfying vury = vu'ry and
vua; = vu'as € A.

J. S. Golan, Semirings and their Applications
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PROOF. Since (a1,71) ~ (ag,rs), there exist elements R and 7’ in R satisfying
rry = r'ry and ra; = r'ag € A. Since A is a left Ore set, there exist elements
r” of R and a” of A such that (a”r)a; = a”(ra;) = r"”(ua1) = (r"u)a; and so
there exists an element b, of A satisfying b;(a”r) = b1(r”u). This implies that
(b1r"v)az = by1r"ua; = b1a”ra; = (bya”’r')as and so, again, there exists an element
by of A satisfying by(byr”u’) = ba(bia’’r’) If we now set v = babyr” then it is
straightforward to verify that this element has the desired property. [

(11.4) PrROPOSITION. For each left Ore set A of elements of a semiring R, the
relation ~ on A x R defined above is an equivalence relation.

Proor. Clearly (a,r) ~ (a,r) for all (e,7) € A x R and (a,r) ~ (a’, ') implies
that (a’,7') ~ (a,r). We are therefore left to show transitivity. Indeed, assume
that (a1,71) ~ (a2, 72) and (az,72) ~ (a3, r3) in A x R. Then there exist elements
u,v',v,v" € R satisfying ury = u'rq, vry = v'r3, ua; = v'as € A, and vay =
v'az € A. Since A is a left Ore set of elements of R, there exist elements A of 4
and R of R such that av = ru’. Then (ru)a; = r(v'a2) = (av)as = a(vay) € A.
By Proposition 11.3, there exists an element w of R satisfying w(ru)r; = w(av)ry
and w(ru)a; = w(av)ay € A. Then (wru)r; = (wav)ry = (wav')rs and similarly
(wru)a; = (wav')az € A, and we are done. O

We will denote the set (4 x R)/ ~ by A™!R and the equivalence class of each
pair (a,7) in A x R by a~lr. Note that if u is an element of R satisfying ua € A
then a=!r = (ua)~lur. If B is a nonempty subset of R then we set A~!B to be
equal to {a~'b|a € A,b € B}.

Now define operations of addition and multiplication on A~!R as follows:

(1) (a7'r1)+(astry) = (aay)"Y[ar; 4+ rr2], where r € R and a € A are elements

chosen such that aa; = ras;

(2) (a7'r1)(az'r2) = (aa;)~'rry, where a € A and r € R are chosen so that

aa; € A and ar; = ras.
We must, of course, establish that these operations are indeed well-defined. This
will be done in three stages:

Stage I First, we show that sums and products are independent of the choice of
the elements R and a. Indeed, since A is a left @re domain there exist elements
ag of A and rg of R satisfying aga; = rgas. Now choose elements R of R and
A of A such that aa; = ras. Then there exist elements v’ of R and &’ of A
satisfying r’ag = a’a and so (a'r)ay = d'(raz) = da’(aay) = (d’a)a; = (r'ag)a; =
r'(apa1) = r'(roaz) = (r'rg)az and so there exists an element b of A satisfying
b(a'r) = b(r'rg). Moreover, br'aga; = ba'aa; € A and so (aga;)~[aory + rors] =
(br'agay)~[br'agry + br'rory] = (ba'aa;)~[ba’ary + ba'rre] = (aa1)”ary + rro).
Thus, this last expression is independent of the choice of @ and r.

Similarly, there exist elements ¢y of A and sg of R satisfying cor1 = spaz. Now
choose elements r of R and a of A such that ar, = ra;. Then there exist elements
s’ of R and ¢’ of A satisfying s'co = ¢’a and so (c'r)ay = ¢'(raz) = ¢(ar) =
(c'a)ry = (r'eg)r1 = (7's0)az and so there exists an element ¢ of A satisfying cc'r =
cr'sy. Moreover, cs'coay = cc’'aa; € A and so (coar)"ser2 = (cs’coar)"tes'rory =
(cc’aay)~tec'rry = (aa;)~lrry and so this last expression is independent of the
choice of A and r.
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Stage II: Next, we must show that these operations are independent of the choice
of representative of the equivalence class a7 *r;. Indeed, suppose that a;'r; = b7's;
in A"'R. Then there exist elements u and u’ of R such that ur; = u’s; and
ua; = u’'by € A. Select elements r € R and a € A such that a(ua;) = raz. Then
(au)a; = raz and so

-1

(al—lrl) + (a{lrz) = (aua;) " aury + rro) = (uay) tury + a{lrz

= (u'by) " u'sy + aTlry = (au'by) " Yau's; + rro
2

= (aby) " asy + rra] = (b7 's1) + (a5 'r2).
Similarly, select s € R and b € A such that b(ury) = saz. Then b(ua;) € A so

(a7 'm)(ay ') = (uar) ™ sre = [(uar) ™ uri]ag ']

= [(«/ bl)—lu'sl][aglrg] = (bu'bl)_lsrz

= (b7 's1)(az ' r2).

Stage III: Finally, we must show that these operations are independent of the
choice of representative of the equivalence class a;1r2. Indeed, suppose that
az_lrz = bz‘lsz. Then there exist elements u and v’ of R satisfying urs = u'sy
and ua; = u'by € A. Select elements 7 € R and a € A such that aa; = r(uas).
Then aa; = r(w'bz) and we have (a]'r) + (a5try) = (aay)~tar, + (ru)r] =
(aar)~ary + r(u's2)] = (a7lr1) + [(wb2)~ u's2] = (a7 'r1) + (b5 's2). Similarly,
select s € R and b E A such that ba, € A and br1 = s(uaz) Then br; =

s(u ’bz) so (al 'r1)(agtry) = (bay) " tsury = (bay)~lsu'sy = (a7 tr)[(w'be) " tu'ry) =
(ay tr1)(by 2 T2).

Thus th» operations of sum and product in A~!R are well-defined. We also note
that if a € A and if 71,72 € R then (a~!r1) + (a='r2) = a~!(r; + r2). Moreover,
if a7 'r; and a5 'ry are elements of A~'R and if 7' € R and a’ € A are elements
satisfying a’as = r’a; then al_lrl = b~!(r'ry) and a;lrz = b=Y(a'ry), where b =
a’as € A. Repeating this process finitely-many times, we conclude that any finite
set of elements of A~! R can be represented with a “common denominator”.

(11.5) PrOPOSITION. If A is a left @Ore set of elements of a semiring R then
(A~'R,+,") is a semiring.

Proor. The verification of the semiring axioms is routine. The additive identity
of A='R is 1710 and the multiplicative identity of A~'Ris 1=11. O

The semiring A~'R defined in Proposition 11.5 is called the classical left
semiring of fractions of R with respect to the left @re set A. The classical
right semiring of fractions RB~! of R with respect to a right @re set B of
elements of R is defined in an analogous manner. This construction can also be
accomplished for topological semirings. See [Botero & Weinert, 1971].

(11.6) ExamPLE. Clearly P~!N is isomorphic to Q.
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(11.7) ExaMPLE. Let R be a commutative entire semiring and let A = R\ {0}
which, as we noted in Example 11.2, is an @re set. If a~!r is a nonzero element
of A7!R then we must have r # 0 and so r~la € A7!R as well. Moreover,
alr.r~la=17'1 and so a~'r € U(A~!R). Thus every nonzero element of A"1R
is a unit, proving that A™! R is in fact a semifield.

(11.8) EXAMPLE. Let R be a semiring, let A = {t}, and let S = R({(A)) be the
ring of formal power series in an indeterminate . Each ¢* € A* corresponds to the
element f; € S defined by

1 ifi=h

0 otherwise

f,-;th._>{

Thus we can consider A* as a subset of the center of S and, indeed, it is an @re
set. Moreover, (A*)71S is just the semiring of Laurent series over R in the
indeterminate ¢.

(11.9) ExampLE. If R = (RU {—o0},®,®) is the schedule algebra (where
® = maz and ® = +) and if ¢ is an indeterminate over R, then A = R\ {0} is
a left Ore set of elements of R and so we can consider the semiring A~'R. This
is done in [Cuninghame-Green & Meijer, 1980]. In particular, they give necessary
and sufficient conditions for an element ¢(¢)~!p(t) to have a resolution into partial
fractions of the form @7, [t ®a;]~1b;. Such resolutions have important applications
in optimization theory.

For every left Dre set A of elements of a semiring R we have a function y4: R —
A™'R defined by y4:7 +— 171r. Clearly 74 takes the additive and multiplicative
identities of R to the additive and multiplicative identities of A~1R respectively.
Moreover, ya(r+7') =17 (r+7) = 171r + 171" = y4(r) + va(r') and ya(rr') =
17%(rr') = ya(r)ya(r') and so 4 is a morphism of semirings. The kernel of this
morphism is precisely {r € R | ur = 0 for some u € A}. Thus the kernel of this
morphism is {0} whenever ar = 0 = » = 0 for all @ € A. This is so if every element
of A is left multiplicatively cancellable and hence certainly so if R is entire. In fact,
if every element of A is left multiplicatively cancellable then v, is easily seen to
be injective since 74(r) = va(r') implies that 171r = 1717’ and so there exists an
element a of A satisfying ar = ar’, which in turn implies that » = »’. Moreover,
if a € A then (17'a)(a™'1) = (a~!1)(17ta) = 171 and so y4(A4) C U(A™'R).
As a consequence, we see that if R is a left @re semiring then A~!R is a division
semiring.

(11.10) ExampLE. [Vandiver, 1940; Murata, 1950] Let R be a semiring and let
¢ be a multiplicatively cancellable element of C(R). Then A = {¢’ | i € N} is an
@Dre set satisfying the condition that v, is injective.

(11.11) ProrosiTION. Let R be a semiring and let A be a left Ore set of
elements of R contained in I*(R). Then v4 Is surjective.

Proor. If a € A and 7 € R then a~'r = (a®)"(ar) = a~!(ar) = 171r =
ya(r). O
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(11.12) ExaMPLE. [Sancho de Salas, 1987] If R is a bounded distributive lattice
then y4: R — A~!R is surjective for every Ore subset A of R. Thus, for example,
if Y is a subspace of a topological space X, if R is the semiring of all closed subsets
of X, and if A is the @Ore subset of all closed subsets of X which do not intersect
Y then A~1X is the lattice of “germs of closed sets along Y”, namely the lattice
obtained from R by identifying closed sets which agree in a neighborhood of Y.

(11.13) ProprosITION. Let A be a left Ore set of elements of a semiring R and
let v: R — S be a morphism of semirings satisfying ¥(A) C U(S). Then there exists
a morphism of semirings 6: A"'R — S satisfying 6v4 = v and ker(6) = A~ ker(y).

PROOF. Define 6 by 6(a~'r) = [y(a)]~!(r). This is well-defined since if a~!r =
b~1s then there exist elements u and u’ of R satisfying ur = u's and ua = u'b € A.
Then

[y(a)] " y(r) = [
[

Yy(ua)y(a) ™ y(r) = [y(ua)] ™ v (u)y(a)y(a) " (r)

(

y(ua)] " y(u)y(r) = [y(ua)] ™ y(ur)
(w'0)] " y(u's) = [y(w'B)] ™ y(u'b)y(b) ™ (s)
( 1

Straightforward verification shows that é is a morphism of semirings satisfying
674 = 7. Clearly A=lker(y) C ker(6). Conversely, if a~!r € ker(é) then
v(a)"ty(r) = 0 and so ¥(r) = 0, proving that a='r € A~ lker(y). O

(11.14) APPLICATION. Let R be the semifield (NU {—co0}, maz,+) and let S
be a zerosumfree semiring. In Example 10.9 we considered the semiisomorphism
v:S[t] — R which assigns to each polynomial its degree. If A is a left Qre set of
elements of S[t] then, by Proposition 11.13, this map can be extended to a morrhism
of semirings 6: A~1S[t] — R which is also a semiisomorphism.

This construction was considered in [Cuninghame-Green, 1984] for the special
case of S = Nand A = S\ {0} and applied to various problems in optimization the-
ory, linear programming, and quadratic programming. His method is to formulate
a problem as a computation in R, to consider its preimage in S[t], solve the problem
there using regular polynomial computation, and then translate the solution back
to R via 7.

(11.15) ProproSITION. If A is a left Ore set of elements of a semiring R and if
I is a left ideal of R then:

(1) A='I is aleft ideal of A"'R if and only if AN I = @;

(2) A='I = AR otherwise.

Proor. Ifa,b,c€ A, r € R, and s,t € I then it is easy to verify that b=!s+c~ ¢
and (a~!r)(b~'s) both belong to A='I. Therefore, A='I is either a left ideal of
A"'Ror equal to all of A7'R. If a € ANT then 17'a € A" I NU(A™'R. so for
each element b~ 'r of A"!'R we have b~'r = [(b~!r)(a=11)](17a) € A~'I. Thus
A~ = A"'R. Conversely, assume that A~'] = A"'R. Then 17!1 = 115 for
some element b of I. Thus there exists an element u of A satisfying ub = u and so
ube INA, proving that ITNA# 2. O
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(11.16) PrOPOSITION. If A is a left @re set of elements of a semiring R which
satisfies the condition that 4 Is injective then:

(1) A~!R is cancellative whenever R is;
(2) A~'R is plain whenever R is.

PRrOOF. (1) Assume that R is cancellative and let u;, us, and ug be elements
of A~1R satisfying u; + uz = us + uz. By the remark before Proposition 11.5, we
see that there exist an element a of A and elements ry, 72, and r3 of R such that
ui =a " 'r; for i =1,2,3. Hence

Ya(ri+r2) =17 (T‘1+7"2)—(1 Ya)(a™ ry + 72))
=(17"e)a" ri a7 rg) = (17 a)[a ™y 4+ a7 )
= (1"Ya)(a Y [ry + r3)) = 171 (r1 + 73)
=ya(r1 +rs)

and so 1 + ro = r; + r3. Since R is cancellative, this implies that o = r3 and so
us = uz. Thus A~ R is also cancellative.

(2) Assume that R is plain and that u and v are elements of A~!R satisfying
u+v = v. By the remark before Proposition 11.5, there exist an element a of A and
elements R and 7/ of R such that u = a~!r and v = a='»’. Thus a=![r+7] = a= !¢/
soya(r+r)=1"1r+r") = (1" a)a t(r+7")] = 17 a)(a 7)) = 171 = y4(r)
and hence r + v’ = /. This implies that » € Z(R) and so r = 0, whence u = 0.
Thus A™'R is plain. O

If R is a commutative semiring and A is an @re set of elements of R, then
LaGrassa [1995] has shown that A~!I is a prime ideal of A~!R for every prime
ideal I of R disjoint from A. Also, conversely, if H is a prime ideal of A"!R then
7;1(H) is a prime ideal of R. Thus there in fact exists an order-preserving bijection
between spec(A~1R) and {I € spec(R) | IN A = @}.

If R is a subsemiring of a semiring S then S is a left semiring of fractions of
R if and only if for all s # s’ € S and s € S there exists an element R of R such
that rs # rs’ and rs” € R. This condition was studied for rings in [Lambek, 1966]
and for bounded distributive lattices in [Schmid, 1983].

(11.17) ProprosITION. If A is a left Ore set of elements of a semiring R then
A~!R is a left semiring of fractions of y4(R).

ProoF. If a=r # b~'s and ¢~ 't are elements of A~'R then, from the defini-
tions, one sees that (17 1¢)(¢™t) = 17 € va(R) and (17'¢)(a™r) # (17 1) (b7 s).
a

The construction of other semirings of fractions of a semiring is tied in with

general localization theory for semimodules over semirings, and we will therefore
defer its consideration until Chapter 18.
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If a is an element of a semiring R then we denote by RD(a) the set of all right
divisors of a in the monoid (R, -). That is to say, RD(a) ={b€ R|a € Rb} = {b€
R | Ra C Rb}. Since b € RD(b) for all b € R, it is clearly true that b € RD(a) if
and only if RD(b) C RD(a). Note that if R is a simple semiring and if 6 € RD(a)
then there exists an element r of R such that a = rb and so, by Proposition 4.3, we
have a +b = rb+ b = b. Thus we see that if a is an element of a simple semiring R
then RD(a) # @ implies that a € Z(R).

If a is an element of a semiring R then U(R) C RD(1g) C RD(a). If a ¢ U(R)
and RD(a) = U(R) U {a} then a is said to be irreducible from the right.
Irreducibility from the left is defined similarly.

(12.1) ExaMPLE. [Jacobson & Wisner, 1966] If R = M5(N) then the only

elements of R having determinant 1 which are irreducible from the right are [1 1]

01
and [i?]

If A is a nonempty subset of a semiring R then the set of common right
divisors of A is CRD(A) = N{RD(a) | a € A} = {b € R| RA C Rb}. An
element b € CRD(A) is a greatest common right divisor of A if and only if
CRD(A) = RD(b).

(12.2) ProprosITION. If A is a nonempty subset of a semiring R then an element
b of R is a greatest common right divisor of A if and only if the following conditions
are satisfied:

(1) RA C Rb;

(2) Ifc € R satisfies RA C Rc then Rb C Rc.

PROOF. Assume that b is a greatest common right divisor of A. Then b €
CRD(A) and so b € RD(a) for each a € A. Thus Ra C Rb for each a € A,
implying that RA C Rb. Moreover, if RA C Rec for some element ¢ of R then
¢ € CRD(A) = RD(b) and so Rb C Re.

Conversely, assume conditions (1) and (2) are satisfied. By (1), b € CRD(A)
and so RD(b) C CRD(A). By (2), if c € CRD(A) then RA C Rc and so Rb C Re.
Hence ¢ € RD(b), proving that CRD(A) C RD(b) and thus yielding equality. O

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999

135



136 CHAPTER 12

(12.3) CoROLLARY. If every left ideal of a semiring R is principal, then every
nonempty subset of R has a greatest common right divisor.

ProoF. Let A be a nonempty subset of R. Then RA = R or RA is a left ideal
of R. Hence, by hypothesis, there exists an element b of R satisfying RA = Rb. By
Proposition 12.2, b is a greatest common right divisor of A. O

(12.4) ProPOSITION. Let a, b, and ¢ be elements of a semiring R. Ifd is a
greatest common right divisor of {a,b} and e is a greatest common right divisor of
{¢,d} then e is a greatest common right divisor of {a, b, c}.

Proor. By definition, RD(e) = RD(d) N RD(c) = RD(a) N RD(b) N RD(c) =
CRD({a,b,c}). O

If a and b are elements of a semiring R then CRD({a, b}) is clearly contained in
CRD({a + b,b}). We now investigate the conditions for having equality.

(12.5) ProPOSITION. The following conditions on a semiring R are equivalent:

(1) CRD({a,b}) = CRD({a+b,b}) for all a,b € R;
(2) Every principal left ideal of R is subtractive.

ProOF. Assume (1) and let Rd be a principal left ideal of R. If a and a + b
belong to Rd then d € CRD({a + b,a}) = CRD({a,b}) and so b € Rd. Therefore
Rd is subtractive. Conversely, assume (2) and let a,b € R. If d € CRD({a + b,b})
then a + b and b both belong to Rd and so, by (2), a € Rd. Therefore d €
CRD({a,b}). O

A semiring for which the equivalent conditions of Proposition 12.5 hold will be
called a PLIS-semiring.

(12.6) ExaMPLE. Recall that in Example 6.28 we presented a semiring R having
a nonzero left ideal H containing no nonzero subtractive left ideals. In particular,
if 0 # h € H then Rh is not subtractive. Hence R is not a PLIS-semiring.

Elements a and b of a semiring R are right associates if there exists an element
u € U(R) satisfying a = ub. Note that in this case b = u~'a and Ra = Rb.

A left euclidean norm § defined on a semiring R is a function é: R\ {0} — N
satisfying the following condition:

(*) If a and b are elements of R with b # 0 then there exist elements ¢ and r of
R satisfying a = ¢b + r with » = 0 or §(r) < 6(b).
A right euclidean norm is defined similarly, except that in condition (*) we have
a = bg+ r. A semiring R is left [resp. right] euclidean if and only if there
exists a left [resp. right] euclidean norm defined on R. For commutative semirings,
needless to say, the notions of left and right euclidean norm coincide. If we want
to emphasize the role of §, we will speak of the euclidean semiring (R, §).

If 6 is a left euclidean norm on a semiring R we can extend é to a function &'
from R to NU {oo} by setting 6'(0) = oo. This function satisfies the condition
that if @ and b are elements of R satisfying §’(a) > '(b) then there exist elements
g and r of R satisfying a = ¢b + r, where » = 0 or 8'(r) < é'(b). Conversely, if
8': R — NU {co} is a function satisfying this condition then its restriction is a left
euclidean norm on K.
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(12.7) ExampLE. The semiring N is euclidean if we define the euclidean norm
2

dby é:n—nor b:n— n°.

(12.8) ExaMPLE. [Hebisch & Weinert, 1987] Let S[t] be the semiring of polyno-
mials in the indeterminate ¢ over a division semiring S and let p be the congruence
relation on S[t] defined by Yait' p Zbiti if and only if a1t + ag = b1t + bo.
Let R be the factor semiring S[t]/p. Then the there exists a left euclidean norm
6: R\ {0} — N defined by setting

) (Z aiti/p)

{1 if ap # 0

0 otherwise

(12.9) EXAMPLE. [Hebisch & Weinert, 1987] Let R be the subsemiring of Q*
defined by R = {q € Q* | ¢ = 0 or ¢ > 1} and suppose that we have a left euclidean
norm 6: R\ {0} — N. Let 0 < a < b be elements of R. If §(a) > 6(b) then there
would have to exist elements ¢ and r of R satisfying a = ¢b + r, where r = 0 or
6(r) < 6(b). But a < b implies that a < ¢b for all 0 # ¢ € R and a = 0b + 7 leads
to the contradiction 6(a) = 6(r) < 6(b). Thus a < b implies that é(a) < 6(b) for all
0# a,b € R. Therefore R\ {0} is order-isomorphic to the subset im(6) of N, which
is impossible. Thus no left euclidean norm can be defined on R, and so R is not a
left euclidean semiring.

(12.10) PROPOSITION. If § is a left euclidean norm defined on a semiring R
then there exists another left euclidean norm 6* defined on R and satisfying:

(1) 6*(a) < 8(a) for alla € R\ {0}; and

(2) 6*(b) < 8(rb) for all b,r € R satisfying rb # 0.

PrOOF. For each 0 # a € R, set 6*(a) = min{é(ra) | ra # 0}. The function 6"
clearly satisfies (1) and (2), so all we have to show is that it is indeed a left euclidean
norm on R. Let @ and b be nonzero elements of R satisfying 6*(a) > 6*(b). Then
there exists an element s of R such that 6*(sb) = &(sb). Then 6(a) > 6(sb) and so
there exist elements ¢ and 7 of R such that a = gsb+r, where r = 0 or é(r) < 8(sb).
In the second case, we have 6*(r) < 8(r) < é(sb) = 6*(b). Thus 6" is a left euclidean
normon R. O

Thus, if (R, §) is a left euclidean semiring we can, without loss of generality,
assume that & satisfies the condition that §(b) < 6(rb) for all 0 # b € R and all
r € R such that b # 0. A left euclidean norm satisfying this condition is said
to be submultiplicative. A left euclidean norm & defined on a semiring R is
multiplicative if and only if §(ab) = §(a)é(b) for all a,b € R satisfying ab # 0.
That is to say, § is multiplicative if and only if it is a semigroup homomorphism
from R\ {0}, ") to (N, ).

(12.11) ProposITION. If R is a semiring on which we have defined a submul-
tiplicative euclidean norm é: R\ {0} — N and if M5 = {r € R | 6(r)} is a minimal
element of im(§) then:

(1) 1r € Ms;
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(2) If a € My then there exists an element q of R satisfying 1 = qa;
(3) MsNI*(R) = {1gr};
(4) U(R) C My, with equality holding if R is commutative.

ProoF. (1) If 0 # a € R then, by submultiplicity, 6(1g) < é(algr) = é(a) and
so 1lp € M;s.

(2) If a € M then there exist elements ¢ and r of R satisfying 1 = ga + r with
r =0 or 6(r) < 6(a). The latter case is impossible by minimality, and so 1g = ga.

(3) If ¢ € Ms N I*(R) then, by (2), there exists an element ¢ of R satisfying
lg = qcand so ¢ = 1ge = gc? = qc = 1g.

(4) If a € U(R) there exists an element b of R such that 1z = ba and so
6(a) < 6(ba) = 8(1R). Since 1g € My, this means we have equality and a € Mj.
Hence U(R) C Ms. If R is commutative, then by (2) the reverse containment is
true. O

(12.12) PrROPOSITION. Let R be a commutative cancellative semiring and let
6 be a submultiplicative euclidean norm defined on R. Then é(a) = 6(—a) for all
a € V(R).

PRrRoOF. Assume the result is false and let A be the nonempty set of all of nonzero
elements a’ of V(R) satisfying 6(a’) > é(—a’). Choose a to be an element of A for
which 6(—a) is minimal. Then there exist elements ¢ and r of R satisfying a =
g(—a)+r, where » = 0 or 6(r) < 6(—a). Assume r # 0. Then ¢(—a)+(—a)+r =0
and so ¢ = ¢(—a) + (—a) € V(R) and —[¢(—a) + (—a)] = r. Moreover, ¢ ¢ A,
since otherwise we would contradict the choice of a. Thus é(¢) = é(r). But this
is impossible since then §(r) = 6(¢c) = é([g + 1](—a)) > 6(—a) by submultiplicity.
Thus we must have » = 0 and hence a = ¢(—a). Then ga+a = ¢(a+(—a)) =¢0 =10
and so —a = ga + a + (—a) = ga. This implies that §(—a) > é(a), contradicting
the assumption that a € A. Thus A must be empty, proving the proposition. O

(12.13) ProPosITION. Ify: R — S is a surjective morphism of semirings and
if § is a left euclidean norm on R then there exists a left euclidean norm é' on S
defined by §'(c) = min{é(a) |a € y~!(c)} for all0 #a € S.

ProoF. Let ¢ and d be elements of S with d # 0. Then there exist elements a
and b # 0 of R such that y(a) = ¢ and y(b) = d. Moreover, we can choose b so that
8'(d) = 8(b). Since § is a left euclidean norm on R, there exist elements ¢ and r of
R satisfying a = ¢gb+r, where r = 0 or §(r) < §(b). Hence ¢ = vy(a) = v(q)d +~(r),
where y(r) = 0 or §(y(r)) < é(r) < 6(b) = 6'(d). This proves that &' is a left
euclidean norm on S. O

(12.14) ProprosITION. If R is a left Euclidean semiring then every subtractive
left 1deal of R is principal.

PRroOOF. Let 8 be a left euclidean norm on R and let I be a subtractive left ideal
of R. Then {6(a) | @ € I} has a minimal element, say §(b). Assume that a € I\ Rb.
Then there exists an element » € R\ {0} such that a = ¢b+r and é(r) < 6(b). But
r € I since I is subtractive, contradicting the minimality of §(b). Hence we must
have I = Rb. O
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(12.15) ProrosITION. The following conditions on a left Euclidean semiring R
are equivalent:
(1) R is a PLIS-semiring;
(2) There exists a left Euclidean norm é defined on R satisfying the condition
that ifa = qb+r forr € R\ {0} and 6(r) < 6(b) then a ¢ Rb.

ProoFr. (1) = (2): By Proposition 12.10, we know that there exists a left
euclidean norm é on R satisfying the condition that 6(s) < é(rs) for all r, s € R\{0}.
Assume that a = ¢b +r for r € R\ {0} and é(r) < 6(b). If @ € Rb then by (1) we
must have r = ¢b for some ¢ € R and so §(r) > 6(b), which is a contradiction. Thus
a ¢ Rb.

(2) = (1): Assume that a,b € R and that t € CRD({a + b,b}). Then we can
write a + b = dt and b = et for elements d and e of R. By the choice of §, we
know that 6(a) > 6(t) and so either a = qt or a = qt + r for some 0 # r € R
satisfying 6(r) < §(t). But in the latter case we have dt = (e + ¢)t + r, which again
contradicts the stated condition. Thus we must have a = ¢t and so t € RD(a).
Since t € RD(b) by the choice of t, we have t € CRD({a,b}). Thus R is a PLIS-
semiring by Proposition 12.5. O

(12.16) ProposITION. If R is a left Euclidean PLIS-semiring then any non-
empty finite subset A of R has a greatest common right divisor.

ProoF. By Proposition 12.4, it suffices to consider the case of A = {a,b}. If
a = b = 0 then 0 is a greatest common right divisor of {a,b} and we are done.
Hence, without loss of generality, we can assume that b # 0. Since R is a PLIS-
semiring, we know by Proposition 12.15 that there exists a left Euclidean norm 6
defined on R satisfying the condition that if a = ¢b + r for r € R\ {0} satisfying
8(r) < 8(b) then a ¢ Rb.

By repeated applications of §, we can find elements ¢;,...,qn4+1 and ry,...,rp cf
R\{0} such that a = q1b+7r1, b = qar1+72, ..., Pne2 = @uPn-1+Tn, Tne1 = @ni1™n
and 6(b) > 6(r1) > -+ > 8(rn). (The process of selecting the ¢; and r; must indeed
terminate after finitely-many steps, since there are no infinite decreasing sequences
of elements of N.) Working backwards, we then see that

pn-2 = [‘InQn+1 + 1]7'n
T™—-3 = [Qn—IQnQn+1 +qn — 14+ Qn+1]rn

etc. until we establish that r, € CRD({a,b}). Conversely, assume that d €
CRD({a,b}). By Proposition 12.15, we see that d € RD(ry), d € RD(r2), ...,
d € RD(r,) and so RD(r,) = CRD({a,b}). Thus r, is a greatest common right
divisor of {a,b}. O

Closely related to the notion of a Euclidean norm is that of a Dale norm. If R
Is a commutative antisimple semiring then a function §: R — N is a Dale norm if
and only if the following conditions are satisfied:

(1) é(a) = 0 if and only if @ = Og;

(2) If Or # a+ b € R then §(a + b) > §(a);

(3) é(ab) = 8(a)é(b) for all a,b € R;

(4) If a € R and 0 # b € R then there exist elements ¢ and r of R such that

a=gb+r, where r =0 or 6(r) < §(b).
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One sees immediately that a Dale norm is a left and right euclidean norm. Also, if
R is a semiring on which a Dale norm is defined then R must be entire.

(12.17) ExamMPLE. If R is a division semiring then we can define a Dale norm
6 on Rby 6(0) =0 and é(a)=1forall0 #a € R.

(12.18) EXAMPLE. Let R be the semiring (NU{—o0}, maz, +) and letl < ¢ € R.
Then the function 6: R — N defined by é(—o0) = 0 and §(¢) = ¢* for i € N is a Dale
norm on R.

(12.19) ExaMPLE. The functions n + n and n + n? are Dale norms defined
on N.

(12.20) EXAMPLE. A left euclidean norm need not be a Dale norm, even if R
is a commutative ring (which is surely antisimple as a semiring). For example,
consider R = Z/(4) and define the function §: R\ {0} — N by §(1) = §(3) = 2 and
6(2) = 3. Then 6 is a left euclidean norm which cannot be converted into a Dale
norm since the ring R is not entire.

(12.21) PrOPOSITION. If R is a commutative antisimple semiring on which we
have defined a Dale norm é then:

(1) U(R)={a € R|é(a) =1},

(2) R is a division semiring if and only if §( R) is finite.

PROOF. (1) Note first that 0 # 6(1g) = 6(1g - 1r) = 6(1r)? and so §(1g) is a
nonzero idempotent of N, which implies that §(1g) = 1. If a € U(R) then there
exists an element b of R satisfying ab = 1 so 1 = 8(ab) = é(a)é(b), which implies
that 6(a) = 6(b) = 1 since N has only one unit. Conversely, assume that = € R
satisfies the condition that 6(a) = 1. Then there exist elements q and r of # such
that 1p = ga + r and either » = 0 or 8(r) < 8(a). Since é(a) = 1 we must have
r =0 and so 1g = qa, proving that a € U(R).

(2) i R is a division semiring then §(R) = {0, 1} and this is finite. Conversely, if
R is not a division semiring then there exists a nonzero element r of R which is not
a unit. By (1), this means that é(r) > 1. Moreover, since r is not a unit, neither is
r¥ for all k > 1 and, for each k > 1, we have 6(+F) = 6(r)6(+¥~1) > &(r*~1). Thus
6(R) is infinite. O

(12.22) ProrosITION. If R is a commutative antisimple semiring on which we
have a Dale norm é6: R — N then R is isomorphic to one of the following:

() N

(2) (NU {=co}, maz, +); or

(3) A division semiring.

ProoF. Let A = {nlg | n € N} be the basic subsemiring of R. First left us
consider the case that R = A. In this case, we have a surjective morphism of
semirings y:N — R given by n — nlg. If v is injective, we have shown that R is
isomorphic to N and we are done. If 7 is not injective, then im(y) = R is finite and
hence 8(R) is a finite subset of N. By Proposition 12.21(2), R is a division semiring
and we are done.
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Now assume that R # A and let a € R\ A. Since R is antisimple, there exists an
element a; of R satisfying a = a; + 1g. Clearly a; ¢ A. By an easy induction, we
see that for each n > 1 there exists an element a, of R\ A satisfying a = a, +nlg.
Hence é(a) > é(nlg) for all natural numbers n. Thus, for each k,n € N we have
6(a) > 6(n*1g) = 6((nlg)¥) = 8(nlg)F, which forces §(nlg) <1 for alln € N. We
now consider two cases:

Case . 1 +1g = 0. If 0 # @ € R then §(a) # 0 and 1 = §(1g) = 6(1r +
alg + alg) > é(alg) = é(a)é(1g) = 6(a) so é(a) = 1. By Proposition 12.21(2),
this implies that a € U(R) and so R is a division semiring and we are done.

Case II: 1p + 1g = b # 0. Then 6(b) = 1 by the above and so b € U(R). Let
¢ be an element of R satisfying bc = 1g. Then ¢+ ¢ = ¢b = 1g. Moreover, since
R is antisimple there exists an element y of R satisfyingc =y + 1g. f z2=c+ y
then 2+ 1g = ¢c4+y+1g = c+c¢c = 1g and 6(z) < é(lg) = 1. Thus z = 0
orz € UR). If z=0thenc+y=0s00=1r+by. If0 # a € R then
1 =6(1r) = é(1r + alg + aby) > 6(algr) = 6(a) and so é(a) = 1. Thus, again,
R is a division semiring and we are done. Hence assume that z € U(R). Then
z4z=c+c+y+y=1p+y+y=c+y=zandsoz € [T(R). If 2’ € R satisfies
2’z = 1g then 1g = 2’2 = /(2 + 2) = 2’2+ 2’2 = 1g + 1g. This implies that R is
additively idempotent.

Thus we are in the situation in which A = {0,1} is a proper subsemiring of the
semiring R. If 0 # a € R then, by antisimplicity, there exists an element b of R
satisfyinga=b+1gandsoa+1p=b+1g+1g =b+1g =a. If a € U(R) and if
a’ is an element of R satisfying aa’ = 1g then 1g = aa’ = (a + 1g)a’ = ad’ +a’' =
1r + @ = a’ so a = 1g. Thus we see that U(R) = {1g}. Thus, in particular, we
note that if r € R\ A then r ¢ U(R) so é(r) > 1. Pick an element a of R\ A
having the property that §(a) is minimal in N. Then 6(a) < §(a?) < ... in N. Let
5 = {lg,a,a?,...}. Then G is an infinite cyclic semigroup. Since 1g + a® = a*
for all h € N, we see that @' 4+ a’*? = a*? for all i, h € N. Hence R' = GU {0} 's
a subsemiring of R and there is an isomorphism ¥ from (NU {—oc0}, maz, +) to R’
satisfying y(—o00) = 0 and ¥(i) = o’ for all i € N. We will therefore complete the
proof if we can show that R = R’.

Assume that R # R’ and let ¢ € R\ R’. Then 6(¢) > 1 and we can pick
¢ among those elements of R\ R’ such that é(c) is minimal. By the choice of
a and by the fact that §(a’) = §(a’*!) for all natural numbers i, there exists a
natural number n such that §(a™) < é(c) < 8(a”*!). Moreover, since R is a
euclidean semiring there exist elements ¢ and r of R such that ¢ = ga” + r, where
r = 0or §(r) < 6(a™). If r # 0 then the choice of ¢ implies that r = a* for
some 1 < k < n—1 and hence ¢ = (ga®* + 1g)a*. If ga®~* = 0 we obtain
¢ = a¥ € G, which is a contradiction. Hence ga®~* # 0. By the above, we
then have ga"~* + 1g = ¢ga™~* and so ¢ = ¢ga”, corresponding to the case r = 0.
Moreover, we now have 6(a)” = 6(a”) < é(c) = 8(¢)6(a)” < é(a™t!) = é(a)**!
and so 1 < é(g) < 6(a), implying that é(¢) = 1 and so ¢ € U(R). But this means
that ¢ = 1g, which is a contradiction. Thus we must have R = R’, as desired. O



13. ADDITIVELY-REGULAR
SEMIRINGS

An element a of a semiring R is additively regular if and only if there exists
an element a# of R satisfying a + a + a# = a and a# + a# + a = a#. Actually,
as in the case of multiplicatively-regular elements, it suffices to assume that there
exists an element b of R satisfying a + a + b = a for, if such an element exists, the
element a¥ = b4 b + a satisfies both of the above conditions. If a € IT(R) then a
is additively regular with a# = a. If p is a congruence relation on R and a is an
additively-regular element of R then surely a/p is an additively-regular element of

R/p.
(13.1) PROPOSITION. If a is an additively-regular element of a semiring R then
the element a# is unique.

PROOF. Assume that b and ¢ are elements of R satisfying a+a+b = a = a+a+c,
b+b+a=b,andc+c+a=c. Thenb=b+b+a=b+b+at+at+c=bt+at+c=
c+b+a=c+c+b+at+a=c+ct+ta=c O

We will denote the set of all additively-regular elements of a semiring R by
reg(R). This set is nonempty since 0 € reg(R) with 0¥ = 0. Also, if a € reg(R)
then a# € reg(R) with a## = a. Note that we clearly have It (R) C reg(R)NZ(R).

(13.2) PROPOSITION. If R is a semiring then reg(R) € ideal(R).
PROOF. If a,b € reg(R) then (a# +b#) 4+ (a +b) +(a+b) =a+ b and

(a¥ +b#) + (a* + b#) + (a + b) = o + b*

so a+b is additively regular with (a+b)# = a# 4 b#. If a € reg(R) and r € R then
ra* 4+ ra + ra = ra and ra# + ra# + ra = ra#, so ra is additively regular, with
(ra)# = ra#*. Similarly ar is additively regular with (ar)# = a#r. Thus reg(R) is
either all of R or is an ideal of R. O

Note, in particular, that if a,b € reg(R) then a#b# = (a#b)# = (ab) ## = ab.
Thus, if a € I*(R) we have a = aa = (a¥#)?.

If a is an additively-regular element of a semiring R we set a® = a + a# This is
an additively-idempotent element of R. Conversely, if a is an additive-idempotent
J. S. Golan, Semirings and their Applications
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element of R then a = a +a = a + a# = a°. We note that if a,b € R then
a®b = (a + a*)b = ab + a#b = ab + (ab)# = (ab)°. Similarly, ab® = (ab)°.

The semiring R is additively regular if and only if R = reg(R). If R is
additively regular then clearly so is R* for any nonempty set A and M, (R) is also
additively regular for every positive integer n.

(13.3) ExaMPLE. [Tirasupa, 1979] A sufficient condition for R to be additively
regular is that R = V(R) + I*t(R). Indeed, if this condition holds and if a € R
then we can write a = b + e, where b has an additive inverse and e is additively
idempotent. If a# = —b+e we then have a+a+a# = b+e+b+e+(—b)+e=b+e=a
while a# + a# +a = (=b) + e+ (=b) +e+b+e=(=b) +e = a¥.

(13.4) EXAMPLE. A ring R is additively regular, with a# = —a for all a € R.
A generalization of this observation is due to [Lee, 1971]. Let (£, <) be a join
semilattice having a unique minimal element v and, for each i € Q, let (R;, +, ;)
be a ring, where we assume that R;NR; = Nfor all i # j in Q. Assume furthermore
that for each ¢ < j we have a ring homomorphism v;;: R; — R; satisfying

(1) 7 is the identity map for each i € Q; and

(2) YikYi; =Yk foralle < j <k in Q.
Set R = U{R; | ¢ € 2} and define on it operations of addition and multiplication as
follows: ifa € R; and b € R;j and if k = ¢V jin Q, then a+b = y;x(a) + v, (b) and
a-b=vir(a) -k vk (b). Under these definitions, (R, +,-) is a semiring with additive
identity 0, and multiplicative identity 1,. (In fact, R = h_rgR,) Moreover, R is

additively regular where, for a € R;, we let a# be the negation of a in R;.

(13.5) ExaMPLE. If Ris an additively-idempotent semiring then R is additively
regular with a# = a for all a € R.

(13.6) EXAMPLE. [Sen & Adhikari, 1992] Let S = (PU {=0},U, M), where P is
the set of positive integers and where the operations are given by

aub:{lcm(a,b) ifa,beP

00 ifa=occorb=0o0
and
ged(a,b) ifabelP
alNb=< a ifb=o
b ifa =00

Then R =7 x S is an additively-regular commutative semiring in which (k, s)# =
(—k,s). Moreover, H = {(0,s) | s € S} is a subtractive ideal of R containing
I*(R).

(13.7) ExaMPLE. Let R be a ring and let S be a subsemiring of ideal(R).
Set R = {(a,I) | a € I € S} and define operations @ and ® on R’ by setting
(a,1)® (b,H) = (a+b,I+ H) and (a,I) ® (b,H) = (ab,IH). Then R’ is an
additively-regular semiring where, for each (a,I) € R', we have (a,)¥ = (—a,I).
Moreover, It (R') = {(0,I)] I € S}.
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(13.8) ProrosITION. If R is an additively-regular semiring which is not a ring,
then there does not exist a semiisomorphism from R to a cancellative semiring.

PROOF. Assume that there exist a cancellative semiring S and a semiisomor-
phism 7: R — S. Since R is not a ring, there exists an element » € R\ V(R).
Then r° € I (R) and so y(r°) € I*(S). But S is cancellative so y(r°) = 0 and
hence r° € ker(y). Since 7 is a semiisomorphism, this means that r* = 0 and so
r € V(R), contradicting our assumption. [

(13.9) CoRroOLLARY. If v: R — S is a surjective morphism of semirings with
R additively regular and S cancellative then the congruence relations =jcr(4) and
[=lker(y) on R coincide.

PRrRoOF. Set I = ker(y). By Proposition 10.16 we know that there exists a
semiisomorphism v': R/I — S induced by y. Moreover, R/I is additively regular
since R is and so, by Proposition 13.8, we conclude that R/l is aring. If »,»’ € R
satisfy r[=];r’ then there exist elements a and a’ of I and an element s of R
satisfying r+a+s = v’ +a’ +s. Therefore (r+s)/I = (r'+s')/] andso r/I =¢'/]
since R/I is a ring. Hence r =; 7. The converse is always true, as remarked in
Chapter 5, and so the relations =; and [=]; coincide. O

If R is an additively-regular semiring then we have a congruence relation p on
R defined by a p b if and only if a® = b°. Since a p 0 if and only if a + a# = 0, we
can deduce easily that this relation is improper if and only if R is a ring.

(13.10) ProrosiTiON. If R is an additively-regular semiring then (r/p,+) is a
group for each r € R.

PROOF. Let » € R and let G = r/p. If a,b € G then (a +b)° = a® +b° =
4+ r° =7° and soa+b € G. In particular, 7 = r+r# € G. If a € G
then a + 7° = a + a® = a. Furthermore, a# € G since (a#)° = a° = r° and
a+ a# = a° = r°. Thus (G,+) is an additive group with identity element r°. [

Thus, in particular, we see that if R is an additively-regular semiring then (R, +)
is the union of groups.

(13.11) ProPosSITION. Let R be an additively-regular semiring which is not a
ring and let S = R/p. Then
(1) S=1I*(S) if and only if a® = aa® for all a € R;
(2) S is commutative if and only if ab® = b°a for all a,b € R;
(3) S is a lattice if and only if S = I*(S), S is commutative, and a + a°h = a
for all a,b € R.

PROOF. (1) Assume that S = I*(S). If a € R then a p a? and so a° = (a?)° =
aa®. Conversely, suppose that a® = aa®. Then (a?)° = aa® = a° and so a? p a for
all @ € R. This shows that S = I*(S).

(2) Assume that S is commutative. Then for a,b € R we have ab® = (ab)° =
(ba)® = b°a. Conversely, assume that ab® = b°a. Then (ab)° = (ba)® and so ab p ba
for all a,b € R, proving that S is commutative.

(3) Assume that S is commutative, that S = I*(S), and that the given condition
is satisfied. If € R then (a+a)° = a®°+a° = a® and so a p a+a. Thus S = I*(S).
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If a,b € R then a° = a* + a = a# + a°b = a® + a°b = a® + (ab)° = [a + ab]° so
apa+abpa®+abpala+b) and hence (S,+,-) is a lattice by Example 1.5.
Conversely, if S is a lattice then S is commutative, S = I*(S), and a° = a° + a°b
soa=a+a®=a+a’bforalla,be R. O

If R is an additively-regular semiring we now define a relation ¢ on R by setting
a ¢ bif and only if a + 6° = a® + b.

(13.12) EXAMPLE. If a,b € IT(R) thena =a® and b =b°soa+ b =a® + b
and hence a ¢ b.

(13.13) PROPOSITION. Ifa and b are elements of an additively-regular semiring
R then a ¢ b if and only if a + b# € IT(R).

Proor. If a ¢ b then
(a+b#)+(a+b#)=a+b#* 4% + b+ a+b*
=a+b° + (a+b%)+ 0%
=a® +b4a+b¥ 4+ b¥
—a+a* +b+a+b¥ +b#
=a+b¥
and so a + b# € IT(R). Conversely, if a + b# € I*(R) then a + b¥ = (a + b#)# =
a#* +bso
a+b=a+b¥+b=(a+b*)+ (a+b¥)+b
—a+b*+a¥ +b+0b
—a+a¥*+b=a°+0b,
proving that a ( . O
In particular, @ ¢ 0 if and only if a € It (R).

(13.14) ProPosITION. The following conditions on an additively-regular semir-
ing R are equivalent:
(1) ¢ is a congruence relation on R;

(2) Z(R) = I*(R).

PrOOF. (1) = (2): Clearly I*(R) C Z(R). Conversely, assume that b € Z(R).
Then there exists an element a of R satisfying a +b = a. Henceb+a® = a°. By (1),
a® = (a+b)° = a® +b°soa® ¢ band a® ¢ b°, whence b ¢ b° by (1). This implies
that b=b4+8° =b°+4° =b°so b € IT(R).

(2) = (1): If a and b are elements of R then clearly a ¢ a, and a { b when and
only when b ¢ a. Assume that a, b, and c are elements of R satisfying a { b and
b ¢ ¢. Then, by Proposition 13.13,

(a+c*)+ (a+c* +1b°)
=(a+c# +0°) + (a+c* +5°) + (a+ %)+ (b+ c*) + (a+ b%) + (b + c#)
=(a+b#)+ (b+c*)=a+c* +b°.
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By (2), this implies that a + ¢# € IT(R). Therefore a + ¢#* = (a + c¢#)° and so
(a+c#)+(a+c#) = (a+c#)+(a+c#)# 4 (a+c#) = a+c# which, by Proposition
13.13, implies that a ¢ ¢. Thus ¢ is an equivalence relation.

Ifa(candb(din Rthena+b+(c+d)° =a+bdb+c®°+d° =a®+0+c+d=
(a+86)°+c+dandsoa+b( c+d. Similarly, ab+ (cb)° = ab+c°b = (a+¢°)b =
(a® 4+ )b = a°b+ cb = (ab)° + cb and so ab ¢ ¢b. In a like manner, ¢b ¢ ¢d and so
ab ¢ ed. Thus { is a congruence relation on R. [

An additively-regular semiring satisfying the equivalent conditions of Proposition
13.14 will be called a Bandelt semiring.

(13.15) CoroLLARY. If R is a Bandelt semiring which is not additively idem-
potent then R/( is a ring.

ProoF. By Proposition 13.14 we know that ( is a congruence relation on R and
so R/( is a semiring. If a € R then a + a# € I*(R) and so, by Example 13.12,
a+a# 0. Thus a/¢+a#* /¢ = (a+a#)/¢ = 0/¢, showing that a/( has an additive
inverse in R/¢. Thus R/ isaring. O

(13.16) PROPOSITION. A semiring R is isomorphic to a subdirect product of
a ring and a lattice if and only if it is a Bandelt semiring satisfying the following
conditions:

(1) aa® = a® for alla € R;

(2) ab® = b°a for all a,b € R;

(3) a+a°b=a for alla,be R.

ProoF. If R is isomorphic to a subdirect product of a ring and a lattice then
surely it is Bandelt semiring satisfying the given conditions. Conversely, assume
that R is a Bandelt semiring satisfying the given conditions. By Proposition 13.11
we see that R/p is a lattice and by, Corollary 13.15, we see that R/( is a ring. We
also a morphism of semirings v: R — K/p x R/¢ given by r — (r/p,r/{), and all
we need to show is that this map is injective. Indeed, assume that y(a) = v(b).
Then a®° =b° anda+b0°=a’+bsoa=a+a® =a+b° =a+b=0+b=0. O



14. SEMIMODULES OVER
SEMIRINGS

The modules over a ring are an important tool in characterizing properties of
the ring and so it is only natural that we should look at the corresponding con-
struction over semirings. And, indeed, many of the constructions from ring theory
can be transfered, at least partially, to this more general setting. Moreover, many
important constructions in pure and applied mathematics can, as we shall see, be
understood as semimodules over appropriate semirings. In this chapter we lay the
foundations for the study of semimodules.

Let R be a semiring. A left R-semimodule is a commutative monoid (M, +)
with additive identity Ops for which we have a function R x M — M, denoted
by (r,m) — rm and called scalar multiplication, which satisfies the following
conditions for all elements » and r’ of R and all elements m and m’ of M:

(1) (rr')m = r(r'm);

(2) r(m+m') =rm+ rm/;

(3) (r+7)Ym=rm+r'm;

(4) 1gm = m;

(5) r0ar = 0pr = Opm.

Right semimodules over R are defined in an analogous manner. In what follows,
we will generally work with left seminiodules, with the corresponding results for
right semimodules being assumed without explicit mention.

If R and S are semirings then an (R, S)-bisemimodule (M, +) is both a left
R-semimodule and right S-semimodule satisfying the additional condition that
(rm)s =r(ms) forallme M, r € R,and s € S. If M is a left R-semimodule then
it i1s in fact an (R, C(R))-bisemimodule, with scalar multiplication on the right
being defined by m - » = rm. In particular, if R is commutative then any left
R-semimodule is an (R, R)-bisemimodule.

If R is a semitopological semiring then a left R-semimodule M is semitopologi-
cal if and only if it has the additional structure of a topological space such that the
function M x M — M defined by (m,m’) — m+m’ and the function Rx M — M
defined by (a, m) — am are continuous. If the underlying topological space is Haus-
dorff, then the semimodule is topological. Thus every semitopological semiring is
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a semitopological left semimodule over itself.

If m is an element of a R-module M then an element m’ of M satisfying m+m’ =
0pz is an additive inverse of m. Clearly additive inverses, if they exist, are unique,
and we will denote the additive inverse of m, if it exists, by —m. The set V(M)
of all elements of M having additive inverses is nonempty, since 0 € V(M). An R-
semimodule M is zerosumfree if and only if V(M) = {0}. At the other extreme,
an R-semimodule M satisfying V(M) = M is an R-module.

A nonempty subset N of a left R-semimodule M is a subsemimodule of M
if and only if N is closed under addition and scalar multiplication. Note that this
implies that 0ps € N. Subsemimodules of right semimodules and subbisemimod-
ules are defined analogously. For example, if A is a nonempty subset of a left
R-semimodule M and if I € lideal(R) then the set TA of all finite sums of the form
rymy+- - +remy (r; € I and m; € A) is a subsemimodule of M. A subsemimodule
which is an R-module is a submodule. Thus V(M) is a submodule of any left or
right R-semimodule M containing all other submodules of M. We will denote the
poset of all subsemimodules of a left R-semimodule M by ssm(M). An atom of
ssm(M) is a minimal subsemimodule of M.

If N € ssm(M) and a € C(R) then aN = {an | n € N} is also a subsemimodule
of M. Moreover, ifa,b € C(R) and N, N’ € ssm(M) we have a(N+N') = aN+aN’
and a(bN) = (ab)N. Thus ssm(M) is itself a left C'(R)-semimodule.

We note that if N is a subsemimodule of a left R-semimodule M and if m € M
then (N :m) = {a € R|am € N} is a left ideal of R. More generally, if A is a
nonempty subset of M we set (N : A) = N{(N : m) | m € A}. Following the usual
convention, we will write (0 : A) instead of ({0} : A). Since the intersection of an
arbitrary family of left ideals is again a left ideal, this too is a left ideal of R.

(14.1) ProprosITION. If N and N’ are subsemimodules of a left R-semimodule
M and if A and B are nonempty subsets of M then:

(1) A C B implies that (N : B) C (N : A);

(2) (NON':A)=(N:A)N(N':A);

(3) (N:A)N(N:B) C(N: A+ B), with equality holding if 0y € AN B.

Proor. (1) This is an immediate consequence of the definition.

(2) By definition, if » € R then » € (NN N' : A) & rm € NN N' or all
meAormeNandrmeN forallme Ao re (N:AN(N':A).

(3)Ifre(N:A)N(N:B) thenr(m+m') € N for allm € A and m’ € B and
sor € (N : A+ B). Conversely, if Opy € AN B then AUB C A+ B and so the
reverse inclusion holds. [

If v: R — S is a morphism of semirings and if M is a left S-semimodule then
1t 1s also canonically a left R-semimodule, with scalar multiplication defined by
r-m=(r)m for all € R and m € M. In particular, if M is a left S-semimodule
then M is a left R-semimodule for every subsemiring R of S.

(14.2) ExampLE. If R is a bounded distributive lattice then the left R-
semimodules have been studied by Fofanova [1971, 1982] under the name of poly-
gons. More generally, the structure of R-semimodules over commutative simple
semirings R has been studied in [Kearnes, 1995].
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(14.3) ExaMPLE. The N-semimodules are precisely the commutative additive
monoids. Thus, for example, Z \ P is an N-semimodule. Also, every semiring R is
an N-semimodule. If R is a semifield which is not a field then, by Proposition 4.34,
R is zerosumfree and so R is also a Qt-semimodule, where, for r € R and 2 € QT,

we set
m

(—) r= (nlg)~!(mr).
n

If (M,+) is an idempotent commutative monoid then M is a left N-semimodule
with scalar multiplication defined by 0m = 0ps for all m € M and im = m for all
meM and all 0 < 7 € N.

(14.4) EXxaMPLE. If M is a left R-semimodule and A is a nonempty set then M4
is a left R-semimodule with addition and scalar multiplication defined elementwise:
if f,g € M# and r € R then (f + g)(a) = f(a) + g(a) and (rf)(a) = r[f(a)] for all
a € A. Moreover, M(4) = {f € M4 | f has finite support} is a subsemimodule of
MA.

Similarly, if M is an (R, R)-bisemimodule then so are M4 and M) This is true
certainly for M = R. Thus we see that the set of all R-valued relations between
nonempty sets A and B is an (R, R)-bisemimodule, as is the set of all R-valued
graphs on a set of vertices V.

If B is a boolean ring then a measure on B is a function m from B to the
semiring Rt U {oo} satisfying the following conditions:

(1) m(bV¥)=m(b) + m(b) whenever bA b = 01in B;

(2) m(b) = 0 if and only if b = 0p;

(3) If {b;} is a sequence converging to b in B then m(b) = sup{m(b;)} in R*.
The family of all measures on B is a subbisemimodule of the (R*, R *)-bisemimodule
(RH)E.

(14.5) APPLICATION. Let R = (RU{oc}, min,+)and consider M = RF as a left
R-semimodule. Elements of M are signals. Addition in M corresponds to parallel
composition of signals, and scalar multiplication corresponds to amplification of
signals. See [Baccelli et al., 1992] for an analysis of this situation and its applications
to systems theory and signal processing.

(14.6) ExaMPLE. Let A be a nonempty set and let A* be the free monoid of
A. Let R be a semiring and let M be a left semimodule over R. Then, in a man-
ner analogous to that used in Chapter 2, we can define M ({A)) to be the set M4’
together with an operation of addition defined componentwise. This is a commu-
tative monoid. If f € R{(A)) and ¢ € M({(A)) then we can define fg € M{{A) by
setting fq:w — Y=y f(W)g(w”) for all w € A*. This operation of scalar mul-
tiplication turns M {(A)) into a left R{{A)-semimodule. Since R({A) is a subsemir-
ing of R{(A)), this means that M{(A)) is also a left R(A)-semimodule. Moreover,
M(A) = {q € M{A)) | q has finite support} is clearly an R({A)-subsemimodule of
M(AY.
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(14.7) EXAMPLE. Let Q be a nonempty set which is either finite or countably-
infinite, let R be a semiring, and let M be a left semimodule. In a manner analogous
to that used in Chapter 2, we can define the set Mq (M) of all (2 x ©)-matrices on
M to be the set of all functions from € x € to M. Again, addition can be defined
componentwise on this set to turn (Mgq(M),+) into an additive monoid which is
a left semimodule over Mgq ,(R) or Mg rc(R).

(14.8) ExaMPLE. If R is an entire zerosumfree semiring, if M is a left R-
semimodule, and if co is an element not in M then we can define the left R-
semimodule M {oo} to be the set M U{oco} on which the operations of addition and
scalar multiplication from M have been extended by setting m’+o0o = co+m’' = co
for all m' € Moo, roo = oo for all 0 # r € R, and 0co = Opy.

(14.9) ExaMPLE. If v: R — S is a morphism of semirings then S is an (R, R)-
bisemimodule in which we define r -s = y(r)s and s - r = sy(r) for all » € R and
s € S. Thus, in particular, if R is a semiring and A is a nonempty set then R{A)
is an (R, R)-bisemimodule in which we define rf and fr by rf:w — rf(w) and
friw e f(w)r for all » € R, f € R{(A)), and w € A*. Also, by Proposition 9.10,
we see that every additively-idempotent semiring is a (B, B)-bisemimodule.

(14.10) EXAMPLE. Let R be a semiring and let M be a left R-semimodule.
Then (0: M) = {r € R| rm = 0Oy for all m € M} is an ideal of R. Moreover, if
I is any ideal of R contained in (0 : M) then M is a left (R/I)-semimodule, with
scalar multiplication defined by (r/I)m = rm for all r € R and m € M.

(14.11) EXAMPLE. An RT-subsemimodule of R™ for some positive integer n
is called a convex cone in R™. If C is any nonempty convex subset of R™ then
{rv|r € Rt and v € C} is a convex cone in R™. For the relations between these
semimodules and barycentric algebras, see [Romanowska & Smith, 1985].

(14.12) EXAMPLE. A quemiring is a structure of the form R x M, where R
is a semiring and M is a left R-semimodule, on which addition is defined compo-
nentwise, while multiplication is given by (a,m) - (a’,m’) = (aa’,am’ + m). This
is not a semiring since (a,m) - (0,0) = (0,0) only when m = 0. Also note that
while right distributivity of multiplication over addition always holds, left distribu-
tivity holds only sometimes. However, the quemiring R x M certainly contains
R’ = {(a,0) | a € R} as a subsemiring, and can be profitably be studied as a left
R’-semimodule.

An element m of a left R-semimodule M is idempotent if and only if m+m = m.
The set of all idempotent elements of M is nonempty since it contains Ops and,
indeed, is clearly a subsemimodule of M, denoted by I(M). If /(M) = M then
M is additively idempotent. If M is a left R-semimodule then the left C(R)-
semimodule ssm(M) is additively idempotent. As with semirings, every additively-
idempotent semimodule is zerosumfree.
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(14.13) ExampPLE. If (M, +) is an additively-idempotent commutative monoid
then M is a left B-semimodule with scalar multiplication defined by 0m = 037 and
1m = m for all m € M. By Proposition 9.10 we know that if R is a zerosumfree
entire semiring then there exists a surjective morphism v: R — B. Thus M is also
a left R-semimodule with scalar multiplication defined by » - m = v(r)m for each
r € R and m € M. This allows us, for example, to consider (R U {oo}, min) as
a left Rt-semimodule with scalar multiplication defined by am = m if ¢ > 0 and
0m = oo.

Let M be a left R-semimodule and let {N; | ¢ € Q} be a family of subsemimod-
ules of M. Then N;eqN; is a subsemimodule of M which, indeed, is the largest
subsemimodule of M contained in each of the N;. In particular, if A is a subset of a
left R-semimodule M then the intersection of all subsemimodules of M containing
A is a subsemimodule of M, called the subsemimodule generated by A. This
semimodule is just RA = {ria; + -+ -+ rpa, | i € R,a; € A}. If A generates all of
the semimodule M, then A is a set of generators for M. Any set of generators for
M contains a minimal set of generators. A left R-semimodule having a finite set of
generators is finitely generated. An element m of the subsemimodule generated
by a subset A of a subsemimodule M is a linear combination of the elements of
A. The rank of a left R-semimodule M is the smallest n for which there exists a
set of generators of M having cardinality n. This rank need not be the same as the
cardinality of a minimal set of generators for M, as the following example shows.

(14.14) ExaMPLE. [Cechldrovd & Plavka, 1996] Let R = (R U {—o0, >0}) and
let m > 1 be a positive integer. For an arbitrary positive integer k, select elements
a1 < az < -+-< dgt+m—1 In R and consider the elements

v1 = (a,a2,...,0m),v2 = (az2,a3,...,8m+1), - - Vk = (Ck, 1, - - -, Chpm—1)

in R™. Then none of the elements vy is a linear combination of the others.

(14.15) ExaMPLE. If R is a semiring and M is a left R-semimodule then two
minimal sets of generators of M need not have the same cardinality, even if M is
finitely-generated. For example, if S is a semiring and R = S x S then {(1s,1s)}
and {(1s,0), (0,15)} are both minimal sets of generators for R, considered as a left
semimodule over itself.

(14.16) ExaMPLE. [Dudnikov & Samborskii, 1992] If R is the schedule algebra
then M = R3 is a left R-semimodule which is clearly finitely-generated over R. Let
N be the subsemimodule of M generated by the elements of the two-dimensional
disk of radius 1, which is orthogonal to the element [1,1,1] of R3. Then N does
not have a finite set of generators over R.

If M is a left R-semimodule then the set Zieﬂ N; of all finite sums of elements
of UseqNN; is a subsemimodule of M which is the smallest subsemimodule of M
containing each of the N;. If N is a subsemimodule of M and I € ideal(R), then,
as we have already noted, IN is also a subsemimodule of M. Thus, in particular,
if m € M we have the subsemimodule Rm of M defined by Rm = {rm | r € R}.
Surely M =37 Bm.



154 CHAPTER 14

(14.17) ExamPLE. If R is aring and R — fil is the set of all topologizing filters
of left ideals of R then, as we noted in Example 1.6, (R — fil,N, ") is a semiring.
If M is a left R-module, let sub(M) be the family of all submodules of N and, for
each N € sub(M) and «k € R — fil, let Nk be the k-purification of N in M. That
is to say, Nk = {m € M | Im C N for some I € k}. We claim that (sub(M),N)
is a right (R — fil)-semimodule. Indeed, if N, N’ € sub(M) and ¥ € R — fil then
surely (NN N')k C Ne N N’'k. Conversely, if m € Nk N N’ then there exist
I,H € ksatisfying Im C N and Hm C N'. But InH € kand (INH)m C NNN'.
Thus m € (N N N')k, proving that N« N N’k = (NN N')k. If N € sub(M) and
k,k' € R — fil then (Nk«') = (N&)k’ by Proposition 4.5 of [Golan, 1987]. Also,
we clearly have N(k N k') C Nk N N&'. Conversely, if m € Nk N Nk’ then there
exist /| € k and H € & with Im C N and Hm C N. Thus (/ + H)m C N.
But I + H € kN &/, proving that N(k N x') = Nk N N&'. Finally, it is clear that
Nn[R]= N and Np[0]= M.

(14.18) EXAMPLE. In Example 1.19 we saw that if (L, V, A) is a frame then the
set PN(L) of all prenuclei on L is a zerosumfree simple semiring with addition given
by A and multiplication by composition of functions. Moreover, it is clear that the
dual frame (L, V, A) is then a left PN(L)-semimodule, with scalar multiplication
defined by z - ¢ = z(c). For the case of that L is the frame of all torsion theories on
a module category R —mod over a ring R, this semiring has been studied in [Golan

& Simmons, 1988].

(14.19) EXAMPLE. Let R be a semiring and let M be a i=ft R-semimodule.
Then ssm(M) is a left ideal( R)-semimodule, where scalar multiplication is defined
as above. In particular, lideal(R) is a left ideal(R)-semimodule. For the case that
R is a ring, this situation has been studied in [Anderson, 1977].

A left R-semimodule M is entire if and only if rm # 03 whenever 0 # r € R
and Opr # m € M. A left R-semimodule which is both entire and zerosumfree
is an information semimodule over R. A complete classification of all cyclic
information semimodules over N is given in [Takahashi, 1985]. Since the classes of
zerosumfree and entire semimodules are both clearly closed under taking submod-
ules, we see that subsemimodules of information semimodules are again information
semimodules.

(14.20) ProPosITION. A semiring R is entire and zerosumfree if and only if
there exists a nontrivial information semimodule over R.

Proor. If R is entire and zerosumfree then it is surely a nontrivial information
semimodule over R. Conversely, assume that there exists a nontrivial information
semimodule M over R and let Opr #m € M. If r,7' € R\ {0} then #'m # Opr and
so (rr’)m = r(r'm) # Opr. Therefore rr’ # 0, proving that R is entire. Moreover,
rm # Opr as well and so (r+ rym =rm +7'm # Oy and so 7+’ # 0. Thus R is
zerosumfree. [

As in the case of subsets of R, we say that a nonempty subset N of a left R-
semimodule M is subtractive if and only if m+ m’ € N and m € N imply that
m’ € N for all m, m’ € M. Similarly, N is strong if and only if m+m’ € N implies
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that m,m’ € N for all m,m’ € M. Every submodule of a left R-semimodule is
subtractive. Indeed, if N is a submodule of an R-semimodule M and m € M,
n € N are elements satisfying m + n € N then m = (m + n) + (—n) € N.
In particular, V(M) is a subtractive subsemimodule of any R-semimodule M. If
N’ C N are subsemimodules of a left R-semimodule M such that N’ is a subtractive
subsemimodule of N and N is a subtractive subsemimodule of M then one sees
immediately that N’ is a subtractive subsemimodule of M. If {M; | i € Q} is a
family of subtractive [resp. strong] subsemimodules of a left R-semimodule M then
NieqM; is again subtractive [resp. strong]. Thus every subsemimodule of a left R-
semimodule M is contained in a smallest subtractive [resp. strong] subsemimodule
of M, called its subtractive closure [resp. strong closure] in M.

We now introduce a construction due to Takahashi [1996a]. Let R be a semiring
and let M be a left R-semimodule. If N and N’ are R-subsemimodules of M then
set EM(N')={m € M |m+n € N'for some n € N}. It is easy to verify that for
all such N and N’ we have:

(1) E¥(N') is an R-subsemimodule of M containing N’;

(2) BN (BN (N") = EY(N');

(3) If N is a submodule of M then EY (N')= N + N'.

(4) If M’ is a subsemimodule of M containing both N and N’ then E¥(N’)n

M= BY (V')

(5) If N C N’ then EM (N)N N’ = EY'(N).
Moreover, we see that a subsemimodule N of a left R-sernimodule M then E¥ (N)
is precisely the subtractive closure of N in M, and so N is subtractive if and only
if N = E¥(N). Similarly, E}(N) is precisely the strong closure of N in M, and
so N is strong if and only if EM(N) = N.

Any left R-semimodule M has two subtractive subsemimodules: {0} and M
itself. If these are the only subtractive subsemimodules of M, then M is austere.
That is to say, M is austere if and only if it is the subtractive closure of each of its
nonzero subsemimodules.

(14.21) ProPosITION. If M is an austere left R-semimodule then (0 : M) =
(0:m) forall 0 £ me M.

Proor. Clearly (0 : M) C (0 : m) for all m € M and so we must prove
the reverse inclusion for all 0 # m € M. Indeed, assume that m € M satisfies
the condition / = (0 : m) € (0: M) andlet N = {m' € M | I C (0 : m')}.
Then N is a subsemimodule of M properly contained in M since I € (0 : M).
If n and n' are elements of M such that both n and n + n’ belong to N then
{0} =I(n+n')=In+1In' = In' and so n’ € N. Thus N is subtractive and so, by
austerity, N = {0}. Thus (0: m) C(0: M) forall0#me M. O

If M is a left R-semimodule then the zeroid of M is defined to be Z(M) =
{m & M | m+ n = n for some element n of M}. Clearly this is a subsemimodule
of M containing I(M) which we claim is subtractive. Indeed, if m and m’ are
elements of M satisfying m € Z(M) and m+m’ € Z(M) then there exist elements
n and n' of M satisfying m + n = n and (m + m’) + n’ = n’. Therefore m’ +
(n+n)=m'+m+ (n+n') =n+n’ and so m’ € Z(M). Note that if a € Z(R)
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and m € M then there exists an element r of R satisfying ¢ + r = r and so
am+rm = (a+r)m = rm. Thus am € Z(M). Since Z(M) is a subsemimodule
of M, this shows that Z(R)M C M. A left R-semimodule M is zeroic when
Z(M) = M and nonzeroic when Z(M) # M.

(14.22) ProprosITION. Let R be a semiring and let M be a left R-semimodule.
If N, N', and N" are subsemimodules of M satisfying the conditions that N is
subtractive and N' C N, then NN(N'+ N") = N'+ (N NN").

ProoF. Let z € NN (N’ + N”). Then we can write £ = y + z, where y €
N’ and z € N”. By (2), we have y € N and so, by (1), 2 € NN N”. Thus
z € N+ (NN N"), proving that N N (N’ + N”) C N’ 4+ (N N N"). The reverse
containment is immediate. O

(14.23) ProprosITION. If I is an ideal of a semiring R and M is a left R-
semimodule then N = {m € M | Im = {Oum}} is a subtractive submodule of
M.

ProoF. Clearly N is a submodule of M. If m,m’ € M satisfy the condition
that m and m + m’ belong to N then for each » € I we have 0 = r(m + m’) =
rm+rm’ = rm’ so m’ € N. Thus N is subtractive. O

(14.24) ProrosITION. If N is a subtractive subsemimodule of a left R-semi-
module M and if A is a nonempty subset of M then (N : A) is a subtractive left
ideal of R.

PRrOOF. Since the intersection of an arbitrary family of subtractive left ideals
of R is again subtractive, it suffices to show that (N : m) is subtractive for each
element m of M. Let @ € R and b € (N : m) satisfy the condition that a + b €
(N : m). Then am+bdm € N and bm € N so am € N, since N is subtractive.
Thus a € (N :m). O

(14.25) ExaMPLE. If R and S are semirings and if M is an (R, S)-bisemimodule
then the set A of all matrices of the form [6 ':] forre R, meM,ands€ Sisa
semiring under the operations of addition and multiplication defined by

r m rom'] _[r+7 m+4m
0 s + 0 s 0 s+ s

r m| [ m]| _|rr' rm'+ms
0 s 0 {1710 ss’ '

Note that there is a morphism of semirings from R x S to A given by (7, s) — [g 2] .

In the special case of S = R we have a subsemiring of this semiring consisting
of all matrices of the form [g T] for m € M and r € R. This is called the trivial
extension of the semiring R by the (R, R)-bisemimodule M.

and

If Ris asemiring and M and N are left R-semimodules then a function a from M
to N is an R-homomorphism if and only if the following conditions are satisfied:
(1) (m+m')a = ma+m'a for all m,m' € M;
(2) (rm)a = r(ma) for allm € M and r € R.
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The kernel of « is ker(a) = {On}a~!. This is a subtractive subsemimodule of M.
The set Ma = {ma | m € M} is a subsemimodule of N.

Homomorphisms of right semimodules and of bisemimodules are defined similarly
but are written as acting on the left.

(14.26) EXAMPLE. If M is a left R-semimodule generated by a subset A then we
have a surjective R-homomorphism R(4) — M defined by f — ZmEpr(f) f(m)m.
In particular, we always have a surjective R-homomorphism from R™) to M.

(14.27) EXaMPLE. If R is a semiring and A is a nonempty set then for each
word w in A* we have a function €,: R{A) — R given by €,: f — f(w). This is
clearly a homomorphism of (R, R)-bisemimodules.

(14.28) EXAMPLE. Let R be a semiring and let {M; | i € Q} be a family of left
R-semimodules. Then x;cqM; also has the structure of a left semimodule under
componentwise addition and scalar multiplication. We denote this left semimodule
by [];cq M;. Similarly,

H M; = {(m;) € H M; | m; = 0 for all but finitely-many indices i}
i€Q

is a subsemimodule of [[;. M;. For each h in  we have canonical R-homomor-
phisms 7p: [ M; — My, and Ap: My, — [ M; defined respectively by m4: (m;) — my
and mpA = (u;), where
{ 0 ifi#£h
Uu; =

my ifi=h"

The R-semimodule ] M; is the direct product of the R-semimodules M; and
the R-semimodule [[ M; is their coproduct. It is easy to verify that if M is a
left R-semimodule and if {}; | 1 € Q} is a family of left R-semimodules such that,
for each 7 € 2, we are given an R-homomorphism «a;: M — M; then there exits
a unique R-homomorphism a: M — Hz’eﬂ M; such that a; = am; for each ¢ € Q.
Similarly, if we are given an R-homomorphism g3;: M; — M for each i € Q then
there exists a unique R-homomorphism §:[[;cq M; — M such that §; = ;8 for
each 7 € Q.

Let M and N be left R-semimodules and let o and # be R-homomorphisms from
M to N. Then K = {m € M | ma = mf3} is a subsemimodule of M. The inclusion
map A\: K — M is the equalizer of («, 3) in the sense that if §: M’ — M is an
R-homomorphism satisfying o = 3 then there exists a unique R-homomorphism
¢': M' — K satisfying § = §’X. By a well-known result in category theory, we see
that since the category of all left R-semimodules has products and equalizers, it
has arbitrary limits.

(14.29) ExaMPLE. Let R be a semiring and let M be a left R-semimodule. If
a: M — R is an R-homomorphism then we can define an operation ®, on M by
setting m ©q n = (ma)n. Then (M, +,®,) is a hemiring which is not, in general,
a semiring.
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(14.30) ExaMPLE. In Example 14.17 we saw that if R is a ring and M is a left
R-module then (sub(M),N) is a right (R — fil)-semimodule. An R-homomorphism
a: M — M’ of left R-modules induces a map a* : sub(M') — sub(M) defined by
a*(N') = N'a~1. Clearly o*(N' N N") = a*(N') Na*(N"). If « € R~ fil and
N’ € sub(M') then

[@*(N)k={me M| (Na!:m) €}
={me M| (N :ma)€k}=a"(Nk)

and so a* is a homomorphism of right (R — fil)-semimodules.

(14.31) APPLICATION. As we saw in Example 14.13, M = (RU {oo}, min) is a
left R*-semimodule. Every n-tuple z = (mj, ..., m,) of elements of M defines an
R*-homomorphism 7,: (R*)* — M by

Ye:(ay, ... an) = min{a;m; | 1 < i< n}=min{m; |a; > 0}.

This allows us to consider linear optimization problems in the context of homomor-
phisms of semimodules, as is done in detail in [Zimmermann, 1981].

Another application of semimodule theory to optimization is the following: let
R be the semifield (R U {o0}, mir, +), on which we have a metric d, defined by
d(a,b) = |e=® — e®|. For a locaily-compact topological space X, let Co(X) be
the R-semimodule of all continuous functions f € RX satisfying the condition for
each € > 0 there exists a compact subset K of X such that d(f(z),o0) < € for
all z € X \ K. The study of R-homomorphisms of the form Cy(X) — Co(Y)
is significant in the analysis of a wide range of deterministic problems in optimal
control theory, and is developed for this purpose in [Kolokol’tsov, 1992].

We have already noted that if v: R — S is a morphism of semirings and if M
is a left S-semimodule then M is also a left R-semimodule, with scalar multipli-
cation defined by »-m = y(r)m. If a: M — N is an S-homomorphism of left
S-semimodules then it is immediate that it is also an R-homomorphism.

Here we should note an important point in which semimodules over semirings
differ from modules over rings. Let R be a semiring and let a: M — N be an
R-homomorphism of left R-semimodules. Given an element n of N, we are often
interested in finding na~! = {m € M | ma = n}. If we know one element mg of
na~! then clearly mg + m’ € na~! for each element m’ of ker(a). All elements of
na~! are of this form if mg € V(M), but this need not be true in general.

(14.32) EXAMPLE. Let M be the left N-semimodule (N[t], +) and let N be the
left N-semimodule {N U {—o0}, maz) in which scalar multiplication is defined by
icotn = —oo if : = 0 and ¢-n = n otherwise. Then the function a: M — N defined
by a:p(t) — deg(p) is a surjective N-homomorphism the kernel of which is {0}.
Nonetheless, ha~1! is an infinite set for each 0 < h € N.
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(14.33) EXAMPLE. Let @ and b be elements of a frame R and let a: R — R be
the R-homomorphism defined by a:r + r Aa. Then ba=! = {r€ R|rAa =b}.
If a 2 b then this set is clearly empty. Otherwise, itis {re R|b<r < (b:a)}.

We have already noted that if 4: S — R is a morphism of semirings then every
left R-semimodule is canonically a left S-semimodule and every R-homomorphism
of left R-semimodules is a homomorphism of left S-semimodules as well. This
allows us occasionally to modify our choice of the semiring R to make the problem
before us easier to solve, as we will see later on.

If M and N are left R-semimodules then we will denote the set of all R-
homomorphisms from M to N by Homg(M, N). If @ and 3 belong to Homg(M, N)
then so does the map a + 3 from M to N which is defined by m(a+ 8) = ma+mf.
It is easy to check that (Hompg(M, N),+) is an N-semimodule (i.e. a commuta-
tive monoid), the identity element of which is given by the map which sends each
element of M to On. If M is an (R, S)-bisemimodule then Homp(M, N) is a left
S-semimodule, with scalar multiplication defined by sa:m — (ms)a. If N is an
(R, S)-bisemimodule then Hompg (M, N) is a right S-semimodule with scalar mul-
tiplication defined by as : m — (ma)s.

If M, N, and P are left R-semimodules and if ¢: M — N is an R-homomorphism
then we have induced N-homomorphims Hom(P, ¢): Homg(P, M) — Homg(P, N)
and Hom(p, P): Homg(N, P) — Hompg(M, P) given respectively by a — ay and
B pp.

An R-homomorphism from a left semimodule M to itself is called an R-
endomorphism of M. Th: set of all R-endomorphisms of M will be denoted
by Endgr(M). In addition to the operation of addition on Endr(M) we have an
operation of multiplication given by composition of functions: a8: m — (ma)g for
all m in M. If M is an (R, S)-bisemimodule and let S[t] be the semiring of poly-
nomials in the indeterminate ¢ over S. If @ € Endg(M) then o induces on M the
structure of a (R, S[t])-bisemimodule by setting m(3_ s;t') = 5. ms;a’.

(14.34) EXAMPLE. Let A be a nonempty set, let R be a semiring, and let M
be a left R-semimodule. If u: B — A is a function from a subset B of A to A then
u induces an R-endomorphism a, of M4 defined by (ayf)(:) = (fu)(i) if i € B
and (o, f)(¢) = 0 otherwise.

In particular, we can consider the case of A = N. If B = N and u is defined by
u:i— i+ 1 then ay is the left shift endomorphism on M4. If B =P and u is
defined by u:i > i — 1 then a, is the right shift endomorphism on M*.

If M is the left R-semimodule {0} then Endg(M) = {¢}, where ¢ is the identity
map m — m. If M # {0} then Endg(M) has at least two elements: the identity
map and the map m — 0.

(14.35) ApPLICATION. Let S be the semiring of all formal languages on a non-
empty set A. Following the terminology of Abramsky and Vickers [1993], we say
that a transition system (P, —) over A consists of a nonempty set P together
with a subset — of P x A x P, where we write p — ¢ instead of (p, a,q) € —. The
elements of A are the atomic actions of the transition system, while the elements
of P are the processes of the system. Each atomic action a € A defines a function
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6, from the set C of all subsets of P to itself given by
0:U— {qg€P|p->qforsomepelU}.

We can expand this notion by defining 6, for each word w € A* recursively as
follows:

(1) If w =0 then 6, is the identity map;
(2) If w = va for some v € A* and some a € A, then 8, = 6,0,.

Furthermore, if L € S we can define the function 8;:C — C by setting 6.: U —
u{Ub, | w € L}.

Of course, (C,U) is aleft B-semimodule. If L € S then 4y, is a B-endomorphism of
C and, indeed, {8, | L € S} is a subsemiring of the semiring of all B-endomorphisms
of C, so that C becomes a right S-module in which, for each U € C and L € S,
we have UL = {g € P | p > q for some p € P and w € L}. This semimodule is
zerosumfree but not necessarily entire. But S’ = {L € S| L = @ or O € L} then
S’ is a subsemiring of S and C' is an information semimodule over S’.

(14.36) ProprosITION. If R is a semiring and M # {0} is a left R-semimodule
then S = Endgr(M) is a semiring and M is an (R, S)-bisemimodule.

ProOF. The proof that S is a semiring with additive identity given by m — 0
and multiplicative identity given by m +— m is straightforward. Similarly, it is
straightforwarc to show that M is an (R, S)-bisemimodule. Refer to Example
1.13. O

Note that if M is an additively-idempotent left R-semimodule and if o belongs
to Endr(M) then m(a + @) = ma + ma = ma and so  + « = a. Thus the
semiring Endgr(M) is additively idempotent.

(14.37) ExaMmpPLE. If M is a nonzero left R-semimodule, it is possible for the
semiring S = Endp(M) to be zeroic. For example, set R = M = B. Then S
consists precisely of the maps m + 0 and m — m and hence is surely zeroic.

(14.38) ExampLE. [Cornish, 1971] To each semiring R we can associate the
semiring S = Endr(RRg) X Endr(rR) consisting of pairs (¢, 0) of maps from R
to itself, the first member of which is a homomorphism of right semimodules and
the second member of which is a homomorphism of left semimodules. Addition
and multiplication on S are defined componentwise. An element (p,8) of S is a
bimultiplication of R if and only if a[pb] = [a6]b for all a,b € R. The set bim(R)
of all bimultiplications of R forms a subsemiring of S. Moreover, we have a map
v:a v (pa,0s) from R to bim(R) defined by ¢q:r — ar and 6,:r — ra for all
r € R. This is in fact a morphism of semirings. We claim that v 1s in fact an
isomorphism. Indeed, if y(a) = v(b) then a = ,(1) = @s(1) = b and so v is
injective. If (p,0) € bim(R) and if a = ¢1 then 16 = (16)1 = 1(¢l) = la = a.
Moreover, for each r € R we have ¢(r) = ¢(1r) = (¢1)r = ar and similarly rf = ra.
Thus (p, 8) = ¥(a), showing that + is surjective.
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(14.39) ExAMPLE. Let R be a semiring, let M # {0} be a left R-semimodule,
and let §: R — Endg(M) be a morphism of semirings. Then we can define the
structure of a semiring on R x M by defining addition and multiplication as follows:
(r,m)+ (v, m') = (r+7,m+m') and (r,m) - (r',m') = (rr/, rm’ + ml(r')) for all
r, € R and m,m’ € M. We will denote this semiring by R x9 M. Moreover, the
map r — (r,0) is a morphism of semirings.

Let My, ..., M, be left R-semimodules and let M = x; M;. Let S be the set of
all rectangular arrays [a;;] where, for each 1 < ¢, j < n, a;; is an R-homomorphism
from M; to M;. Define addition and multiplication in S by setting [a;;] + [8i;] =
[a,-j + ﬂ,‘j] and [Ct,'j][,@,'j] = [gij], where 0,']' 1s defined to be Z?:l aihﬁh]’. Then S is
a semiring. Moreover, we have a morphism of semirings v: S — Endg(M) which
takes [aj;] to the endomorphism a of M defined by

n n
a:(my,...,my) — E m;ail,...,g m;ain | .
i=1 i=1

For each 1 < 7 < n, let A\;: M; = M be the canonical embedding of M; into the
ith component of M and let m;: M — M; be the canonical projection of M onto
its ¢th component. Then each R-endomorphism a of M is the image under 5 of
[Aiam;] and so v is surjective. Moreover, v is also clearly injective and hence is an
isomorphism of semirings.

If M is a left R-semimodule and o € Endr(M) then, for a given element m of
M it is still difficult, in general, to find all of the members of ma~! = {m’ € M |
m'a = m}.

(14.40) ExamPLE. [Kim & Roush, 1980] let R = B, let M = R? and let
a € Endgr(M) be defined by a: (a,b) — (a+b,b). Then a is multiplicatively regular
since it is multiplicatively idempotent. Moreover, (0,1) € (1,1)a™!. However,
(0,1) # (1,1)ap for any 8 € Endr(M) satisfying afa = «, as can be easily
verified directly.

Let R be a semiring and let a: M’ — M and 3: M — M" be R-homomorphisms
of left R semimodules. If for each m € M there exists a unique element ¢ € Ma
satisfying m@ = z then the function 74 :m — z is an R-endomorphism of M
satisfying the following conditions:

(1) Ta,f = 7"(21,@

(2) ame,p = a; and

(3) Fay,@ﬂ = ﬂ
In other words, 7, 5 is the projector onto M« parallel to ker(8). Such maps
were first studied by Cohen et al. [1996, 1997].

(14.41) ExaMPLE. Even in the apparently-simple case of R taken to be the
schedule algebra and the semimodules M’, M, M" taken to be of the form R* for
suitable values of k, the map 7, g may be difficult to calculate for specific @ and
B. See [Gunawardena, 1994] or [Cohen et al., 1996].



15. FACTOR SEMIMODULES

Congruence relations played an important role in the theory of semirings and
we would expect them to play a similar role in the theory of semimodules. Let R
be a semiring and let M be a left R-semimodule. An equivalence relation p on M
is an R-congruence relation if and only if m p m’ and n p n’ in M imply that
(m+n) p (m' +n') and rm p rm’ for all » € R. In other words, an R-congruence
relation p on M is an equivalence relation satisfying the condition that p is also a
subsemimodule of M x M. Denote the set of all R-congruence relations on M by
R — cong(M). This set is nonempty since it contains the trivial R-congruence
=, defined by m =; m’ if and only if m = m’ and the universal R-congruence
=, defined by m =, m’ for all m,m’ € M. If M # {0p} and these are the only
two elements of R — cong(M), then the R-semimodule M is simple. Moreover,
R — cong(M) is partially-ordered by the relation < defined by p < p’ if and only if
m p m' implies that m p’ m’. Clearly =, < p < =, for all R-congruence relations
pin R — cong(M).

If W is a nonempty subset of R — cong{M) then the relation p on M defined
by m p m’ if and only if m p’ m’ for each p’ € W is also an R-congruence relation
on M and p” < p’ for each p' in W if and only if p” < p. Thus R — cong(M) is
a complete lattice. If m,m’ € M we will denote the unique smallest element p of
R — cong(M) satisfying m p m’ by p(m m?).

If p belongs to R—cong(M) for some left R-semimodule M and if a € C(R) then
we can define a relation % on M by setting m % m’ if and only if am p am’. It is easy
to verify that this is an R-congruence relation which, indeed, turns (R—cong(M), V)
into a left C'(R)-semimodule.

If N is a subsemimodule of a left R-semimodule M and if p belongs to R —
cong(M), then the restriction of p to N is an R-congruence relation on N. Thus
we have a canonical map from R —cong(M) to R—cong(N) given by restriction. If
N is a subsemimodule of a left R-semimodule M and if { is a given R-congruence
relation on N then there exists a unique maximal R-congruence relation on M the
restriction of which to N is (. We will denote this congruence relation by =¢|x. In
particular, we will denote by =_|x the unique maximal R-congruence relation on
M the restriction of which to N is the trivial relation.

Let p be an R-congruence relation on M and, for each m € M, let m/p be the
equivalence class of m with respect to this relation. Set M/p equal to {m/p|m €
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M} and define operations of addition and scalar multiplication on M/p by setting
(m/p)+(n/p) = (m+n)/p and r(m/p) = (rm)/pforallm,n € M and r € R. Then
M/p is a left R-semimodule, called the factor semimodule of M by p. Moreover,
we have a surjective R-homomorphism M — M/p defined by m — m/p. Clearly
M/p equals M/p' if and only if p and p’ are equal.

If N 1s a subsemimodule of a left R-semimodule M then we have a canonical map
from R—cong(M) to R—cong(N) given by restriction. If p is an R-congruence rela-
tion on M the restriction of which to N is p’, then there is a monic R-homomorphism
N/p' — M/p defined by n/p’ — n/p. In particular, if the restriction of p to N is
trivial then the function N — M/p given by n — n/p is monic.

If { is an R-congruence relation on M/p then ¢ defines a relation {* on M by
m ¢* m' if and only if (m/p) ¢ (m’/p). Clearly * is an R-congruence relation on
M satisfying ¢* > p. Moreover, the function { — ¢* is a morphism of complete
lattices from R — cong(M/p) to R — cong(M). If p < p’ in R — cong(M) then
we have an R-congruence p’'/p in R — cong(M/p) defined by the condition that
(m/p) p'/p (m'/p) if and only if m p’ m’. Clearly, p/p is the trivial R-congruence
on M/p.

Let M be a left R-semimodule and let p belong to R — cong(M). If N is a sub-
semimodule of M, then N’ = {m € M | m p n for some n € N} is a subsemimodule
of M containing N. Moreover, if p’ is the restriction of p to N’ then N’/p’ and
N/p are equal.

(15.1) ExaMPLE. If a: M — N is an R-homomorphism of left R-semimodules
then « defines an R-congruence relation =, on M by m =, m’ if and only if
ma = m'a. Thus, a is monic precisely when =, is trivial. Note that « also
induces an R-homomorphism o’ from M/ =, to N defined by (m/ =,)e’ = ma
and that this R-homomorphism is in fact monic. More generally, if a: M — N is
an R-homomorphism of left R-semimodules and if p € R — cong(M) satisfies the
condition that p < =,, then there exists a unique R-homomorphism 3: M/p — N
satisfying 5: m/p — ma for allm € M.

Also note that if p € R — cong(M) and if a: M — M/p is the R-homomorphism
given by a:m +— m/p then =, and p coincide.

(15.2) ExaMpPLE. If R is a semiring and A is a submonoid of C(R) then A
defines an R-congruence relation =4 on any left R-semimodule M by setting m =4
m’ if and only if there exists an element a of A satisfying am = am’. As a special
case of this, let R be a commutative semiring and let A = K*(R), the set of
all multiplicatively-cancellable elements of R. If the R-congruence relation on M
defined by K*(R) is trivial then M is classically torsionfree.

(15.3) ExaMPLE. If N is a subsemimodule of a left R-semimodule M, then N
induces an R-congruence relation =y on M, called the Bourne relation, defined
by setting m =n m’ if and only if there exist elements n and n’ of N such that
m+n = m’+n’. Note that, using the notation introduced in the previous chapter,
=y is just EMIM(=,).

If m € M then we write m/N instead of m/ =n. The factor semimodule M/ =x
is denoted by M/N. Note that n/N = 0/N for all n € N and so if m € M then

am/N = 0/N for all @ € (N : m). A slight modification of the proof of Proposition
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6.50 shows that if N is a subsemimodule of a left R-semimodule M then 0/N is a
subtractive subsemimodule of M and, indeed, is the subtractive closure of N in M.

We have already noted that both ssm(M) and R — cong(M) are left C(R)-
semimodules. It is a straightforward consequence of the definitions that the function
6: ssm(M) — R—cong(M) defined by 6: N — =y is in fact a C(R)-homomorphism.
If N and N’ are subtractive subsemimodules of M satisfying 8(N) = 6(N’) then
for each n € N we have 0 =5 n and so 0 = n. Thus there exist n’, n” € N’ such
that n+n’ = n”. Since N’ is subtractive, this implies that n € N’ andso N C N’.
The reverse containment is proven similarly and so N = N’.

(15.4) ExamPLE. If N is asubmodule of a left R-semimodule M then N induces
an R-congruence relation [=]x on M, called the Iizuka relation, defined by setting
m [=]nx m’ if and only if there exist elements n and n’ of N and an element m’ of
M such that m+n+m”" =m/ +n’ +m”. If m € M we write m[/]N instead of

m/[E]N.

(15.5) EXAMPLE. If M is a left R-semimodule and if p and p’ belong to R —
cong(M) Then the relation p” on M defined by m p” m’ if and only if there exist
x, ' € M such that  p’ x and (m + z) p (m’ + z’). Then p” is an R-congruence
relation on M and p < p”.

If p<p’ in R— cong(M) then we can define the relation p'/p € R — cong(M/p)
by setting (m/p) p'/p (m'/p) if and only if m p/ m’. Then clearly p = p’ if and
only if p’/p is the trivial congruence in R — cong(M/p).

A nonzero subsemimodule N of a left R-semimodule M is absorbing if and only
if the following conditions are satisfied:

() f0#neNandme M then0#n+meN;
(2) If 0 # n € N then (6:n) = {0}.
If N is an absorbing submodule of M we will write N C M.

(15.6) PrOPOSITION. Let R be a semiring and let a: M — M’ be an R-
homomorphism of left R-semimodules satisfying the condition that ker(a) C M.
IfFN'C M then N=Nao 'C M.

PrROOF. Let 0 #n € N andlet m € M. If n € ker(a) then n+m € ker(a) C N
by hypothesis. Otherwise, 0 # na € N’ and so, by hypothesis, (n + m)a =
na + ma € N, proving that n +m € N. Similarly, let r € R satisfy rn = 0. If
n € ker(a) then » = 0 by hypothesis. Otherwise, r(na) = 0, where 0 # na € N,
andsor=20. O

Thus {0}U{: € N|i>n} C Nfor all n € N. Any nonzero R-semimodule which
1s an absorbing subsemimodule of itself is zerosumfree. Moreover, a necessary
and sufficient condition for there to exist an R-semimodule which is an absorbing
subsemimodule of itself is that R be an absorbing subsemimodule of itself, which is
equivalent to R being entire and zerosumfree. An element w of a left R-semimodule
M 1s infinite if and only if w+m = w for all m € M; it is strongly infinite if and
only if {0, w} C M. In this case, {Opr, w} is called the crux of M and denote by
er(M). If M has no strongly infinite elements, we set the crux of er(M) = {0p}.
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Thus the crux of a left R-semimodule M is always an information subsemimodule
of M and surely er(M) E M. If it equals all of M, we say that M is crucial.
Otherwise it is noncrucial. Note that if M is an information semimodule over
an entire zerosumfree semiring R then one can always adjoin a strongly infinite
element to M. Indeed, pick an element w ¢ M and define addition and scalar
multiplication on M U {w} by setting m+w=w+m=wforallme M, rw = w
for all 0 # r € R, and Ow = 0py.

(15.7) EXAMPLE. Let {(M;,+;) | 7 € Q} be a family of left information semi-
modules over a semiring R, the underlying sets of which are disjoint. Further
assume that each M; has a strongly-infinite element w;. Set

M ={0,w}u | J [Mi \ er(M))],
1€Q)

where 0 and w are elements not in U;eqM;. Define addition and scalar multiplica-
tion on M as follows:

() 04m=m+0=mand r0=0for all m € M and r € R;
(2) w+m=m+w=wand rw=wforallme M and all 0 # r € R;
(3) If m,m’ € M\ {0, w}, then

, { m+4pm  ifmm € Mp\ cr(Mp)
m+4+m = . .
w otherwise
(4) If m € My \ er(Mp) and r € R then rm is the same as the correspond-
ing value in M. Then M is an information semimodule over R having
strongly-infinite element w. Moreover, for each i € Q we have an monic

R-homomorphism A;: M; — M defined by

w if z=w;
Aite — L.
z otherwise

We denote the semimodule M constructed in this way by U;eqM;.

Let R be an entire zerosumfree semiring and let a: M — M’ be an R-homomor-
phism of left R-semimodules. As an immediate consequence of Proposition 15.6,
wee see that if w’ is a strongly-infinite element of M’ contained in Ma then N =
w'a™! U{0p} is an absorbing subsemimodule of M.

A semimodule can have at most one [strongly] infinite element. If R is antisimple
then every infinite element of a left R-semimodule is strongly infinite. Indeed, in
this situation, any nonzero element r of R is of the form 1 4+ 7’ and so rw =
(1+7)Yw=w+r'w=w. If wis a strongly-infinite element of a left R-semimodule
M and if N is a subsemimodule of M, then N U {w} is also an R-semimodule of
M. By Proposition 14.20, we note that if R is not entire and zerosumfree than no
left R-module can have a strongly-infinite element.
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(15.8) ExamPLE. [Takahashi, 1984a] Let R be an antisimple semiring and let
M be aleft R-semimodule which is not an R-module. Then N = {03 }JU[M\V(M)]
is an absorbing subsemimodule of M, Indeed, if n,n’ € N then clearly n+n’' € N.
IfO0p #n € N and 0 # r € R then r = 1 + s for some s € R. Thus rn+n’ = 0y
implies that n + (sn + n’) = Op and so n € V(M), which is a contradiction.
Thus rn € N as well. Thus N is a subsemimodule of M. Let m € M and
neE N\{Om}=M\V(M). f m+n¢ N\ {0y} then m+n € V(M) so there is
an element m’ € M satisfying Oy = m+n+m’' = n+ (m+ m'), contradicting the
assumption that n ¢ V(M). Thus NC M.

We also note the converse, if N C M and N satisfies the condition that
M\V(M) C N then M\ V(M) = N for if Opy # ¢ € V(M) N N then there
exists an element 0y # y € V(M) satisfying z + y = 0, contradicting the fact that
M+[NC{0m}]=N C{0m}

An absorbing subsemimodule N of a left R-semimodule M defines a congruence
relation ~n on M by setting m ~n m’ if and only if m = m’ or both m and m’
belong to N \ {0}. Note that M/ ~y= (M \ N) U {0, w}, where w is a strongly-
infinite element of M/ ~n.

If a: M — N is an R-homomorphism of left R-semimodules and if m, m’ are
elements of M satisfying m =j.,(o) m' then surely m =, m/, but the converse
does not necessarily hold. If the relations =, and =g.r(o) coincide, then the
R-homomorphism « is steady. Thus, for example, a steady R-homomorphism
a: M — N is monic if and only if ker(a) = {0}.

(15.9) ProprosITION. If « is a steady R-endomorphism of a left R-semimodule
M then o is steady for each k > 1.

ProoF. The proof will be by induction on k. For & = 1 the result is given.
Assume therefore that of is steady and let m and m’ be elements of M satisfying
ma*ft1l = m/a*+1. Then (ma¥)a = (m'a¥)a so, by steadiness, there exist elements
z and z’ of ker(a) such that ma* +2 = m’a*42’. But then (m+z)af = (m'+2')o*
so there exist elements y and y’ of ker(a*) such that m + ¢z +y =m' + 2/ + ¢/,
where z + y and 2’ + 3’ belong to ker(a**!). Thus o**+! is steady. O

(15.10) PrOPOSITION. Let R be a semiring and let N' C N be subsemimod-
ules of a left R-semimodule M. Then the function a: M/N' — M/N defined by
a:m/N'— m/N is a steady surjective R-homomorphism.

ProoF. That «a is a surjective R-homomorphism is clear. Suppose that m/N’
and m’/N’ are elements of M/N’ satisfying (m/N')a = (m//N’)a. Then m/N =
m'/N and so there exist elements n and n’ of N satisfying m +n = m’ + n’. But
n/N" and n//N’ belong to ker(a) and so m =ger(q) m’. Thus o is steady. O

(15.11) ProrosSITION. Let R be a semiring and let «: M — N be an R-
homomorphism between left R-semimodules. Let 3: M — P be a surjective steady
R-homomorphism between left R-semimodules satisfying ker(3) C ker(«). Then:

(1) There exists a unique R-homomorphism 8: P — N satisfying a = 30;

If a 1s monic so is §;

(2)
(3) ker(8) = (ker(a))B; and
(4) P60 = Ma.
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PROOF. (1) Since 3 is surjective we know that if p € P then pf~! # @. If
m,m’ € pB~! then m =3 m’ and so, by steadiness, m Zer(s) M - Thus there exist
elements k, k' € ker(B3) C ker(a) satisfying m + k = m/ + k' and so

ma =ma+ka=(m+k)a=(m +k)a=m'a+ka=mnm.

Define the function 6: P — N by 6: p — ma, where m is any element of p3~!. Then
this function is well-defined, and it is easy to show that it is an R-homomorphism
of semimodules satisfying a = 8. Moreover, if #: P — N is an R-homomorphism
satisfying o = 36’ and if p € P then for any m € p3~! we have p#' = mpB#’ =
mf6 = ph, proving that 6§ = ¢,

(2) Assume « is monic. If p1# = psf and if m; € p;87! for ¢ = 1,2, then
mia = my 80 = mafB0 = mya and so m; = my. Therefore p; = m1 8 = maf3 = po,
proving that 4 is monic.

(3) Clearly (ker(a))B C ker(6). Conversely, if p € ker(f) and if m € p3~! then
ma = pf = 0y so p = mfB € (ker(a))B, establising equality.

(4) This is immediate from the definition. O

We now prove a dual of this result.

(15.12) ProrosITION. Let R be a semiring and let a:M — N be an R-
homomorphism between left R-semimodules. Let 3: P — N be a monic R-homo-
morphism of left R-semimodules satisfying the condition that P8 is a subtractive
subsemimodule of P containing M «. Then:

(1) There exists a unique R-homomorphism 8: M — P satisfying o« = 68;

(2) ker(6) = ker(a);

(3) The subtractive closure of M6 in P is N'37!, where N’ is the subtractive
closure of Mo in N; and

(4) 6 1s monic if and only if « is monic.

Proor. (1) If m € M then ma € Ma C PJ. Since 8 is monic, this means
that there exists a unique element p of P satisfying pf = ma. Set md = p. By
uniqueness, it is easily seen that the function §: M — P thus defined is an R-
homomorphism satisfying o = 63, which is unique.

(2) If m € ker(a) then 0pB = O = ma so mf = Op, proving that m € ker(6).
Conversely, if m € ker(6) then ma = mfp3 = On so m € ker(a).

(3) Since Pg is subtractive, we note that N C P3. Let P’ be the subtractive
closure of M@ in P. Then p € P/ & p' + mf = m'# for some m,m' € M
pPB+ma=maspBeN p NGt

(4) This is an immediate consequence of the definition. O

If a: M — N is an R-homomorphism of left R-semimodules then we define the
coimage of « to be coim(a) = M/ker(a) and the cokernel of « to be N/Ma.

(15.13) ProposITION. If M is a simple left R-semimodule then M has no
subtractive subsemimodules other than {0} and itself. The converse is true if M
is an R-module.

ProoF. Let M be a simple left R-semimodule and let N be a subtractive sub-
semimodule of M. Then the R-congruence relation =y is either trivial or universal.
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If it is trivial and if n € N then n =5 Opr so n = 0pr. Thus N = {On}. If =n is
universal and m € M then m =p 0pr so there exists an element n of N satisfying
m+n € N. Since N is subtractive, this implies that m € N and so we must have
N=M.

Conversely, let M be a left R-module satisfying the condition that {Oas} and M
are its only subtractive submodules and let p be an R-congruence relation on M.
Set N={me& M |mpOn}. Then N is asubtractive submodule of M. If N = M
then p is universal; if N = {0ps} then p is trivial. Therefore M is simple. O

As an immediate consequence of Proposition 15.13 and Proposition 14.23, we
see that if M is a simple left R-semimodule and if [ is an ideal of R then either
IC(O:M)orI & (0:m)forall Opr # m € M. Also, if M is simple and if
a: M — N is a nonzero R-homomorphism, then ker(a) must be equal to {0}.

(15.14) PrROPOSITION. If N is a subsemimodule of a left R-semimodule M then
the R-congruence relations =x and =¢;y on M coincide.

ProoF. The proof is essentially the same as that of Proposition 6.54. 0O

If M and N are left R-semimodules then an R-homomorphism a: M — N is an
R-monomorphism if and only if whenever 3 and ' are distinct R-homomorphisms
M’ — M for some left R-semimodule M’ then Sa # ('«. Dually, o is an R-
epimorphism if and only if whenever 8 and 3 are distinct R-homomorphisms
N — N’ for some left R-semimodule N’ then af # af’. A function which is both
an R-epimorphism and an R-monomorphism is an R-isomorphism. If a: M — N
is an R-isomorphism then it is easily verified that so is a™: N — M. An R-
isomorphism of left R-semimodules a: M — N induces an isomorphism of semirings
Endr(M) — Endgr(N) defined by v +— o~ 1va.

A surjective R-homomorphism having kernel {0} is an R-semiisomorphism.
Surely R-isomorphisms are R-semiisomoerphisms, but the converse is not the case.
If M is a simple left R-semimodule then any surjective R-endomorphism of M is
an R-semiisomorphism. If a: M — M’ and 3: M’ — M" are R-semiisomorphisms
then so is a@: M — M".

(15.15) PrOPOSITION. If a: M — N is an R-homomorphism between left R-
modules then:

(1) « is monic if and only if it is an R-monomorphism;

(2) « is surjective if and only if it is an R-epimorphism and M« is subtractive.

Proor. (1) Let a: M — N be an R-homomorphism of left R-semimodules. If
« 1s monic, it is clearly an R-monomorphism. If it is not monic then there exist
elements m # m’ of M satisfying ma = m’«a. Define R-homomorphisms 3 and 3’
from R, considered as a left semimodule over itself, to M by setting 8:a — am
and f':a — am’. Then 8 # B but Ba = F«, showing that « is not an R-
monomorphism.

(2) If « is surjective then it is clearly an R-epimorphism and Ma is subtrac-
tive. Conversely, assume that « is an R-epimorphism satisfying the condition that
Ma is subtractive, but that « is not surjective. Set N’ = Na. Then we have
R-homomorphisms from N to N/N’ given by 8:n — 0/N’ and #:n — n/N’.
Moreover, a8 = aff’. Since « is not surjective, there exists an element n € N \ N'.
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Then n/N’ = 0/N’ implies that there exist elements ma and m’'a of N’ with
n+ma =0+ m'a € N’ which, by the subtractiveness of M, implies that n € N'.
This is a contradiction and so we conclude that ng’ = n/N’ # 0/N’ = ng and
hence § # [/, contradicting the assumption that « is an R-epimorphism. O

(15.16) ExaMPLE. Let R be a semiring and M be a left N-semimodule. Then
(R, +) is also a left N-semimodule. Let M# be the set of all N-homomorphisms
from R to M, written as acting on the right. If  and ¢ are elements of M# and
if » € R then we define # + ¢ and rf by a(6 + ¢) = af + ap and (a)(rf) = (ar)f
for all @ € R. It is straightforward to see that, under the given definitions, M# is
a left R-semimodule. Moreover, if M is a left R-semimodule then we have an R-
homomorphism A: M — M# defined by (m)):a — am foralla € Rand allm € M.
Since 1(mA) = m for all m € M, we see that the function A is monic and hence
an R-monomorphism. If : M — N is an R-homomorphism of left R-semimodules
then « defines an R-homomorphism o#: M# — N# given by 0 — fa.

(15.17) ProrosITION. Let M be a left R-semimodule and let o be a steady
R-endomorphism of M. Then a sufficient condition for o to be an R-isomorphism is
that it be monic and M satisfy the descending chain condition on subsemimodules
or that it be surjective and M satisfy the ascending chain condition on subsemi-
modules.

PrROOF. Assume that « is monic and M satisfy the descending chain condition
on subsemimodules. By Proposition 15.15, o is an R-monomorphism. Moreover,
Ma™ C Ma™~! for all n > 0, where o is taken to be the identity map on M,
and so there exists a natural number ¢ such that Ma! = Ma'~!. Pick the smallest
such ¢. If t = 1 then Mo = M and so « is surjective, hence an R-epimorphism,
and hence an R-isomorphism. If t > 1 and y € Ma'~! then ya € Ma! = Ma'~!
and so there exists an elemeri m of M such that yo = ma’~!. Since a is monic,
this implies that y = ma?~2 € Ma?'~? and so Ma'~? = Ma!~!, contradicting the
minimality of . Hence we must have t = 1 and so « is an R-isomorphism.

Now assume that « is surjective and that M satisfies the ascending chain con-
dition on subsemimodules. By Proposition 15.15, a is an R-epimorphism. Set
Ko = {0} and, for each i > 0, set K; = ker(a'). Then there exists an integer
n > 0 such that K,, = K,_;. Let t be the smallest such integer. If ¢ = 1 then
ker(a) = {0} and so, by steadiness, a is monic, hence an R-monomorphism, and
hence an R-isomorphism. Assume therefore that ¢ > 1. If m € K;_; write m = ya.
Then 0 = ma'~! = (ya)a'~! = yal. Hence y € K; = K;—1 500 = ya'~! = ma'~2.
Therefore m € K;_5 and so K;_; = K;_», contradicting the minimality of ¢. Thus
we must have t = 1 and so a is an R-isomorphism. O

The following result is the analog of Proposition 10.11.

(15.18) PrROPOSITION. Let R be a semiring and let M be a left R-semimodule.
Then a subset N of M is a subtractive subsemimodule if and only if there exists
an R-homomorphism a: M — M’ satisfying N = ker(a).

Proor. We have already noted that kernels of R-homomorphisms M — M’
are subtractive submodules of M. Conversely, assume that N is a subtractive
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subsemimodule of M and let M’ = M/N. Let a: M — M’ be the surjective R-
homomorphism of left R-semimodules defined by a:m — m/N. Then ker(a) =
{meM|m=n0}={me M| thereexist n,n’ € N satisfying m +n = n'}.
But, since N is subtractive, this is just N. O

(15.19) PrOPOSITION. Let R be a semiring and let a: M — N be an R-
homomorphism of left R-semimodules. If N’ is a subtractive subsemimodule of
N and if M’ = N'a™' C M, then:

(1) M’ is a subtractive subsemimodule of M containing ker(«); and

(2) « induces an R-homomorphism (3: M/M' — N/N’ having kernel {0}.

Proor. (1) If m',m” € M’ and if r € R then (m' + m")a = m'a + m"a € N’
and (rm')a = r(m’'a) € N’ and so M’ is a subsemimodule of M. Since Oy € N’,
clearly ker(a) C M’. Finally, if m’ +m” € M’ and m” € M’ then m’a + m”« and
m” a both belong to N’. Since N’ is subtractive, this implies that m’a € N’ and
so m’ € M’. Thus M’ is also subtractive.

(2) Define 8 by 3: m/M’ — ma/N’. This map is well-defined for if £ /M’ = y/M’
then £ =p y and so there exist elements m’ and m' in M’ satisfying ¢ + m' =
y+m'’. As a consequence, za + m'a = (z + m)a = (y+ m")a = ya + m"a.
But m’a and m”« both belong to N’ and so zo =y ya, whence za/N' = ya/N'.
Moreover, 8 is clearly an R-homomorphism. If /M’ € ker(f) then za/N' = 0
and so there exist elements n’ and n” of N’ satisfying za + n’ = n”. Since N’ is
subtractive, this implies that zoo € N’ and so ¢ € M’. Thus /M’ = 0/M’, proving
that ker(3) = {0}. O

(15.20) CoROLLARY. Let R be a semiring and let a: M — N be a surjective
R-homomorphism of left R-semimodules. Then there exists an R-semiisomorphism
M/ker(a) — N.

Proor. This is a direct consequence of Proposition 15.19. O

(15.21) COROLLARY. If R is a semiring and if N’ C N are subsemimodules of
a left R-semimodule M then M /N is R-isomorphic to (M/N’}/(N/N').

ProOF. Let a: M/N' — M/N be the surjective R-homomorphism defined by
a:m/N' — m/N. Then ker(a) = N/N’. By Corollary 15.20, the function «
induces an R-semiisomorphism 8: (M /N')/(N/N') — M/N. Moreover, by Corol-
lary 15.10, we see that § is steady and hence is monic. Therefore § is an R-
isomorphism. O

The following result is the semimodule equivalent of Proposition 10.19.

(15.22) PrROPOSITION. Let R be a semiring. If N and N’ are subsemimodules
of a left R-semimodule M then there exists a canonical surjective R-homomorphism
a:N'/[NNN'} — [N + N']/N, which is an R-semiisomorphism if N is subtractive.

PrOOF. Define the function a: N'/[NNN'] — [N+ N'}]/N by a:n'/[NNN'] —
n’/N. This is clearly a well-defined surjective R-homomorphism. Now suppose that
N is subtractive and that n’/[N N N’] € ker(«). Then there exist elements m and
m’ of N satisfying n’ +m = m' and so, by subtractiveness, n’ € N. This shows that
n’ € NNN’ and so n//[NNN'] =0/[NNN'], proving that ker(a) = {0/[NNN']}.
Thus « is an R-semiisomorphism. O
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(15.23) ProPOSITION. Let R be a semiring. If M and N are R-isomorphic
left R-semimodules not equal to {0} then Endr(M) and Endgr(N) are isomorphic
semirings.

Proor. If a: M — N is an R-isomorphism then it is easy to verify that the func-
tion from Endgr(M) to Endr(N) given by v — a~!ya is a morphism of semirings
which is in fact an isomorphism. O

An element m of a left R-semimodule M is cancellable if m + m’ = m + m”
implies that m’ = m’. The semimodule M is cancellative if and only if every
element of M is cancellable. Clearly any R-module is cancellative. As in the case
of ideals, a left R-semimodule M is cancellative if and only if the subsemimodule
D ={(mm)|me M} of M xM is subtractive. It is also easy to verify that if
N is a submodule of a left R-semimodule M such that 0[/]N # M then the Iizuka
factor module M[/]N is cancellative.

(15.24) ProprosITION. If N is a subsemimodule of a cancellative left R-
semimodule M then both N and M/N are cancellative.

Proor. Clearly N is cancellative. If m, m’, and m’ are elements of M satisfying
m/N +m'/N = m/N + m”/N then there exist elements n’ and n” of N such
that m +m' + n’ = m + m” + n”. Since M is cancellative, this implies that
m' +n' =m” 4+ n"” and so m'/N = m”/N. Thus M/N is cancellative. O

(15.25) ProposITION. For a family {M; | i € Q} of left R-semimodules then
following conditions are equivalent:

(1) Tlicq Mi is cancellative;
(2) [lieq Mi is cancellative;
(3) M; is cancellative for each i € §2.

PROOF. (i) = (2) = (3): This is a direct consequence of Proposition 15.24
since I_L.EQ M; is R-isomorphic to a subsemimodule of Hien M; and each M; is
R-isomorphic to a subsemimodule of []; ., M;.

(3) = (1): Let m = (m;), m’ = (m]), and m"” = (m}) be elements of [];.q M;
satisfying m + m’ = m + m”. Then for each ¢ € Q we have m; + m} = m; + m/

and so, by (3), m, = m. Therefore m' =m”. O

(15.26) EXAMPLE. [Takahashi, 1981] If M is a left R-semimodule and ¢ is the
R-congruence relation on M defined by m ¢ m’ if and only if there exists an element
m" of M satisfying m+m' = m/+m” then M/( is a cancellative left R-semimodule.

(15.27) ProPoSITION. If R is a semiring and M is a simple left R-semimodule
not equal to {Opr} then precisely one of the following conditions holds:

(1) M is additively idempotent; or
(2) M is cancellative.

PRrRoOF. It is immediate that if a left R-semimodule is both additively idempo-
tent and cancellative then it must equal {0ps} since m +m = m = m + 0 implies
in that m = 0. Therefore both of these conditions cannot hold simultaneously.
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Let a: M — M be the R-homomorphism defined by a:m — m + m. Since M
is simple, =, is either trivial or universal. If =, is universal then m =, 0 for all
m € M and so, in particular, m 4+ m = 0 for all such m. If m, m’, and m" are
elements of M satisfying m+m' = m+m” then m' =0+ m' = m+m+m’ =
m+m+m"’ =0+ m"” = m”. Therefore, in this situation, M is cancellative.

We will assume, therefore, that =, is the trivial R-congruence relation on M.
This means that o is monic. Moreover, M« is cancellative [resp. additively idem-
potent] if and only if M is and so, without loss of generality, we can in fact assume
that « is surjective as well. Define a relation p on M by setting z p z’ if and only if
there exist elements m and m’ of M and an element k € N such that z = m+2z'a™*
and ' = m’ 4+ za~*. Clearly p is an equivalence relation. We claim that it is an
R-congruence relation as well. Indeed, if £ p &’ and if m, m’, and k are as above
then for each r € R we have rz = rm + (r'z)a* and rz’ = rm’ 4+ (rz)a~* and
hence rz p rz’. Moreover, if y p ¥/ as well, then we can write y = ya~*a*. For
k > 0 we have

y=ya*al"* 4 ya~Falk
= ya~ ol F 4 ya~Fa? k4 ya~Fa2

:_._:m//_}_ya—k

for some element m” of M. Therefore z + y = (m + m") + (' + y)a~* and
g +y=(m'+m")+(z+y)a*sozx+ypz +y. Similarly, (z' +y) p (' + V)
and so (¢ +y) p (2’ + y'), establishing the claim.

Since M is simple, this implies that p is either trivial or universal. If it is the
trivial R-congruence relation then for each m € M we have m = 0+ (ma)a~! and
ma =m+m=m+ma la = (m+ma!)+ma~! so that m p ma. By triviality,
this iraplies that m = ma = m + m for each m € M, proving that M is additively
idempotent.

We are left to consider the case of p universal and we wish to show that, in this
case, M is cancellative. Let m, m’, and m” be elements of M satisfying m +m” =
m' +m”. Set N={x € M | z+m = z+m'}. This set is nonempty since m” € N.
If z € N then (m+za~Y)a=m+m+z =m'+m+z =m'+m'+z = (m'+za " )a
and so, since « is monic, we must have m+za~! = m/+za~!. Thus £ € N implies
that za~! € N and so za~* € N for all k € N. If y is an arbitrary element of M
then y p m” since p is universal and so there exists an element 3’ of M and an
element k of N such that y = ¢’ + m”a~*%. But m” € N implies that m"a~* € N
som+y=m+y +m’a* =m' 49 +m’a % = m +y, proving that y € N.
Thus we have shown that N = M. In particular, this means that both m and m’
belong to N and so we have ma =m+m=m+m' = m' + m’ = m’a. Since a is
monic, we conclude that m = m’, proving that M is cancellative. O

(15.28) PRrOPOSITION. If R is a commutative semiring then any simple can-
cellative left R-semimodule is an R-module.

ProoF. If M is a simple cancellative left R-module then the R-comgruence
relation =y (pr) is either trivial or universal. If it is universal, then for each
m € M there exist elements v and v’ of V(M) satisfying m + v = 0 + v’ and
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so m = v/ + (—v) € V(M). Hence, in this case, M = V(M) and so M is an
R-module. Thus we need only consider the case that =y (as) is trivial. In particu-
lar, we have V(M) # M. By Proposition 15.13, this implies that V(M) = {0}.
Let p be the relation on M defined by m p m’ if and only if both m and m’ are
either zero or nonzero. This is surely an equivalence relation. Moreover, if m p m/
andn pn’in M and if m+n = 0 then m = n = 0 since V(M) = {0} and so
(m+n) p(m +n'). Let » € R. Since R is commutative, M’ = {m € M | rm = 0}
i1s a subtractive subsemimodule of M and so, by Proposition 15.13, we see that
M’ = M or M’ = {0}. This implies that whenever we have m p m’, we have
rm p rm’, proving that the relation belongs to R — cong(M). Since M is not {0},
the relation 1s not universal and so it must be trivial. Hence M has precisely two
elements, say M = {0,z}. Since V(M) = {0}, we must have z + 2 = z and so M
is additively idempotent, contradicting Proposition 15.27. Thus this case cannot
happen, proving that M must be an R-module. O

A complete classification of simple R-modules, for R a commutative semiring, is
given in [Jezek & Kepka, 1983].

(15.29) ProPosITION. If M is a cancellative left R-semimodule then Z(R) C
(0:M).

PrOOF. Let ¢ € Z(R) and let »r € R satisfy a+7r = r. If m € M then
am+rm = (a + r)m = rm so, by cancellation, am = 0. Thus e € (0: M). O

A cancellative left R-semimodule M satisfying the condition that (0 : M) = Z(R)
is faithfully cancellative.

If N 1s a nonzero subsemimodule of a left R-semimodule M, set P(N,M) =
ime& M | rm+n # 0y forall » € R and Opr # n € N}. Clearly this is =
subsemimodule of M. Moreover, P(M, M) is the set of all those elements m «f
M satisfying the condition that no nonzero multiple of m has an additive inversc.
Thus we surely have V(M)NP(M, M) ={0p}. £ N # {0p} and P(N, M) has an
infinite element, then this element must also belong to N. By convention, we set
P({0p}, M) = M for every left R-semimodule M. We also note that N C M if and
only if N is entire and M = P(N, M). This surely implies that N is zerosumfree
and so we see that an entire left R-semimodule M is an information semimodule if
andonly if M C M.

(15.30) ProprosiTiON. If N, N', M’ are subsemimodules of a left R-semi-
module M then:

(1) N C P(N,M) if and only if N is zerosumfree;

(2) P(N,P(N,M)) = P(N, M);

(3) If M’ is a subsemimodule of M containing N then P(N,M') =
P(N, M)n M’;

(4) If {M; | i € Q} is a family of left R-semimodules satifying M = N;eqM;
then P(N, M) = mieﬂP(N, M,)

(5) If{N; | i € Q} is a family of subsemimodules of M satisfying NicaN; = N,
then NjeqP(N;, M) C P(N, M),

(6) If M’ is a subsemimodule of P(N,M) then N+ M’ = NUM’' and N =
{0} U{n+m |0y € Nym' € M'};
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(7) FNCE M and N C M’ then NC M’;

(8) If N C M’ then N' C P(N,M);

(9) If N is zerosumfree then N C P(N, M);

(10) If{N; | i € Q} is a family of absorbing subsemimodules of M with N;eqN; =
N and U;cqN; = N’ then N N'C M;

(11) If N,N' © M then NN N’ # {0y} and N + N’ C M, where in fact we
have N+ N' = NUN’;

(12) INC M then NNM'C M';

(13) IfM isentireand N, N' C M then {n+n' |Op #n € N;n’ € N'} C NNN’;

(14) If N C M then N UN' is a subsemimodule of M.

ProoF. The proof follows directly from the definitions. O

In particular, we see that if N is an information subsemimodule of a left R-
semimodule M then P(N, M) is the largest subsemimodule of M containing N
as an absorbing subsemimodule. Also, we note that the family of all absorbing
subsemimodules of M is a sublattice of the lattice of all subsemimodules of M, and
that this sublattice is in fact distributive and so forms a semiring.

If M and N are disjoint left R-semimodules then a Takahashi extension of
M by N is a left R-semimodule T the underlying set of which is M U[N \ {On}]
and the operations of addition and multiplication on which are defined so that
N C T. These extensions are first considered in [Takahashi, 1984a]. By what we
have already seen, a necessary condition for a Takahashi extension to exist is that
N be an information semimodule.

A translation of a left R-semimodule M is a function ¢ from M \ {Oas} to itself
satisfying the condition that ¥(m +m’) = (m) + m’ = m+ ¢(m’) for all m,m’ €
M\ {0p}. The trans(M) set of all translations of M is nonempty, since it includes
the identity map and closed under composition of functions. Indeed, it is easily seen
to be a monoid under compositior: of functions. If T is a Takahashi extension of
M by N, then each element m of M defines a translation ¢, € trans(N) given by
©m:n— m+n. Thus we have a function pr: M — trans(N) given by or:m — ¢nm,
and this is in fact as morphism of monoids since, clearly, ¥mi4m’ = @mem: for all
m,m' € M. Moreover, if r € R, m& M, and Oy # n € N then

rlpr(m)(n)] = or(rm)(rn).

A morphism of monoids from M to trans(N) with this property is admissible.
Thus, for example, if M is any left R-semimodule and N is an information semi-
module over R disjoint from M, then the morphism ¢: M — trans(N) defined by
€(m):n — n is admissible. The set of all admissible morphisms from the monoid
(M, +) totrans(N) is denoted by Adm(M, N). If & is the operation on Adm(M, N)
defined by (a®g)(m) = a(m)B(m) for all m € M then (Adm(M, N), D) is a monoid
with identity element ¢. If N has a nonzero cancellable lelement then this monoid
is abelian.

Let ¢ be an admissible morphism of monoids from a left R-semimodule M to
trans(N), where N is an information semimodule over R disjoint from M. Set
T = M U[N \ {On}] and define operations of addition and scalar multiplication on
T as follows:

(1) fm,m' € M and r € R then m + m’ and rm are the same as in M;
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(2) If n,n" € N and r € R then n + n’ and rn are the same as in N;
(3) If me M and n € N then m +n =n+m = p(m)(n).

These operations turn T into a left R-semimodule having N as an absorbing sub-
semimodule and M as a subtractive subsemimodule; hence T is a Takahashi ex-
tension of M by N. Thus there exists a bijective correspondence between the set
of all Takahashi extensions of M by N and the set of all admissible morphisms of
monoids from M to trans(N). If ¢: M — trans(N) is an admissible morphism of
monoids, we will denote by M e, N the Takahashi extension of M by N defined by
®.

Let N be a nontrivial information submodule of a left R-semimodule M (the
existence of which, recall, implies that R is both zerosumfree and entire). Let M’
be a subsemimodule of P(N, M) properly containing N. Define a relation ~n on
M’ by setting m] ~y mj4 if and only if m{ = m} or {mf,ms} C N\ {0sp}. Itis
straightforward to check that this is an R-congruence relation on M’. Moreover, we
see that M’/ ~p is just [M'\ N]U{0ps, w}, where w is a strongly-infinite element
of M’/ ~y. f @« — M’/ ~n is the canonical surjection, then ker(a) = {Opr}, but
« 1s not monic unless N has precisely two elements. For notational convenience,
we will denote M’/ ~n by M'//N and will write m’//N instead of m’/ ~n. Thus,

! N = { {m'} ifm E.M’\N’
{w} otherwise
The semimodule M’//N is the Rees factor semimodule of M’ by N.

If N is an absorbing subsemimodule of a left R-semimodule M, then N’//N is
defined for any R-subsemimodule N’ of M containing N, and it is straightforward
to verify that the map N’ — N’//N induces a bijective order-preserving correspon-
dence between the family of all subsemimoudles of M containing N and the family
of all subsemimodules of M //N, which in turn restricts to a bijective correspon-
dence between the family of all absorbing subsemimodules of M containing N and
the family of all absorbing subsemimodules of M//N.

(15.31) ProrosITION. [Poyatos, 1973a] Let R be an entire zerosumfree semir-
ing and let N and N’ be absorbing subsemimodules of a left R-semimodule M.
Then:

(1) NC NUN’;

(2) NAN'C N';

(3) N'//(N N N’) is R-isomorphic to (N UN')//N.

PrROOF. (1) and (2) are immediate consequences of the definition. As for (3),
the desired R-isomorphism is given by n’//(NNN')—n///N. O

It is similarly straightforward to show the following.

(15.32) ProposiTION. [Poyatos, 1973b] Let R be an entire zerosumfree semir-
ing and let M be a left R-semimodule. If N, N', W, W' are subsemimodules of M
satisfying N'C N and W/ C W, and if

(i) U=NU(NNW),

(i) U' = N'U(N N W),
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(iil) V=W'Uu(NnW), and
(iv) V! = W U(N' W)
then U'C U, V' EV, and U//U’ is R-isomorphic to V//V'.

PRrOOF. The proof is essentially the same as the corresponding proof for modules
over aring. O

(15.33) CoROLLARY. Let R be an entire zerosumfree semiring. If N C N’
are proper absorbing subsemimodules of a left R-semimodule M, then the R-
semimodule (M //N)//(M//N') is R-isomorphic to M //N'.

Proor. This is an immediate consequence of Proposition 15.31 and Proposition
15.32. O

A strongly-infinite element w of a left R-semimodule M is primitive in M if
and only if m+m' = w for all m,m’ € M \ {Op}. Thus, for example, if M has a
strongly-infinite element w then w is a primitive element of ¢r(M).

(15.34) ExamMPLE. [Goldstern, 1985] Let R = {ao, a1, .-, bo, b1,...} on which
we define operations of addition and multiplication as follows:

(1) a; 4+ aj = ajy; forall i,j € N;

(2) bi+b; =bo foralli,jeN;

(3) aj +b; =b; + aj = by, where k =i — j if ¢ > j and k = 0 otherwise;

(4) aia; = a;j for all i, j € N;

(5) bibj = bp for all 4, j € N;

(6) biaj = ajb; = by for all i € N and all j > 1;

(7) bsap = apb; = ap for all i € N;

(8) b;a; = a1b; = b; for all 1 € N.
These operations turn R into a semiring with additive identity ag and multiplicative
identity a; having a sirongly-infinite element by which is not primitive.

An absorbing subsemimodule N of a left R-semimodule M is quasiminimal if
and only if it properly contains c¢r(M) and there is no absorbing subsemimodule
of M properly containing cr(M) and properly contained in N. Thus, M itself is
quasiminimal if and only if either M has no proper absorbing subsemimodules or
it has precisely one such subsemimodule, namely its crux. A nontrivial left R-
semimodule which is quasiminimal and has no primitive elements is quasisimple.
That is to say, a quasiminimal left R-semimodule is quasisimple if it either has no
strongly-infinite elements or has one such element which is not primitive. If w is
a strongly-infinite element of an information semimodule M over R which has no
proper absorbing subsemimodules other than ¢r(M), and if N = M \ {03}, then
we know by Proposition 15.30(11) that N + N must either equal N or equal {w}.
In the first case, M is quasisimple. In the second case, w is a primitive element of
M.

(15.35) ExaMPLE. [Poyatos, 1973a] Let T' be a nonempty set and let z, w be
distinct elements not in T Define addition on X = T'U {2z, w} by setting

(1) t+t' =wforallt,t' €T,

(2) z+z=z4+z=zforallze X,

B)z+tw=wt+z=wforallz € X;
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For each k& € N and each z € X, define the element kx of X as follows:
(4) 0z = z;
(5) lz = «;
(6) kx =wifk>1and z # z;

(7) kz = z for all k € N.
Then X belonges a left N-semimodule with strongly-infinite element w. If 7” is any
subset of T then 7" U {z, w} C X. Moreover, w is primitive in X.

From the definitions, we see that if N is an absorbing subsemimodule of a left R-
semimodule M and if N’ is an absorbing subsemimodule of M properly containing
N, then N’//N is quasisimple if and only if there is no absorbing subsemimodule
of M properly containing N and properly contained in N’.

By Proposition 15.30(10), we see that if M is a left R-semimodule having at least
one absorbing subsemimodule, then M has a unique maximal absorbing subsemi-
module, which we will denote by abs(M). If abs(M) # M then surely M //abs(M)
1s quasisimple.

Let R be an entire zerosumfree semiring and let M be a left R-semimodule. For
O #m € M, set T(m) = {Oq}U{rm+m' |0 # r € Rym' € M}. This is
surely an R-subsemimodule of M containing Rm. Moreover, it is easily to see that
m € abs(M) if and only if T(m) C M and that, in that case,

T(m)={0m}U{rm+m'|0#re R;m' € abs(M)}.

Thus, if 0y # m € abs(M) then T(m') C T(m) for all Opr # m’ € T(m). Set
T/(m) = {0} U {0y # m' € T(m) | T(m') # T(m)}.

(15.36) PrcPosITION. let R be an entire zerosumfree semiring and let M be a
left R-semimodule having an absorbing subsemimodule. If Opr # m € abs(M) then
T'(m) is a maximal proper absorbing subsemimodule of T(m).

Proor. If my,my € T(m) and 0 # r € R then T(m; + mo) C T(m1) and
T(rm1) C T(m) so T’(m) is an absorbing subsemimodule of 7'(m), which is proper
since m € T(m) \ T'(m). Finally, assume that 7'(m) C N C T(m), where N is an
absorbing subsemimodule of M, and let Ops # # € N. Then T(z) C N # T(m)
and so ¢ € T’(m), establishing the maximality of 7"(m). O

If w € M is strongly infinite then w € abs(M) and rm+w = wfor all Opr # m €
abs(M) and r € R. Therefore w € T(m) and so we conclude that er(M) C T(m)
for each Opr # m € abs(M).

Let R be an entire zerosumfree semiring and let M be an R-semimodule having
a strongly-infinite element w. Then c¢r(M) = T'(w), from which it is easy to deduce
that:

(1) L(M) = {0p} U {m € abs(M) | T(m) = cr(M)} is an absorbing subsemi-
module of M which is the unique maximal subsemimodule N of abs(M)
satisfying n +m = w for all Opr # n € N and all Oar # m € abs(M); and

(2) If m € abs(M) \ er(M) then T(m) = er(M) if and only if T(m) is quasi-
minimal.
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(15.37) PrROPOSITION. Let R be an entire zerosumfree semiring and let M
be a noncrucial R-semimodule having a strongly-infinite element w. Then M is
quasisimple if and only if T(m) = M for allm € M \ er(M).

PRrROOF. Assume M is quasisimple. If m € M \ er(M) then T(m) C M and so,
by quasisimplicity, T(m) = M. Conversely, assume that T(m) = M for all m €
M\ cr(M). Since M is noncrucial, it is quasiminimal and, indeed, quasisimple. O

Thus we see that if R is an entire zerosumfree semiring and M is a noncrucial
quasisimple information R-semimodule having a strongly-infinite element w. Then
T'(m) = er(M) for all m € M \ er(M). Indeeed, let R be an entire zerosumfree
semiring and let M be a noncrucial R-semimodule having a strongly-infinite ele-
ment w. If N is a quasiminimal absorbing subsemimodule of M then either N
has a primitive element or is quasisimple. Thus, in particular, if R is an entire
zerosumfree semiring and M is a left R-semimodule having an absorbing subsemi-
module then, for each m € abs(M), the left R-semimodule T(m) = T(m)//T’(m)
is the principal factor of M at m. By the comments above, T(m) has a strongly-
infinite element. Indeed, if Opr # m € abs(M) then T(m) either has a primitive
element or is quasisimple. Moreover, if R is an entire zerosumfree semiring, if M is
a left R-semimodule and if N’ is a maximal proper absorbing subsemimodule of a

subsemimodule N of abs(M) then N//N’ 2 T(m) for any m € N\ N'.
If M is a left R-semimodule then an absorbing series for M is a chain

CT(M):NtE~~~|;N1;N0:M

of subsemimodules of M. An absorbing quasiseries for M is an absorbing series
for abs(Af). Any chain obtained from a given absorbing series by inserting further
terms is & refinement of that series. If new subsemimodules are actually inserted,
such a r=finement is proper. Two absorbing series

CT’(M)=1Vt;"-;N1 ENQZM
and
CT(M):L32'~~;L1EL0:M

for M are isomorphic if and only if ¢ = s and there is a permutation o of {1,...,¢}
such that N;_1//N; = L,iy-1//Lo() for each 1 < i < t. Given these notions,
Poyatos [1972, 1973a, 1973b] has extended the Jordan-Holder theorem for modules.

(15.38) ProPOSITION. If R is an entire zerosumfree semiring and M is a left R-
semimodule then any two absorbing quasiseries of M have isomorphic refinements.

The proof is similar to the proof the the Jordan-Holder theorem for modules.
See [Poyatos 1973b] for details.



16. SOME CONSTRUCTIONS FOR
SEMIMODULES

In this chapter we present three basic constructions associated with semimodules.
The first of these, the construction of the module of differences of an R-semimodule,
is based on the corresponding construction for semirings. The other two, decom-
position of a semimodule into a direct sum of indecomposable summands and the
construction of the tensor product of semimodules, are inspired by the correspond-
ing constructions for modules over a ring. In each case, however, the results differ
somewhat from those in module theory due to the allowances we have to make for
being in a semimodule environment.

In Chapter 7 we defined the ring of differences of a nonzeroic semiring . We now
show how, given a semiring R, we can define, in an analogous manner, the module
of differences of any left R-semimodule. Indeed, let R be a semiring. If M is a left
R-semimodule and if W is the subsemimodule of M x M defined by W = {(m, m) |
m € M}, then (M x M)/W is a left R-semimodule which is in fact a left R-module
since for all (m, m’') € M x M we have (m,m')/W + (m/, m)/W = (0,0)/W. This
left R-module, denoted by M2, is called the R-module of differences of M.
We have a canonical R-homomorphism &s from M to M2 defined by £p:m —
(m,0)/W. This R-homomorphism is not necessarily monic. As in the case of
semirings, it is straightforward to establish that the following conditions on M are
equivalent:

(1) M is cancellative;
(2) W is subtractive;
(3) &m: M — M* is monic.

(16.1) PROPOSITION. Let M be a left R-semimodule and let N be a left R-
module. If a:M — N is an R-homomorphism then there exists a unique R-
homomorphism §: M® — N satisfying Emp = .

PROOF. Define the function # from M2 to N as follows: §:(m,m')/W
ma + [—(m’a)], where —(m’a) is the additive inverse of m’a in the R-module N.
If m, m’, u, and v’ are elements of M satisfying (m, m’)/W = (u,u')/W then there
exist elements v and v’ of M such that m+v = u+4v' and m'+v = u'+v’'. Therefore
ma+[—(m'a)] = (m+v)a+[—(m' +v)a] = (u+v')a+[—(v' +v")a] = va+[—(v'a))].
J. S. Golan, Semirings and their Applications
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Thus the function § is well-defined. It is straightforward to establish that # is an
R-homomorphism having the desired property. O

(16.2) ProposITION. If M is a left R-semimodule then there exists a canon-
ical surjection from R — cong(M*) to R — cong(M), which is a bijection if M is
cancellative.

PROOF. Any R-congruence relation p on M2 induces a corresponding R-
congruence relation p* on M defined by the condition that m p* m’ if and only if
mépr p m'Ey. We claim that every R-congruence relation on M is of this form.
Indeed, let ( be an R-congruence relation on M and consider the R-congruence re-
lation p on M2 defined by (m, m’)/W p (n,n’)/W if and only if (m+n') ¢ (m’+n)
in M. This relation is well-defined since for any m, m’, m” € M we have

(m,m")/W p (m+m" m' +m")/W.

Moreover, if m,m’ € M then méx p m’€pr if and only if m { m’ so ¢ is just p*.
Thus the map p — p* is a surjection from R — cong(M2) to R — cong(M).

Now assume that M is cancellative and that p; and p; are R-congruence relations
on M2 satisfying (p1)* = (p2)*. That is to say, if m and m’ are elements of M
then mé&pr p1 m'€py if and only if mépr p2 M'épr. If (m,m')/W and (n,n’)/W are
arbitrary elements of M2 then (m,m')/W = z€y + (—m'€x) and (n,n')/W =

nép + (—n'En) and so

(m,m")/W p1 (n,n')/W
& (m,m')/W + [m'éy + '] pr (n,n)/W + [m'Ep + n'Ep]
& (m+n)ear pr (n4+m)ey
< (m+n")m p2 (n+ m' ey
< (m,m)/W p2 (n,n')/W

and so the relations p; and ps coincide. Thus, in this case, the map p — p* is
bijective. O

As a direct consequence of this result, we see that a left R-semimodule M is
simple whenever M is simple, and that the converse is also true if M is cancellative.

(16.3) ProrosITION. If a: M — N is an R-homomorphism of R-semimodules
then there exists a unique R-homomorphism a®: M® — N2 of R-modules satis-
fying épra® = auy. Moreover, if o is surjective or is an isomorphism then so is

A
a?.

PrROOF. Set 3 = aty. By Proposition 16.1, there exists a unique R-homomor-
phism a®: M2 — N2 extending 3. Indeed, it is easy to see that if W = {(m,m) |
m € M} and W = {(n,n) | n € N} then a® is defined by (m,m')/W —
(ma, m'a)/W’. From this and uniqueness, the second assertion is immediate. O

If a:M — M' and 8: M’ — M" are R-homomorphisms of left R-semimodules
then, by uniqueness, we have (a3)® = a®p2. Also, if @: M — M is the identity
map then a®: M® — M2 is also the identity map. Thus we note that if R is a
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semiring then ()2 is a functor from the category of all left R-semimodules to the
category of all left R-modules.

Let R be a nonzeroic semiring and let S = R® be the ring of differences of R.
For notational convenience, we will denote an element (a,a’)/D of S by {(a,d’). If
N is a left R-module then for each (a,a’) € S and n € N set (a,a’')n = an+(—a’'n).
This is well-defined since if {a,a’) = (b,¥’) in S then there exists an element d of R
satisfying a+b +d = ¢’ +b+d. Hence an+ b n+dn = a'n+bn+dn and so, adding
—(a’'n+b'n+dn) to each side, we see that an+(—a’n) = bn+(—b'n). It is now easy
to see that with the given addition in N and with the scalar multiplication defined
as above, N is a left S-module. Moreover, if a: N — N’ is an R-homomorphism of
left R-modules then it is also an S-homomorphism of left S-modules.

Combining both of the above constructions, we see that, given a nonzeroic
semiring R, R, there exists a canonical functor from the category of all left R-
semimodules to the category of all R*-modules. The properties of this functor are
worked out in detail in [Poyatos, 1971]. In particular, if M is a left R-semimodule
then M2 is a left R®-module with addition and scalar multiplication defined by
(m,m') + (n,n') = (m+ n,m' + n’) and (a,b)(m,m’) = (am + bm’,bm + am’)
where (m,m’) = (m,m')/W and (n,n’) = (n,n’)/W are elements of M2 and
(a,b) = (a,b)/D is an element of R®.

Let R be a nonzeroic semiring and let M be a nonzero left R-semimodule having
R-endomorphism semiring S. As above, we will denote elements of R® by (a, b) and
elements of M2 by (m,m’). To each pair («, 3) of elements of S define a function
®(a, B): M — M2 by setting ®(a, B): (m, m’) — (ma + m'B, mB + m’a). This
function is well-defined since if (m,m’) = (u,v') in M2 then there exist elements
n and n’ of M satisfying (m + n,m’ + n) = (u + n’, v’ + n’). Therefore

ma + m'f + na+nB,nB+ma+ na+ng)
[m + n]a + [m' + n]B, [m + n]B + [m’ + n]a)

(ma+m'B,mB +m'a) = (
= {
([utn'la+[u' +n']B, [u+t |3+ [v +n'la)
=
=

ua +u' B+ n'a+n'BuB+u'B+ n'a+n'p)
ua +u'B,uf + v'a).
Indeed, it is straighforward to show that ®(a, 3) is in fact an R®-endomorphism
of MA.
Now assume that, in addition, the semiring S is also nonzeroic. Let G = {(«, @) |
a € S} and let S = (S x S)/G. In line with our prev1ous notation, we will denote
the element (a, 8)/G of S® by (a, ). If (a,8) = (¢/, ) in S then there exist

elements § and ¢’ in S such that (« +6,8+6) = (@’ + 6,8 +6'). For each element
(m,m') of M we then have

(m,m")®(a, B) = (ma + m'B, mB + m'a)

= (ma+m'8+mb +m'0,mB + m'a +mb + m'd)
= (mla + 0]+ m'[B + 6], m[B + 0] + m'[or + 6])

= (mla' + 01+ m/[F + 0], m[p' + 0]+ m'[ + ])
=(m

m')®(a’, §').
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This shows that ® induces a function ® from the ring S2 to the ring of all R2-
endomorphisms of M2 defined by ®': (a, ) — ®(«, #). It is again straightforward
(and rather tedious) to verify that ®’ is in fact a ring homomorphism.

(16.4) PrROPOSITION. Let R be a nonzeroic semiring and let M be a nonzero
left R-semimodule having nonzeroic R-endomorphism semiring S. Then then kernel
of the ring homomorphism ®' from S® to the ring of all R®-endomorphisms of M4
is {{a,B) | for each m € M there exists an element n € M such that ma +n =
m@ + n}. In particular, a sufficient condition for ® to be monic is that M be
cancellative.

ProOOF. Suppose that («, 8) € ker(®'). Then for each m € M we have (0,0) =
(m,0)®'((«r, B)) = (ma, mB) and so there exists an element n of M such that
ma + n = mf + n. Conversely, assume that this condition holds for (@, 8) € S2.
Then if (m, m') € M2 there exist elements n and n’ of M such that ma+n = mf8+n
and m'a +n' = m’B + n’. Therefore

(ma+m'B,m'a+mpB) = (ma+m'B+n+n,ma+mB+n+n’)=/(0,0)

so {a, B) € ker(®').
If M is cancellative and («, B) € ker(®’) then the above result shows that ma =
mf for all m € M and so o = 3. Thus {«, 8) = (0, 0), proving that &' is monic. O

Let R be a semiring. If {M; | i € Q} is a family of nonempty subsemimodules of
a left R-semimodule M and if 8;: M; — M is the inclusion map for each 7 € 2, then
we have a unique R-homomorphism g:[[;.q Mi — M satisfying §; = ;8 for each
i € Q. Indeed, § is defined by (m;) — Y ;.o m; (where this sum is well-defined
since on:y finitely-many of the m; are nonzero). If 8 is an R-isomorphism, then M
is the direct sum of the submodules M; and we write M = ®;cqM;. As in the
case of modules over a ring, it is straightforward to establish that M = ®;eqM; if
and only if each element m of M can be written in a unique way as Y m;, where
m; € M; for each 7 € Q and only finitely-many of the m; are nonzero.

A subsemimodule N of a left R-semimodule M is a direct summand of M
if and only if there exists a subsemimodule N’ of M satisfying M = N @ N’. In
particular, every element m of M can be written in a unique manner as n + n’,
where n € N and n’ € N’, and we have a surjective R-homomorphism 7y: M — N
defined by m — n, called the projection of M onto N. Similarly, we have the
projection m of M onto N’ the kernel of which is precisely N. Thus, in particular,
any direct summand of M is subtractive.

The set of all nonzero direct summands of a left R-semimodule M will be denoted
by summ(M). This set is nonempty since M € summ(M).

(16.5) EXAMPLE. Let R be a zerosumfree entire semiring and let M be a left R-
semimodule. If o: M — R is an R-homomorphism having kernel K and if m,m’ €
M\ K then (m + m')a = ma + m'a # 0 and so m + m’ ¢ K. Moreover, if
0 # r € R then (rm)a = r(ma) # 0 and so rm ¢ K. Thus N = (M \ K) U {0} is
an R-submodule of M and clearly M = N § K.
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(16.6) PROPOSITION. Let R be a semiring and let M be a left R-semimodule
having endomorphism semiring S. Then the following conditions on a subsemimod-
ule N of M are equivalent:

(1) N is a direct summand of M;

(2) N = Ma for some a € comp(S);

(3) There is a subsemimodule N’ of M such that M = N + N’ and such that
the restriction of =}, to N and the restriction of =y to N’ are trivial.

Proor. (1) & (2): If N is a direct summand of M and if \: N — M is the
inclusion map then N = Mwxy where my is considered as an endomorphism of
M. Moreover, if M = N & N’ then 1y + 7y = 15 and mymn = Ty = Og
so 1y € comp(S). Conversely, assume that N = M« for some o € comp(S). If
N’ = Ma*' then it is straightforward to verify that M = N @ N'.

(1) = (3): Assume (1) and let N’ be a subsemimodule of M satisfying M =
N @ N’. Then surely M = N + N'. If z, 2’ € N satisfy £ =5 2’ then there exist
¥,y € N’ such that £ + y = 2’ + /. By uniqueness of representation, this implies
that 2 = 2’ and y = ¥ so, in particular, the restriction of =p+ to N is trivial.
Similarly, the restriction of =y to N’ is trivial.

(3) = (1): Assume (3). Then any element of M can be written as z + y, where
z € Nandy € N'. Let z,2’ € N and y,yf € N’ satisfy  +y = 2’ + 4. Then
z =n' 2’ and so z = z’. Similarly y =n ¢’ and so y = /. Thus such representations
are unique, proving that M = N@ N’. O

(16.7) PROPOSITION. Let R be a semiring and let M be a left R-semimodule.
If Ny C N; are direct summands of M then N, is a direct summand of Ny.

PRrRoOF. By assumption, there exist subsemnimodules M; and M, of M satisfying
M = N1 ® M; = Ny @ M,. In particular, if £ € N; then we can write £ = ny +my
for some elements ny of Ny and my of My. Furthermore, ms = n; + m; for some
ny € N; and m; € M;. Thus z = (nl + nz) + mq for n1 + ny € Ny and my € M;.
By the uniqueness of representation, we must have m; = 0 and z = n; + ns, where
ny = mg € NyNM,. Therefore Ny = Na+(N;NMs). Moreover, any representation
of an element of N; as a sum of an element of Ny and an element of Ny N M> is
unique, and so Ns is a direct summand of N;. O

A nonzero left R-semimodule M is indecomposable if and only if there do
not exist nonzero subsemimodules N and N’ of M satisfying M = N & N'. An
R-semimodule which is not indecomposable is decomposable.

(16.8) EXAMPLE. Let R be a semiring considered as a left semimodule over
itself. If e € comp(R) \ {0,1} then R = Re + Rel. If ae + be' = 0 then

ae = ae’ = ae’ +bete = (ae + bet)e =0

and similarly be* = 0. Therefore this sum is direct. Thus we see that if R is
indecomposable as a left semimodule over itself then it is integral.
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(16.9) ProPOSITION. If R is a semiring and M is a left R-semimodule sat-
isfying the descending chain condition on subtractive submodules then M has a
decomposition as a direct sum of finitely-many indecomposable subsemimodules.

PRrROOF. Let M be a left R-semimodule. By hypothesis, summ(M) has a min-
imal element N;, which is surely indecomposable. Write M = N; @ Y;. If Y] is
indecomposable, we are done. If not, summ(Y;) has a minimal element N2 and we
can write Y3 = No® Y2 and so M = N; & N, & Y,. Continue in this manner. Since
Y] D Yy D ... is a properly descending chain of subtractive submodules of M,
it must terminate after a finite number of steps, and so there exists some natural
number ¢ such that M = N; @ --- @ N; @ Y;, where all of the direct summands are
indecomposable. O

(16.10) ProPOSITION. Let R be a semiring. If M is a zerosumfree left R-
semimodule and if Ny,..., N, Y1,...,Y; are indecomposable submodules of M
satisfying M = Ny @ - - ® Ny = Y1 @ ---®Y; then k = t and there exists a
permutation o of {1,...,k} with N; = Y, for all 1.

Proor. If © € N; we can write z = y1 + - - -+ yz, where the y; € Y; for each .
In turn, each y; can be written as y; = ni1 + - - - + njx with n;; € N; for each j.
Therefore

where n; = Zle nij € Nj for each 1 < j < k. By uniqueness of representation, we
have n; = 0 for all j > 1 and so, by zerosumfreeness, n;; = 0 for all ¢ and all j > 1.
Thus y; = n;, € Y; N Ny for each 7. Moreover, £ = ny; + -+ -+ ny; and so we see
that N1+ (Y1 N N1)+ -+ (Y2 N N1), where this sum is in fact direct. Since My is
indecomposable, this means that ¥; N Ny = {0} for all ¢ except one. Renumbe=iing
the Y; if necessary, we can assume that Y1 N N; # {0}. Thus N =Y NN; C 1.
A reversal of this argument shows that Y3 C N; and thus we have equality. Thus
M=N ®Y,® - -®Y,. Continuing in this manner, we show that we must have
k =t and that the Y; are just a (possible) rearrangement of the N;. O

(16.11) ProprosiTioN. [Fitting’s Lemma] Let M be a cancellative left R-
semimodule satisfying both the ascending chain condition and the descending chain
condition on subsemimodules and let o: M — M be a steady R-endomorphism of
M satisfying the condition that M = Ma' + ker(a') for some positive integer t.
Then there exists a positive integer h for which M = Ma" & ker(a®).

there exist positive intergers u and v such that ker(a®) = ker(a®*?) for all i € N
and Ma¥ = Mot for all i € N. Set h = maz{t,u,v} and let ¢ = a'. Then, by
construction, ¢ = 2.

If m € M then there exist elements x of M and y of ker(a') satisfying m = za‘+
y. Similarly, there exist elements ' of M and y' of ker(a?) such that ¢ = 2’a’ +y'.
Hence zo? = z'a® + ya' = z’'a?'. Continuing in this manner, we can find an
element z” of M and an integer n such that nt > h and m = 2"a™ +y = za” +y,

where y € ker(at) C ker(a®). Thus M = My + ker(p).

PROOF. Since ker(a) C ker(a?) C ... and Ma D Ma? D ... we know that
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Suppose that m and m’ are elements of M satisfying m@ =ger(p) m'e. Then
there exist elements r and z’ of ker(p) satisfying myp + 2 = m’p + 2’ so mp =
mp? = (mp+2a)p = (M'p+z')p = m'p? = m’p and thus the restriction of =jer(yp)
to My is trivial. Now s[/]{0}uppose that z,z’ € ker(yp) satisfy # =pr, z’. Then
there exist elements m and m’ of M such that z + mp = 2’ + m’p. As above, this
implies that myp = m’p and so z = z’ since M is cancellative. Thus the restriction
of =pmy to ker(yp) is trivial. The result now follows from Proposition 16.6 and its
proof. 0O

The notion of the tensor product of semimodules over a semiring was defined in
[Takahashi, 1982a]. For the application of this construction to the study of iterative
nondeterministic algebras, see [Wechler, 1988].

Let R be a semiring, let M be a right R-semimodule, and let N be a left R-
semimodule. Let A be the set M x N and let U be the N-semimodule R(4) x R(4),
Then every element of the R-semimodule R(4) can be written in a unique manner
as a linear combination of the elements of the set {f[m,n] | (m,n) € M x N},
where f[m,n] is the function from M x N to R defined by

1 if (m/,n') = (m,n)
0 otherwise '

flm, il 'y {

Let W be the subset of U consisting of all elements of the following forms:

) (flm + m,n], flm,n]+ fm', n]),
2) (f[m,n] + f[m',n], flm+ m',n]),
3) (f[m,n +n'], f[m,n] + f[m,n']),
4) (f[m,n] + f[m,n'], fim,n +n']),

5) (f[mr,n], f[m,rn]),

(6) (f[m,rn], flmr,n])
for m,m’ € M, n,n' € N, and r € R. Let U’ be the N-subsemimodule of U
generated by W. Then every element of U’ can be written (not necessarily uniquely)
as a finite sum Y ki(g:, hi) = (3] kigi, Y kihi) for k; € N and g;, h; € W. We also
note that (g,9) € U’ for all g € RM. We can therefore define an R-congruence
relation p on R(4) by setting f p f' if and only if there exists an element (g, k)
of U’ such that f + g = f' + h. The factor N-semimodule R(4)/p will be denoted
by M ®gr N, and is called the tensor product of M and N over R. f m € M
and n € N then the element f[m,n]/p will be denoted by m ® n. Since R(4) is
generated by the elements of the form f[m, n], we see that M @r N is generated by
the elements of the form m®n and so every element of M @g N can be written (not
necessarily uniquely) as a finite sum ) _(m; ®n;) for m; € M and n; € N. Moreover,
by the above construction we see that for allm, m’ € M, foralln,n’ € N, allr € R,
and all £ € N, we have:

(1
(
(
(
(
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Moreover, if S is a semiring then, as in the case of tensor products of modules
over rings, it is straightforward to verify that if M is an (S, R)-bisemimodule then
M ®g N is a left S-semimodule with scalar multiplication defined by s(m ® n) =
(sm) @ n. Similarly, if N is an (R, S)-bisemimodule then M Qg N is a right S-
bisemimodule with scalar multiplication defined by (m @ n)s = m ® (ns).

(16.12) PROPOSITION. Let R be a semiring. If M is a right R-semimodule and
N is a left R-semimodule then the semimodule M @ g N is cancellative.

ProOOF. Let A = M x N and suppose that f, f’, and f” are elements of R(4)
satisfying f/p+ f"'/p = f'/p+ f"/p. Then there exists a pair (g, h) € U’ satisfying
f+f"+g=f+f"+h But, by construction, (f", f”') also belongs to U’ and
hence so does (f"+ g, f’ 4+ h). This implies that f/p = f'/p, proving that M @g N
is cancellative. O

Let R be a semiring. If M is a right R-semimodule, if N is a left R-semimodule,
and if T 1s an N-semimodule, then a function 8: M x N — T 1s R-balanced if and
only if, for all m,m’' € M, for all n,n’ € N, and for all » € R we have:

(1) 8(m + m',n) = 6(m,n) +6(m’, n);
(2) 6(m,n +n") =6(m,n) + (m,n’),
(3) 8(mr,n) = 8(m, rn).

(16.13) ExaMPLE. If N is a left R-semimodule and 7' is an N-semimodule, then
the set Hom(N,T) of all N-homomorphisms from N to T has the structure of a
right R-semimodule, when we define (o« + 8)n = an + fn and (ar)n = a(rn). If
M is a right R-semimodule and ¢: M — Hom(N,T) is an R-homomorphism then
we have an R-balanced function §: M x N — T defined by 6: (m, n) — (p(m))(n).
Conversely, if : M x N — T is an R-balanced function then we can define an
R-homomorphism ¢: i{ — Hom{N,T) by (p(m))(n) = 8(m, n).

We now note the universal property of the tensor product. First, however, we
recall from Example 15.4 that if R is a semiring and M is a left R-semimodule then
we have a relation [=]{0} on M defined by m[=]{oym’ if and only if there exists
an element m’ of M satisfying m + m/ = m’ + m”. The equivalence class of an
element m with respect to this relation is denoted by m[/]{0}.

(16.14) PROPOSITION. Let R be a semiring, let M be a right R-semimodule,
let N be a left R-semimodule, and let T be an N-semimodule. If 9: M x N — T is
an R-balanced function then there exists a unique N-homomorphism¢): M Qg N —
T[/]{0} satisfying the condition that ¥(m ® n) = 6(m,n)[/]{0} for allm € M and
neN.

PrROOF. Set A = M x N. The function #: A — T can be uniquely extended to an
N-homomorphism 6*: R4 — T satisfying 6*(f[m, n]) = 6(m, n) for all m € M and
n € N. Indeed, for each g € R4 we have 6*(g) = S_{g(m,n)f(m,n) | (m,n) €
supp(9)}-

Let p be the equivalence relation used in defining M ®g N, i.e. the relation such
that M @g N = R(4)/p. Similarly, let U’ and W be as above. We define a function
Yv: M @r N — T' = T[/]{0} by setting ¥(f/p) = 60*(f)[/]{0}. This function is
well-defined since if f p f' in R() then there exists a pair (g, k) € U’ such that
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F+g = f +h It follows that 6*(f) + 6*(9) = 6*(f') + ¢*(h). By definition
of U’, we know that (g, h) can be written as (}_ kigi, Y kih:), where k; € N and
gi,hi € W for each 7. Then 6*(g9) = > k;6*(9;) = > k;0*(h;) = 0*(h). Since
T[/]{0} is cancellative by Example 15.26, we see that 6*(f)[/]{0} = ¢*(f")[/]{0}
and so ¥(f/p) = ¥(f'/p).

We now claim that 1 is an N-homomorphism. Indeed, if f,g € R(*) then
W(f/p+9/p) = Y(f +9l/p) = 0°(f + 9)l/]{0} = 6"(N[/HO} + 6" (9)[/]{0} =
W(f/p) + ¥(g/p). Now suppose that f € R(4) satisfies the condition that f p 0.
Then there exists a pair (g, k) in U’ such that f+g = h and so 0*(f)+6*(g) = 6*(h).
Since 6*(g) = 6*(h) and T[/]{0} is cancellative, we have 6*(f) = 0[/]{0}. Thus
¥(0/p) = 0[/]{0}, proving that ¥ is an N-homomorphism.

Finally, we note that 1 clearly has the desired property, and uniqueness is
straightforward to check. O

In particular, we note that if M is a right R-semimodule, N is a left R-semi-
module, and if T is a cancellative N-semimodule then for any R-balanced function
6: M x N — T there exists a unique N-homomorphism ©: M ® g N — T satisfying
Y(m®n)=0(m,n) forallm € M and alln € N.

(16.15) PROPOSITION. Let R be a semiring, left M be a right R-semimodule,
left N be a left R-semimodule, and let T' be a cancellative N-semimodule. Then
there exists a canonical isomorphism of N-semimodules ¥: Hom(M ®gr N,T) —
Hompgp(M, Hom(N,T)).

Proor. If o is an N-homomorphism from M ®g N to T, let o* be the function
from M to Hom(N,T) given by a*: n — a(m®n). Then ¢* is an R-homomorphism
of right R-semimodules. That is to say, a* € Homg(M, Hom(N,T)). Let

¥: Hom(M ®g N, T) — Homgr(M, Hom(N,T))

be the function defined by ¥:a — o*. It is straightforward to verify that this is an
N-homomorphism.

If o* = 8" then a(m®@n) = f(m®@n) for all m € M and n € N and so we must
have @ = . Thus 9 is monic. To show that it is surjective as well, let § be an
R-homomorphism from M to Hom(N,T) and let 8 be the function from M x N
to T defined by §(m,n) = §(m)(n). Then @ is R-balanced and so, by the remark
after Proposition 16.14, there exists a unique N-homomorphism a: M ® g N — T
satisfying 8(m,n) = a(m @ n) for all m € M and all n € N. By definition, o* = §,
proving that 4 is surjective and hence an N-isomorphism. 0O

(16.16) PrROPOSITION. If M is a left R-semimodule then R®g M is isomorphic
to M[/1{0}.

ProoF. Let 6: R x M — M[/]{0} be the function defined by 8:(r,m) —
rm[/]{0}. Then 6 is R-balanced and so, by Proposition 16.14, there exists a unique
N-homomorphism ¢: R®r M — M[/]{0} satisfying ¥(r®m) = 6(rm) for all r € R
an m € M. Indeed, ¢ is an R-homomorphism of left R-modules. On the other
hand, we have a function ¢: M[/]{0} — R ®r M given by ¢: m[/]{0} — 1 x m.
It is easy to verify that this function is indeed well-defined and that it in fact is
an R-homomorphism. Since py(r @ m) = ¢(rm[/]0) = 1 ® rm = r ® m and
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Ye(m[/]0) = ¥(1 @ m) = m[/]{0} for all r € R and m € M, we see that ¥ must be
both surjective and monic and so it is an R-isomorphism. O



17. FREE, PROJECTIVE, AND
INJECTIVE SEMIMODULES

Let R be a semiring and let M be a left R-semimodule. If A is a nonempty
subset of M then there exists an R-homomorphism a: R(4) — M defined by a: f —
Yomea f(m)m. The set A is a set of generators for M precisely when this R-
homomorphism is surjective. Moreover, « induces an R-congruence relation =, on
R(4) as defined in Example 15.1. The set A is linearly independent if and only if
=, is the trivial relation, i.e. if and only if 3 ., f(m)m =3 .\ g(m)m implies
that f = g. If A is not linearly independent then it is linearly dependent. A
linearly-independent set of generators for M is a basis of M over R. We note that
if A is linearly dependent and if B C A then the subsemimodules of M generated
by B and A\ B have no nozero element in common.

The set A is weakly linearly independent if and only if ker(«) = {0}. Lin-
early independent subsets of M are surely weakly linearly independent. If A is not
weakly linearly independent then it is weakly linearly dependent. Any subset
of M containing a [weakly] linearly dependent set is again [weakly] linearly depen-
dent. If m is an element of a semimodule M which is a linear combination of a
subset A of M then A U {m} is linearly dependent but not necessarily weakly lin-
early dependent. A weakly linearly-independent set of generators for M is a weak
basis of M over R. A nonempty subset A of a left R-semimodule M is linearly
attached if and only if there exists a partition A = B U C of A into a union of
disjoint subsets, together with nonzero functions f € R(®) and g € R(°) such that

Z f(ml)m' — Z g(m”)m”.

m'€B m'’'eC
(By convention, the sum taken over an empty set equals Ops.) Every linearly at-
tached subset of M is linearly dependent, but the converse need not be true if M
is not an R-module.

(17.1) EXAMPLE. Let R be a semiring and let A be a nonempty set. For each
a € A, let f, € R be the characteristic function on {a}. Clearly {f, | a € A} is a
basis for R(4). In particular, if R is a semiring and n is a positive integer, then R",
on which we have componentwise addition and scalar multipliction, has a basis.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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(17.2) ExamPLE. [Kim & Roush, 1980] It is easy to verify that, for each positive
integer n, every finitely-generated subsemimodule of N™ has a unique basis and
every finitely-generated subsemimodule of (R*)™ has a basis unique up to nonzero
multiples.

(17.2h) ExaMPLE. [Dudnikov & Samborskii, 1991] Let R be an entire zero-
sumfree semiring and let n be a positive integer. Then clearly

B={{1,0,...,0],[0,1,0,...,0],...,[0,...,0,1]}

is a basis for the left R-semimodule M = R"™. Conversely, assume that B’ =
{v1,...,vn} be a set of generators for M having n elements. If aj,...,a, are
elements of R satisfying [1,0,...,0] = }_I"_, a;v; then, by zerosumfreeness, we see
that a; = 0 unless v; is of the form [¢,0,...,0]. A similar argument can be made

for each element of B and so we see that B’ must be of the form

{[e1,0,...,0],{0,¢2,0,...,0],...,[0,...,0,¢,]},
where the ¢; are nonzero elements of R. Moreover, this is then a basis for M.

(17.3) EXAMPLE. [Zhao, 1990] Let R = {0, a,b,1} be partially-ordered by the
relations 0 < ¢ < 1and 0 < b < 1. Then R is a bounded distributive lattice and
hence a semiring. We see that {1} and {a, b} are both bases for R, considered as a
left semimodule over itself.

(17.4) EXAMPLE. A nonempty subset M of Z" is a polyhedral monoid if
[0,...,0] € M and there exists an m x n matrix A over Z such that

M={zezZ"| AzT <[0,...,0]T}.

Every polyhedral monoid is surely a left N-semimodule. Hilbert [1890] showed that
every polyhedral monoid has a finite basis. For a constructive method of finding
such a basis, see [Bachem, 1978].

(17.5) ProPOSITION. Let R be a semiring and let M be a left R-semimodule.
Any basis for M over R is a minimal set of generators for M over R.

ProoF. Let A be a basis for M over R and suppose that A properly contains
a set of generators B for M over R. Pick z € A\ B and let f € RB) satisfy the
condition that z = Y7 . p f(m)m. Extend f to a function f’ € R() by setting
f'(m)=0if m € A\ B. Then surely =3 _.p f(m)m. But on the other hand,

z=Y,.cp9(m)m, where g € R“4) is defined by

1 fm==z
g:m — oo
0 otherwise

Since g # f, this contradicts the assumption that A is a basis for M over R. O
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(17.6) PrOPOSITION. Let R be an entire zerosumfree simple semiring satisfying
the condition that a +b # 1 unlessa =1 or b = 1. If M is a left R-semimodule
having a finite basis then that basis is unique.

ProoOF. Let B = {z1,...,zx} and B’ = {y1,...,yn} be bases for M. Without
loss of generality, we can assume that £ > n. Then there exist elements a;; and
bj; (1 <i< k1< j<n)of Rsuch that z; = 27 1 aijy; forall 4 < i < k and
Y = Zf 1bjiz; forall 1 < j < n. Thus z; = Zh I(Z 1 @ijbjn)zh. Since B is
a basis, this implies that E Laijbjs = 1forall 1 <i<kand Z 1 aijbip =0
when 1 < i # h < k. Since R 1s entire and zerosumfree, this means that a;; =0
or bjpb = 0if ¢ # h and 1 < j < n and that there is an index 1 < j < n for which
a;;b;; = 1, which, by the simplicity of R, implies that a;; = b;; = 1. Thus b;5 =0
for h # ¢ and so for each 1 < i < k there exists a 1 < j < n such that z; = y;.
Thus B C B’ and, since we assumed that k¥ > n, we must in fact have equality. O

If A is set of generators for a left R-semimodule M and if ¢ € A, it does not nec-
essarily follow that @ =3, f(m)m implies that f(z)z = z. A set of generators
having this property is standard.

(17.7) ExampLE. If M = I3 then {(3, % ) (0,1,%) (0,1,1)} is a standard
basis for M over I but {1 1,%),(0,1,4),(0,1,1)} is a basis which is not standard
since (3,1,5) =3(3,1,1) + (0, 1,%) in M. For each n € P, the left I-semimodule
I" has a unique standard basis. See [Kim & Roush, 1980] for details.

Note that B = { :;, 130,% (g,%,% ,(%,g—,%),(%,g,%)}. is a linearly-inde-
pendent subset of M havmg more than three elements while, for any element

2 <b <1, theset {(b,3,5) (%,2 1)} is a basis for the subsemimodule of M
generated by B. Refer to [Guo et al., 1988].

(17.8) ExamPLE. [Takahashi, 1985] If M is a left N-semimodule and m € M
then {m} is weakly linearly independent if and only if am # 0 for all @ € P. It
is linearly dependent if and only if there exist integers 0 < @ < b in N such that
am = bm. In this case, there exists a unique pair of integers (a,%’) in N such that
0<a <¥,ad'm=¥¥m,and Nm={0,m,...,(b' - 1)m}.

(17.9) PrOPOSITION. Let R be a semiring and let M be a left R-semimodule

having a finite set of generators A = {x1,...,z,} satisfying the condition that
for each 1 < h < n there exist ap1,...,an, In R with app is left absorbing and
zh =y, ani%;. Then {a1121,...,an,,} Is a standard set of generators for M.

PROOF. Set y; = aji1z1. If m € M then there exist bq,...,b, € R such that
m=bz+ -+ bz,
n n
=b (y1 + Z alhl‘h) + Z brzs
h=2 h=2

=by + Z(bmm + bp)zn
h=2
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and so {y1, z2,...,2,} is a set of generators for M. Moreover, if y; = c1y; + cas +
-+ + cpz, then, by assumption, e1y; = c1a1121 = aj;zy = y;. Now repeat this
procedure for ys = agazo, etc. O

(17.10) ProPOSITION. Let R be an entire zerosumfree semiring. Then a left
R-semimodule M is an information semimodule over R if and only if it has a weak
basis.

PRrROOF. Assume that M is an information semimodule over R. Set A = M \
{0pr} and let a: R — M be defined by a: f — Yomea f(m)ym. If f is not the
0-map then f(m)m # Opr whenever f(m) # 0 since M is entire, and so f(m) # 0
since M is zerosumfree. Therefore ker(c) = {0}, showing that A is a weak basis
for M. Conversely, assume that M has a weak basis A and let o be as before.
If mym' € M\ {Op} then there exists nonzero functions f,g € R“) satisfying
m = a(f) and m’ = «a(g). Since R is entire and zerosumfree, we know that
f+g#0andsom+m =a(f+g) #0p. Similarly, if 0 # r € R then rf # 0
and so rm = a(rf) # 0p. Thus M is an information semimodule. O

A left R-semimodule having a basis over R is called a free R-semimodule. If R
is a ring and M is a left R-module, this reduces to the usual definition of a free
module. Since not every module over a ring is free, certainly not every semimodule
over a semiring is free. As a consequence of the definitions, we note that for any
nonempty set A the left R-semimodule R(4) is free, and that every free left R-
semimodule is R-isomorphic to R(4) for some suitable nonempty set A. For the use
of free semimodules in defining automata over semirings, refer to [Peeva, 1991].

(17.11) ProrosITION. If R is a semiring and M is a left R-semimodule then
there exists a free R-semimodule N and a surjective R-homomorphism from N to
M.

PrOOF. Let M be a left R-module. Since the result is trivial for the case of
M = {0}, we can assume that M # {0}. Let M’ = M \ {0} and let N = RM".
Let a: N — M be defined by a: f — EmEsupp(f) f(m). This is clearly a surjective
R-homomorphism. [J

(17.12) ProProsITION. Let M be a free left R-semimodule having a basis U
and let N be an arbitrary left R-semimodule. For each function g € NUY there is a
unique R-homomorphism a: M — N satisfying ua = g(u) for allu € U.

ProoF. We know that each element m of M can be written uniquely in the form
ZueU ryu, where the r, are elements of R only finitely-many of which are nonzero.
Define the function a: M — N by Y ryu — Y ryg(u). It is straightforward to
verify that « is indeed an R-homomorphism having the desired property. Moreover,
if 3:M — N is an R-homomorphism satisfying u8 = g(u) for all u € U then
S reu)B = Sru(uf) = Yo rug(u) = ¥ ryua = (3, ryu)a and so § = «. This

shows that « is unique. O

Note that we have already implicitly made use of this result in the proof of
Proposition 16.14.

By combining Example 17.1 and Proposition 17.12, we see that if M is a left
R-semimodule, if A is a nonempty set, and if g is a function from A to M, then
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there exists a unique R-homomorphism a: R — M satisfying a: f, — g(a) for
all a € A.

Let M be a free left R-semimodule with basis U and let N be a free left R-
semimodule with basis V. If a: M — N is an R-homomorphism then, by Proposi-
tion 17.12, the action of « is completely determined by its action on U. For each
u € U we have ua = Y .y auyv, where the ay, are elements of R only finitely-
many of which are nonzero. Thus « is effectively represented by the column-finite
matrix [ay,] € RVXY. Note that if M and N are free left R-semimodules and if
o is represented by a matrix A in terms of given fixed bases of M and N, then in
trying to determine na~! we are trying to solve the equation XA = B, where B is
the vector of coefficients of the representation of n in terms of the given basis for

N.

(17.13) ExaMPLE. Solution of equations of the form XA = B, where B is an
element of a finitely-generated free I-semimodule was first considered in [Sanchez,
1976]. This was extended to consideration of equations of this form for free semi-
modules over a totally-ordered lattice in [Di Nola, 1985], over a complete and
completely distributive lattice in [Zhao, 1987, 1990], and over a frame in [Di Nola
& Lettieri, 1989].

A left R-semimodule P is projective if and only if the following condition
holds: if ¢: M — N is a surjective R-homomorphism of left R-semimodules and if
a: P — N is an R-homomorphism then there exists an R-homomorphismg3: P — M
satisfying 3¢ = o. In other words, P is projective if and only if

Hom(P,p): Homg(P,M) — Homg(P, N)

is a surjective N-homomorphism for every surjective R-homomorphism ¢: M — N.
(17.14) PROPOSITION. Kvery free left R-semimodule is projective.

Proor. Let P be a free left R-semimodule with basis A. Let ¢: M — N be
a surjective R-homomorphism of left R-semimodules and let «: P — N be an R-
homomorphism. Since ¢ is surjective, we see that for each element a of A there
exists an element m, of M such that m,p = aa. By Proposition 17.12, we see
that there is a unique R-homomorphism 3: P — M satisfying af = m,. Then
afp = myp = aa for all a € A and so, by the uniqueness part of Proposition 17.12,
we must have o = Bp. O

A left R-semimodule N is a retract of a left R-semimodule M if and only if
there exist a surjective R-homomorphism #: M — N and an R-homomorphism
¥: N — M satisfying the condition that 8 is the identity map on N. If N is a
direct summand of a left R-semimodule M then surely N is a retract of M. Also,
if N is a retract of M and M is a retract of M’ then N is immediately seen to be
a retract of M’.

(17.15) ExAMPLE. If Ris a semiring and 7 is a positive integer then any matrix
A = [a;;] in M,(R) defines an R-endomorphism « of the left R-semimodule R"
given by a:(r1,...,7n) = (51,...,8,) where, for each 1 < h < m, s, =Y | rigin.
If the matrix A is multiplicatively regular then there exists a matrix B in M, (R)
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satisfying ABA = A and this matrix similarly defines an R-endomorphism 3 of R".
Let N = R"«a and let 3’ be the restriction of 3 to N. Then for each m € R™ we
have ma = mafa = (ma)f’ « and so f'«a is the identity map on N. Thus N is a
retract of R™.

(17.16) PrOPOSITION. A left R-semimodule is projective if and only if it is a
retract of a free left R-semimodule.

Proor. If P is a projective left R-semimodule then, by Proposition 17.11, there
exists a free R-semimodule F' and a surjective R-homomorphism §: F — P. By
definition of projectivity, there exists an R-homomorphism ¢: P — F such that 16
is the identity map on P.

Conversely, assume that P is a retract of a free left R-semimoduleF and let
6:F — P and ¢: P — F be R-homomorphisms such that § is surjective and 8
is the identity map on P. Let ¢: M — N be a surjective R-homomorphism of left
R-semimodules and let a: P — N be an R-homomorphism. Since F is projective by
Proposition 17.14, there exists an R-homomorphism 3: F — M such that f¢ = fa.
Therefore ¥B¢ = Yo = @, and so ¥B: P — M is a map having the property we
seek in order to prove projectivity. O

(17.17) CoROLLARY. Any retract of a projective left R-semimodule is projec-
tive.

ProoF. This is a direct consequence of Proposition 17.16. O

(17.18) ExamPLE. If R is a semiring then I*(R) is an idempotent subsemi-
module of R, considered as a left semimodule over itself. If the semiring R is
additively regular then, from remarks in Chapter 12, we note that the function
a: R — I*(R) defin>d by a:a +— a® = a + a¥ is a surjective R-homomorphism of
left R-semimodules. Furthermore, the restriction of a to It (R) is the identity map.
Therefore I*(R) is a retract of R. Since R is projective as a left semimodule over
itself by Proposition 17.14, we see that It (R) is also projective.

(17.19) ProposiTiON. If {P; | i € Q} is a family of left R-semimodules then
P = [1;cq P: is projective if and only if each P; is projective.

Proof. If P is projective then each P; is a retract of P and hence is projective
by Corollary 17.17. Conversely, assume that each P; is projective. For each i € Q,
let ;: P — P; be the surjective R-homomorphism (ps) — p; and let ¢;: P, — P be
the inclusion map.

Let op: M — N be a surjective R-homomorphism of left R-modules and let
a: P — N be an R-homomorphism. Then, by projectivity, for each i € Q there
exists an R-homomorphism f;: P, — M satisfying B, = ;. Define the R-
homomorphism 3: P — M by :p — Zienpgiﬂi' Then for p € P we have

pBp =Y plifip =)  phidia = pa

i€ €0

andso Bp=ca. O
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(17.20) AppLicATION. The algebraic formulation of linear systems theory over
a field is given in [Kalman, Falb & Arbib, 1969] and was extended to systems over
rings in [Eilenberg, 1974], [Sontag, 1976], and [Naudé & Nolte, 1982]. It is easily
extended to the case of systems over semirings. This is often desirable, since it is
useful to consider systems over N or over the schedule algebra. If R is a semiring
then a (discrete-time, constant, linear dynamical) system over R is a sextuple
(U, X,Y,p,9,0) where U is a left R-semimodule, called the input semimodule of
the system, X is a left R-semimodule, called the state semimodule of the system,
Y is a left R-semimodule, called the output semimodule of the system, p: U — X
is an R-homomorphism called the input homomorphism of the system, % is an R-
endomorphism of X called the state updating homomorphism, and §: X — Y
is an R-homomorphism called the output homomorphism of the system. The
R-semimodules U, X, and Y are often taken to be free. If (U, X,Y,p,%,0) and
(U, X', Y' ¢, 9, 0') are systems, then a system morphism from the first to the
second consists of a triple (e, 3,v) of R-homomorphisms a:U — U’, : X — X',
and v:Y — Y’ such that the diagram

v £ ox 2o x 4Ly

la |8 B L

U’ _f; X' _(_l'l_) X’ L Ve
commutes. Many of the results in [Sontag, 1976] are easily transferable to this
context.

Let R[t] be the semiring of polynomials in an indeterminate ¢ over a semiring R
and let S be the subsemiring of M3(R[t]) consisting of all matrices [p;;(t)] satisfying
the following conditions:

(1) p12(t) = p13(t) = pas(t) = 0;

(2) p11(t) and p33(t) have degree at most 0 (i.e. they are elements of R).
If U and Y are (R, R)-bisemimodules (and so, in particular, if they are free or if R
is commutative) then we can consider the left R-semimodule U x X x Y as a right
S-semimodule by defining

(u, 2, Y)[pi; (t)] = (up11, uppa1(¥) + &p2a(¥), uapsi (¥)0 + zp32(¥)0 + ypss).

Moreover, any system morphism canonically becomes an S-homomorphism of these
semimodules. Conversely, each such S-semimodule defines an system and each S-
homomorphism defines a systemn morphism between such systems.

Sometimes it is interesting to consider a weaker version of projectivity. A left R-
semimodule P is steady projective if and only if the following condition holds: if
@: M — N is a surjective R-homomorphism of left R-semimodules and if «: P — N
1s an R-homomorphism then there exists an R-homomorphism 8: P — M satisfying
B¢ = a. For the properties of such semimodules, see [Al-Thani, 1995, 1996].

Let R be a semiring. A left R-semimodule F is injective if and only if, given
a left R-semimodule M and a subsemimodule N, any R-homomorphism from N
to £ can be extended to an R-homomorphism from M to E. In other words, E is
injective if and only if

Hom(p, E): Homp(M,E) — Homg(N, E)
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1s a surjective N-homomorphism for all monic R-homomorphisms ¢: N — M.

We know that if R is a ring then any left R-module is contained in an injective
left R-module. However, for arbitrary semirings this may be far from the case. The
following result was communicated privately to the author by B. Banaschewski.

(17.21) ProrosiTION. If R is an entire, cancellative, zerosumfree semiring then
the only injective left R-semimodule is {0}.

PRrROOF. Let E be an injective left R-semimodule and, for e € E, let a.: R — F
be the R-homomorphism defined by r — re. By injectivity, there exists an R-
homomorphism B.: R* — E extending a.. Then e + (=1)3. = 18 + (=1)8. =
08, = 0 and so e has an additive inverse in E. Thus E is an R-module.

Now let E' = E{oo} as defined in Example 14.8. Then the identity map on E
can be extended to an R-homomorphism 3 from E’ to E. Set u = cof3. For each
e € E wehavee+u=ef+ 008 = (e+00)3 = 00f = u. This contradicts the fact
that u, like every element of £, has an additive inverse unless u = 0. But in that
case we must have £ = {0}. O

In particular, there are no nonzero injective N-semimodules. This does not mean,
of course, that the situation is similarly bleak for semimodules over all semirings,
even those far from being rings. For example, if R is a frame then every left
R-semimodule can be embedded in an injective R-semimodule [Joyal & Tierney,
1984].

(17.22) ExaMPLE. [H. Wang, 1994] We claim that B is injective as a left semi-
module over itself. To see this, let N be a subsemimodule of a left B-semimodule
M and let a: N — B be a B-homomorphism. Define the function 5: M — B by
setting mfB = 0 if there exists an element z € M such that m + 2 € ker(a) and
zB = 1 otherwise. We claim that 3 is a B-homomorphism. Indeed, suppose that
my,mg € M. If (m1 + m3)B = 0 then there exists an element & of M such that
my + my + = € ker(a). Then (my + [m2 + z])a = 0 = (m2 + [m; + z])a and
somB+myB =0+40=0= (m +mz)B If (m + my)f = 1 then either
m1B3 = 1 or myB = 1 for otherwise, if both of these were equal to 0, there would
exist elements z; and z, of M satisfying (my + z1)e = 0 = (m2 + 23)a and so
(my + ma + [21 + z2])a = 0, implying that (m; + my)8 = 0. Therefore, again,
m1 B+ mi B = (my +ms)B.

(17.23) ProPOSITION. Let R be a semiring and let E be an injective left R-
semimodule. Then

(1) E4 is an injective left R-semimodule for every nonempty set A;
(2) Any direct summand of E Is injective.

ProoF. (1) By Example 14.4, E4 is then a left R-semimodule. If N is a sub-
semimodule of a left R-semimodule M and if « is an R-homomorphism from N
to E4 then for each a in A we have an R-homomorphism a,: N — E defined by
na, = (na)(a). Since F is injective, we know that for each a € A there exists
an R-homomorphism B,: M — E extending a,. Define a function 3: M — E4 by
(mB)(a) = mpB, for all m € M and all @ € A. Then 3 is an R-homomorphism
extending a. Thus E4 is injective.
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(2) Let E' be a direct summand of E and let E” be a subsemimodule of E
satisfying £ = E’'®E". Then there exists a surjective R-homomorphismr: £ — E’,
the kernel of which is precisely E”. Let A: E’ — E be the inclusion map. If N is a
subsemimodule of a left R-semimodule M and if a: N — E’ is an R-homomorphism
then, by injectivity, there exists an R-homomorphism 3: M — FE extending aA. In
particular, if x € N then z@ € E’ and so 287 = zaAr = za. Therefore fn: M — E’
extends ¢, proving that F’ is injective. O

(17.24) COROLLARY. If A is a nonempty set the B2 is injective as a left B-
semimodule.

ProoF. This is an immediate consequence of Example 17.22 and Proposition
17.23. O

Let v:S — R be a semiring homomorphism. If R is canonically a left S-
semimodule if we define scalar multplication by s-r = y(s)r foralls € Sand r € R.
Let M be a left S-semimodule. Then Homg(R, M) is a left R-semimodule with re-
spect to componentwise addition and scalar multiplication given by r’a:r — (rr')a

for all « € Homgs(R, M) and r, 7’ € R.

(17.25) ProprosiTION. Let y:S — R be a semiring homomorphism. If M is an
injective left S-semimodule then Homg(R, M) is injective as a left R-semimodule.

PROOF. Set M be an injective left S-semimodule and set Y = Homgs(R, M).
Let N’ be a subsemimodule of a left R-semimodule N and let a: N’ — Y be an
R-homomorphism. Note that N is also a left S-semimodule, with scalar multi-
plication defined by s -z = y(s)z for all s € S and * € N. Moreover, N’ is an
S-subsemimodule of N. Define a function ¢: N’ — M by setting v:n — (1)(na).
Then ¢ is an S-homomorphism, as can easily be verified. Therefore, by injectivity,
there exists an S-homomorphism #: N — M extending . We claim that the func-
tion 8: N — Y defined by nf:r — (rn)f is an R-homomorphism. Indeed, for all
ny,nge € N and all » € R we have

(r)[(n1 + n2)B] = (r[n1 + n2])0 = (rny1 + rny)
= (rn1)0(rn2)8 = (r)[B(n1)] + (r)[B(n2)]
= (M)[B(n1) + B(n2)]

and for all n € N and r,7' € R we have (r)[3(7'n)] = (r[r'n])0 = ([rr']n)f =
(rr")B(n) = (r)[r'B(n)]. This establishes the claim. Moreover, 3 extends « since
for any n" € N’ and r € R we have (r)[3(n)] = (rn)f = (rn)p = (1)[(rn)a] =
(W((n)ra) = (r)[na]. O

In particular, if M is a left R-semimodule which is injective as a left N-semi-
module then the semimodule M# defined in Example 15.16 is injective as a left
R-semimodule.

An R-monomorphism a: M — N of left R-semimodules is essential if and only
if, for any R-homomorphism 8: N — N’, the map a3 is an R-monomorphism only
when § is an R-monomorphism. A subsemimodule M’ of a left R-semimodule
M is large in M if and only if the inclusion map M’ — M is an essential R-
homomorphism. Equivalently, a: M — N is an essential R-homomorphism if and
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only if M« is a large subsemimodule of N. It is immediately evident that a sub-
semimodule M’ of a left R-semimodule M is large in M if and only if every sub-
semimodule of M containing M' is large in M.

(17.26) PROPOSITION. If N is a subsemimodule of a left R-semimodule M then
the following conditions are equivalent:
(1) N islarge in M;
(2) If p is a nontrivial R-congruence relation on M then the restriction of p to
N is also nontrivial;
(3) If m and m’ are distinct elements of M then there exist distinct elements n
and n' of N satisfying n pimm:) n'.

Proor. (1) = (2): Let p be a nontrivial R-congruence relation on M and let
B: M — M/p be the R-homomorphism defined by m — m/p. Then § is not an
R-monomorphism and hence, by (1), neither is its restriction to N. This implies
that there are elements n # n' of N satisfying n p n’, proving that the restriction of
p to N is nontrivial. (2) = (3): This is immediate. (3) = (1): Let §: M — M’ be
an R-homomorphism, the restriction of which to NV is an R-monomorphism. If 3 is
not injective then there exist distinct elements m and m’ of M satisfying m p m'g.
By (3), there exist distinct elements n and n’ of N satisfying np(m m/)n’ and hence

n p n'B, which is a contradiction. Thus 3 must be an R-monomorphism, proving
(1. O

(17.27) EXAMPLE. Let R be the semiring (I, maz, min) and let H = R\ {1},
which 1s a left ideal of R and so is a left R-semimodule. If p is a nontrivial R-
congruence relation on R which restricts to the trivial R-congruence relation on H
then there must exist an element a € H satisfyinga p 1. If b € H satisfiesa < b < 1
then a = ba p b1 = b, which is a contradictior. Thus we see that every nontrivial
R-congruence relation on R restricts.to a nontrivial relation on H, proving that H
is large in R by Proposition 17.26.

(17.28) ProrosITION. Let N be a subsemimodule of a left R-semimodule M
and let p be the largest R-congruence relation on M the restriction of which to N
is trivial. Then the canonical R-monomorphism a: N — M /p is essential.

ProOF. Let ¢ be a nontrivial R-congruence relation on M/p and let * be the
R-congruence relation on M defined by the condition that m ¢* m’ if and only if
m/p ¢ m'/p. Then ¢* > p and, indeed, ¢* and p are not equal. By the definition
of p, this means that there exist elements n # n’ of N satisfying n (* n’ and so
na ( n'a. Thus ¢ restricts to a nontrivial relation on Na, proving that Na is large
in M/p. O

(17.29) ProposITION. If E is an injective left R-semimodule then every essen-
tial R-monomorphism o: E — E' Is an R-isomorphism.

ProoF. Let E be injective and let a: E — E’ be an essential R-monomorphism.
Then there exists an R-homomorphism 3: E/ — E such that af is the identity map
on E. Assume that z € E' \ Fa. Then z3 € E so zfa # z. Since zfa =g z, this
means that =g is a nontrivial R-congruence relation on E’ and so, by Proposition
17.26, it restricts to a nontrivial R-congruence relation on E«. In particular, there
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exist elements e #£ ¢’ of E satisfying ea = e’af, contradicting the choice of 3.
Therefore we must have £/ = Fa and so « is an R-isomorphism. O

Let M be a left R-semimodule. If there exists an injective left R-semimodule
E and an essential R-monomorphism a: M — F then E is an injective hull of
M. As we have seen in Proposition 17.21, injective hulls of nonzero R-semimodules
need not exist for every semiring R.

(17.30) ExaMpPLE. If R is an additively-regular semiring then any left R-
semimodule has an injective hull. See [Katsov, 1997] for details. In particular,
any semilattice (i.e. left B-semimodule) has an injective hull. These hulls are
completely characterized in [Bruns & Lakser, 1975].

It is well-known, however, that they do always exist if R is a ring. If injective
hulls exist, they are unique, as the next result shows.

(17.31) PrROPOSITION. If a: M — E and o': M — E’ are injective hulls of a
left R-semimodule M then there exists an R-isomorphism from E to E’.

Proor. By injectivity, there exists an R-homomorphism 8: E — E' satisfying
af = o/. We claim that this is the isomorphism we seek. Indeed, since o' = af
is an R-monomorphism, we see by essentiality that # is also an R-monomorphism.
Assume that §: E' — N is an R-homomorphism satisfying the condition that 63
is an R-monomorphism. Then a3 = o’B is also an R-monomorphism. But o’ is
essential and so 3 is an R-monomorphism. Thus 8 is essential and so, by Proposition
17.29, it is an R-isomorphism, as claimed. O

Let R be an an additively-idempotent semiring. Then B(R) = {Og, 1g} and so,
as we have already noted, R can be considered as a left B-semimodule. For any
nonempty set A, we can then set I(A) == Homp(R,B*) and it is straightforward
to show that I(A) is a left R-semimodule with addition and scalar multiplication
defined by (7 + 7')(r)(a) = n(r)(a) + 7'(r)(a) and (sf)(r)(a) = f(rs)(a) for all
n,m € I(A), r,s € R, and a € A. As a consequence of Proposition 17.25, we see
that if R is an additively-idempotent semiring and M is a left R-semimodule then
I(M) is an injective left R-semimodule.

We can now extend Joyal and Tierney’s result.

(17.33) PrRoPOSITION. [Wang, 1994] If R is an additively-idempotent semiring
then every left R-semimodule can be embedded in an injective left R-semimodule.

PROOF. Let M be a left R-module. For m € M set U(m) = M \{m+m' | m' €
M}. Define the function : M — I(M) as follows: if m € M and r € R then (r)[mf)
is the characteristic function on U(m). Thus, in particular, (0p)8:7 — 0 for all
r € R. If ri,r2 € R then U((r1 + ro)m) = U(rim + ram) = [U(rym) NU(ram)] =
U(rim)UU(ram) we see that (71 +72)(mf) = (r1)(mb)+(r2)(mb) for all 7y, 7, € R.
Thus mf is a B-homomorphism and so belongs to I(M).

Suppose that mf = m’f. Then U(rm) = U(rm’) for all r € R and so, in
particular, U(m) = U(m’) Since m ¢ U(m), this means that m ¢ U(m') and so
there exists an element  of M satisfying m = m’ + z. Similarly there exists an
element y of M satisfying m’ = m + y. Since M is additively idempotent, we have
m=m+m=m+m'+z=m+m'+m' +z =m+m+y+m' +z=m+m' +z+y.
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Similarly, m’ = m +m’ 4+ z +y and so m = m’. Thus # is monic. The proof that
is an R-homomorphism is straightforward. O

(17.34) CoROLLARY. If R is an additively-idempotent semiring then every left
R-semimodule has an injective hull.

Proor. By Proposition 17.32 we know that every left R-semimodule can be
embedded in an injective one. We are left to show that in this case every such
semimodule has maximal essential extension which too is injective. This is a con-
sequence of general results in universal algebra. See page 261 of [Cohn, 1965]. O

Let R be as semiring and let C is a nonempty class of left R-semimodules. A left
R-semimodule E is C-injective if and only if, given an R-subsemimodule M of a
left R-semimodule N such that both M and N are in C, then any R-homomorphism
from M to E can be extended to an R-homomorphism from N to E. It is easily
seen that if {E; | i € Q} is a family of left R-semimodules, then [];.q Ei is C-
injective if and only if each E; is C-injective. If C is the class of all cancellative
left R-semimodules, this situation has been studied by Hall and Pianskool [1996].
We will say that a left B-semimodule is c-injective if and only if it is C-injective ,
where C 1s the class of all cancellative left R-semimodules.

(17.35) ExampLE. [Hall and Pianskool, 1996] If (D, +) is a divisible abelian
group, for example Q/Z, then D¥ = Homp(R, D) is a left R-module which, by
the same reasoning as above, can be shown to be c-injective. Using variants of the
above arguments and the standard arguments from the theory of modules over a
ring, one can show that if R is a semiring then any cancellative left R-semimodule
can be embedded in a c-injective left R-module.



18. LOCALIZATION OF
SEMIMODULES

In Chapter 10 we constructed semirings of fractions of certain semirings. We
now subsume that construction in the more general construction of localizations of
semimodules over semirings. Our method follows the method for modules over rings
given in [Golan, 1986]. If R is a semiring then a nonempty subset s of lideal(R) is
a topologizing filter if and only if the following conditions are satisfied:

(1) If I C H are left ideals of R with I € x then H € &;
(2) If I, H € k then INH € k;
(3) If I € k and a € R then (I : a) € k.

The family of all topologizing filters of left ideals of R will be denoted by R — fil.
Note that R € & for all kK € R — fil.

(18.1) ExaMPLE. If I € ideal(R) then n{I] = {H € lideal(R) | I C H} belongs
to R — fil.

It is clear that the intersection of an arbitrary family of elements of R — fil
again belongs to R — fil. Thus R — fil is a complete lattice. Moreover, if & and &’
are elements of R — fil then we set k&’ equal to the set of all those elements I of
lideal(R) satisfying the condition that there exists an element H in &’ containing [
for which (I : a) € & for all a € H. It is straightforward to verify that this is again
an element of R — fil.

(18.2) ExaMPLE. If kK € R — fil and if I is an ideal of R, then x7[I] equals
{I' € lideal(R) | there exists an element H of & satisfying IH C I' C H}.

By a straightforward translation of the proofs in Chapter 3 of [Golan, 1987] one
can show that (R — fil,N,-) is a zerosumfree simple semiring for any semiring R,
thus extending Example 1.7.

If R is a semiring, then a nonempty subset « of lideal(R) is a Gabriel filter if
and only if the following conditions are satisfied:

(1) If H,I € k and if « € Hompg(H, R) then Ia™! € &;
(2) If K is a left ideal of R and I € & satisfies the condition that for each a € I
there exists an element H, of k with H,a C K, then K € &«.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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The set of all Gabriel filters of left ideals of R will be denoted by R — gab. Note
that if Kk € R — gab and if I, H are elements of k then for each a € H we have
(IH:a)={r€R|ra€IH} DI andso ([H :a) € k for each a € H. Moreover,
(IH :a)a C IH for each such a. Therefore IH € .

Clearly n[{0}] = lideal(R) belongs to R — gab and, indeed, this filter contains
all other elements of R — gab.

Gabriel filters of ideals of bounded distributive lattices are considered in
[Georgescu, 1988].

(18.3) ExamMPLE. [Hugq, 1983] An ideal I of a commutative semiring R is sep-
arating if and only if for each pair r # 7’ of distinct elements of R there exists an
element a of I such that ar # ar’. Then the family of all separating ideals of R
is a Gabriel filter of ideals of R. This is the filter used in [Schmid, 1983] for the
construction of lattices of fractions of bounded distributive lattices.

(18.4) ProPOSITION. If R is a semiring then R — gab = I*(R — fil).

PrOOF. Let k € R — gab. Assume that I C H are left ideals of R with I € x. If
a € I then Ia C I C H and so, by condition (2) of the definition of a Gabriel filter,
we have H € k. Let I and H be elements of « and let a: I — R be the inclusion
map, which is an R-homomorphism. Then TN H = Ha™! € k. Let I € &, let
a € R, and let a: R — R be the R-homomorphism of left R-semimodules defined
by a:r s ra. Then (I :a) = Ia~! € k. Thus k € R — fil.

It is easy to see that k C k2 for any K € R — fil. If kK € R — gab, then condition
(2) in the definition of a Gabriel filter implies that the reverse containment is also
true and so we have equality. Therefore R— gab C I* (R~ fil). Conversely, assume
that k € I*(R — fil). If H,I € k and @ € Homp(H, R) then for each a € H we
have (Ia™!:a)={re R|ra€la '} ={re R|raa € I} = (7 : aa) € x and
so Ia~! € k? = k. Furthermore, if K is a left ideal of R and I & & satisfies the
condition that for each a € I there exists an element H, of x satisfying H,a C K
then, as an immediate consequence of the definition, K € k2 = k. Thus k € R—gab,
proving that R — gab = I*(R — fil). O

(18.5) PrROPOSITION. Let R be a semiring and let M be a left R-semimodule.
Then any k € R~ fil defines an R-congruence relation =, on M by setting m =, m’
if and only if there exists an element I of k such that am = am’ for alla € I.

ProoF. Clearly m =, m for each m € M and if m =, m’ then surely m’ =, m.
If m =, m' and m’ =, m' then there exist elements I and H of x such that
am = am’ for all @ € I and bm' = bm" for all b € H. Therefore cm = em” for all
c€ INH € k and so m =, m”. Similarly, if m =, m’ and n =, n’ then there exist
elements I and H of k such that am = am’ for alla € I and bn = bn’ forall b € H.
Hence ¢(m+n) = ¢(m’'+n') forallec € INH € k and so m+n =, m'+n’. Finally,
if m =, m’ and r € R then there exists an ideal I in x such that am = am’ for all
a € I and so b(rm) = b(rm’) for all b € (I : ) € k. Thus rm =, rm’, proving that
=, is an R-congruence relation on M. O

The relation =, defined in Proposition 18.5 is called the x-torsion congruence
on M. A left R-semimodule M is k-torsion if and only if the R-congruence relation
=, is universal on M. To show that this holds, it is necessary and sufficient to show
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that m =, Opr for every element m of M. The left R-semimodule M is strongly
k-torsionfree if and only if then R-congruence =, on M is trivial.

(18.6) PROPOSITION. Let R be a semiring and let Kk € R — fil. Then R,
considered as a left semimodule over itself, is k-torsion if and only if k = p[{0}].

Proor. If k = n[{0}] then surely R is k-torsion since 0a = 0b for all a,b € R.
Conversely, assume that R is k-torsion. Then 0 =, 1 and so there exists an element
I of k satisfying 0 = Oa = la = a for all a € I. But this means that I = {0} and
so {0} € k, proving that k = p[{0}]. O

(18.7) PROPOSITION. Let k € R — fil for some semiring R.

(1) If a: M — N is an R-homomorphism of R-semimodules and if m =, m’ in
M then ma =, m'a in N.

(2) If N is a submodule of a left R-module M then n =, n’ in N if and only if
n=.,n inM.

(3) If M is a left R-semimodule then N = M/ =, is strongly k-torsionfree.

(4) If a: M — N is an essential R-monomorphism of left R-semimodules then
N is strongly k-torsionfree if M is.

ProOF. (1) - (3) are immediate consequences of the definitions; (4) is an imme-
diate consequence of the definitions and of Proposition 17.26. O

In particular, we see that any subsemimodule of a k-torsion left R-semimodule
is again k-torsion and a subsemimodule of a strongly x-torsionfree R-semimodule
1s again strongly k-torsionfree.

Let x be a topologizing filter of left ideals of a semiring R. A subsemimodule
N of a left R-semimodule M is k-dense in M if and only if (N : m) € « for all
meM.

(18.8) ProPosITION. If R is a semiring and k € R — gab then the following
conditions on a subtractive left ideal I of R are equivalent:

(1) I €x;

(2) R/I is a k-torsion left R-semimodule;

(3) I is k-dense in R.

PrOOF. (1) = (2): If a € R then (I : a) € k and (I : a)a C I. Therefore
a/I = 0/1, whence R/I is a k-torsion left R-semimodule.

(2) = (3): By (2) we know that for each a in R there exists a left ideal H in
& such that for each A € H there is an element b of I with ha 4+ b € I. Since |
is subtractive, this means that ha € I for each h € H and so H C (I : a). Hence
(I : a) € & for all a € R, proving (3).

(3) = (1): If a € R then H, = (I : a) € & satisfies Hya C I. Since R € «, this
implies that [ € k. O

(18.9) PROPOSITION. Let R be a semiring and let Kk € R~ gab. If N is a
subsemimodule of a left R-semimodule M then N is k-dense in M if and only if
M/N is k-torsion.

PRrRoOOF. Assume that N is k-dense in M. If m € M then (N : m) € x and
am/N = 0/N for all a € (N : m). Therefore m/N =, 0/N for each m € M,
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proving that M/N is k-torsion. Conversely, if M/N is k-torsion and if m € M then
m/N =, 0/N and so there exists an element I of « satisfying am/N = 0/N for all
a € I. Therefore I C (N : m) and so (N : m) € k, proving that N is x-dense in
M. O

(18.10) CoRrOLLARY. Let kK € R — gab for some semiring R. If a: M — N
is an R-homomorphism of left R-semimodules then the following conditions are
equivalent:

(1) A subsemimodule N’ of N is k-dense in N if and only if N'a™! is k-dense
in M;
(2) If N is k-torsion and ker(a) = {0} then M is k-torsion.

Proor. (1) = (2): If N is x-torsion then, by Proposition 18.9, we see that {Ox}
is k-dense in M and so {Op} = {On}a~! is k-dense in M by (1). Therefore, by
Proposition 18.9, we conclude that M is k-torsion.

(2) = (1): Let N’ be a k-dense submodule of N. Then, by Proposition 18.9,
N/N' is k-torsion. Moreover, by Proposition 15.19, the map « induces an R-
homomorphism M/N'a~! — N/N’ with kernel {0} and so M/N’a~! is k-torsion.
Hence, by Proposition 18.9, N'a~! is k-dense in M. O

(18.11) PrOPOSITION. Let k € R — gab for some semiring R and let M be a
strongly k-torsionfree left R-semimodule. If N’ is a k-dense subsemimodule of a
left R-semimodule N and if a: N’ — M is an R-homomorphism then there is at
most one R-homomorphism 3: N — M extending a.

PROOF. Assume that 8 # 3’ are R-homomorphisms from N to M extending «
and let N be an element of N satisfying n3 # nB’. The left ideal I = (N’ : n) of
R belongs to & and a(nf) = (an)a = a(nf') for all a € I. Therefore nfB =, nf' in
M and so, by strong k-torsionfreeness, n = nf’, which is a contradiction. O

If kK € R—gab for some semiring R and if M is a left R-semimodule, set T,,(M) =
{me M |(0:m)e k}. We call T,(M) the k-torsion subsemimodule of M.
This terminology is justified by the following result.

(18.12) ProposITION. If kK € R — gab for some semiring R and if M is a left
R-semimodule then:

(1) TK(M) is a subsemimodule of M;

« (M) is k-torsion;

(2) T,

(3) Tu(Tk(M)) = (M)

(4) To(M/T(M)) = {0};

(5) Ifa: M — N is an R-homomorphism of left R-semimodules then T\c(M)a C
T.(N);

(6) If M’ is a subsemimodule of M then To,(M') =T, (M)NM'.

Proor. (1) If m,m’ € M and if » € R then (0 : m +m') D (0 : m)N (0 : m')
and so, by Proposition 18.4, (0 : m 4+ m’) € k. Moreover, (0 : rm) = ((0 : m) : 7)
and so, by Proposition 18.4, (0 : rm) € k. Thus m + m’ and rm both belong to
T.(M) and so T, (M) is a subsemimodule of M.

(2) If m € T,(M) then am = a0 for all @ € (0 : m) € k and so m =, 0. Thus
=, is universal on T (M) and so T (M) is k-torsion.
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(3) This is an immediate consequence of the definition.

(4) Assume that m/T, (M) € T,(M/T:(M)). Then (Tx(M) : m) € k. For each
a € (Tx(M) : m) there exists an element H, of x with Hsam = {0}. Therefore, by
the definition of a Gabriel filter, K = U{Haa | a € (Tx(M) : m)} € k and Km = {0}
som € T,(M). Hence m/T.(M) = 0.

(5) If z € Tx(M) then (0: ma) D (0: m) so (0:ma) € . Thus ma € Tx(N).

(6) This is an immediate consequence of the definitions. O

If Kk € R—gab and if M is a left R-semimodule satisfying T, (M) = {0} then M is
k-torsionfree. Strongly k-torsionfree left R-semimodules are surely s-torsionfree.

/medskip If & € R — gab for some semiring R then a left R-semimodule ' is &-
injective if and only if, given a left R-semimodule M and a k-dense submodule N
of M, any R-homomorphism from N to E can be extended to an R-homomorphism
from M to E. Such an extension may be not be unique. However, we do have the
following result.

(18.13) PropPOSITION. Let R be a semiring. The following conditions on a left
R-semimodule E are equivalent:

(1) Given a left R-semimodule and a k-dense subsemimodule N of M, any R-
homomorphism from N to E can be uniquely extended to an R-homomor-
phism from M to E;

(2) F is k-injective and strongly k-torsionfree.

ProoF. (1) = (2): Surely (1) implies that E is k-injective. If  and y are
elements of F satisfying ¢ =, y then there exists an element I of « satisfying
az = ay for all a € I. By Proposition 18.8, I is k-dense in R. Let a: I — E be
then R-homomorphism of left R-semimodules defined by «.a — az = ay. Then
the R-homomorphisms from R to E defined by » — rz and r — ry both extend
« and so, by (1), they must be equal. Hence ¢ = 12 = ly = y, proving that £ is
strongly k-torsionfree.

(2) = (1): The existence of such an extension follows from the s-injectivity of E,
and its uniqueness follows from strong -torsionfreeness by Proposition 18.11. O

(18.14) ProPoOSITION. Let kK € R — gab for some semiring R and let E be
a k-injective left R-semimodule. Let E’ be a subsemimodule of E satisfying the
condition that E/E’ is k-torsionfree. Then E’ is also k-injective.

PrROOF. Let N be a k-dense subsemimodule of a left R-semimodule M and
let a: N — E’ be an R-homomorphism. Then there exists an R-homomorphism
B:M — E extending a. If m € M then I = (N : m) € £ so I(m83) = (Im)B C
N3 C E'. If m@3 ¢ E’ then mB/E’ is a nonzero element of T;(E/E"), which is a
contradiction. Thus we must have m@ € E’, proving that £’ is also k-injective. O

We would now like to construct “semimodule of quotients” of a left R-semimodule
with respect to a Gabriel filter k. We are hampered in emulating the construction
in module theory [Golan, 1986] by the possible lack of sufficiently-many injective
semimodules, as demonstrated in Proposition 17.21.
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(18.15) PrOPOSITION. Let kK € R — gab for some semiring R and let M be a
strongly k-torsionfree left R-semimodule. Then there exists a strongly k-torsionfree
left R-semimodule Q. (M) and an R-monomorphism ¢pr: M — Q. (M) such that:

(1) Moar is a k-dense subsemimodule of Q. (M);

(2) If N is a strongly k-torsionfree left R-semimodule and o: M — N is an
R-monomorphism such that M« is a k-dense subsemimodule of N, then
there exists a unique R-monomorphism 8: N — Q(M) extending @ .

PRrROOF. Let M be a strongly x-torsionfree left R-semimodule and let W (M) =
{(I,a) | I € k and @« € Homg(I, M)}. Define a relation ¢ on W, (M) by setting
(I, @) ¢ (I’,&') if and only if there exists an I" € & satisfying I” C I NI’ while the
restrictions of @ and o’ to I” coincide. Then ( is clearly an equivalence relation.
Let Qx(M) = W, (M)/¢ and denote the equivalence class (I, «)/¢ by I//a. Define
an operation + on @ (M) by setting I//a+ H//f = (INH)//(a+ B). This is well-
defined since if [//o = I'//a’ and H//B = H'//3' then there exist elements I’" and
H" of k satisfying I C INI’ and H” C HNH’ such that « and ¢’ agree on I'" while
B and 3 agree on H”. Hence I"NH"” € k and I"NH" C(INH)N(I'NH') while
a+3 and o’ +/ agree on I"NH” | proving that (INH)//(a+8) = (I'nH")//(«'+5").
Moreover, as an immediate consequence of the definition we see that (Qx(M),+)
is a commutative monoid with additive identity R//6, where 6: R — M is the
R-homomorphism defined by 8:r — 0 for all » € R.

If I//a € Qu(M) and r € R, let r(I//a) = (I : r)//ra, where ra: (I :7) = M
is the R-homomorphism defined by a — (ar)a. Again, this is well-defined since if
I/fa = I'//& then there exists an element I” of « such that I C INI’ while @ and
a’ coincide on I”. But then (I” : r) C (L : r)N (I’ : r) while ra and ra’ coincide
on (I” : 7). Hence r(I//a) = r(I' //&).

Given these definitions, it is a straightforward computation to show that Q. (M)
1s in fact a left R-semimodule. Moreover, for each m € M we have an R-homomor-
phism 6,,: R — M defined by 6,,,: 7 — rm and so R//0,, is an element of Q. (M).
If m,m’ € M then 0y, 4p = 6, + 0., while if m € M and a € R then 6,,, = ab,,.
Thus, if ppr: M — Qx(M) is the function given by m — R//8,, then @y is an R-
homomorphism of left R-semimodules. Indeed, it is injective since if mepy = m’ oy
then R//0,, = R//6,, and so there exists an element I of « such that am = am’ for
all a € I. But M was assumed to be strongly x-torsionfree, and so this implies that
m = m’. Thus, by Proposition 15.15, ¢pr is an R-monomorphism. Next, we claim
that Mpar is k-dense in @x(M). Indeed, if I//« belongs to Q(M) then for each
a € I we have a(I//a) = R}/, where m = (a)a € M. Thus (Myp:I//a) € k.
If I//a and I'//a’ are elements of Q. (M) for which there exists an element I” of
& such that a(I//a) = a(I'//a’) for all a € I" then for each a € I" there exists an
element H, of k contained in (I : @) N (I’ : a) such that ae and ae’ coincide on
Ho. Set H =73, .;n Hqa. Then H € k, H CIN I, while a and o' coincide on H.
Therefore I//a = I'//c’. This shows that Q.(M) is strongly x-torsionfree.

Now assume that a: M — N is an R-monomorphism such that N is strongly
k-torsionfree and such that M« is k-dense in N. If n € N then (M« : n) € .
Define the function 8: N — Q.(M) by f:n — (Ma : n)//¢,, where 9, is the
R-homomorphism defined by a ~— (an)a™!. If n = ma for some m € M, then
(Mo :n) = R and 9¥,: 7 — rm. In other words, ¥, = 8,,, proving that of = @ur.
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We are left to show that @ is in fact an R-monomorphism. If n,n’ € N then
H = (Ma:n)N(Ma :n') belongs to k, while the restrictions of ¥ 4ns and ¥, + ¢},
coincide on H. Therefore n3 + n’8 = (n + n’)B. Similarly r(n8) = (rn)g for all
r € Rand n € N. Thus 8 is an R-homomorphism. If n,n’ € N satisfy ng = n’3
then there exists an element H of & satisfying Hna~! = Hn'a™! andso Hn = Hn'
since « is injective. But M is strongly k-torsionfree, and so this implies that n = n’.
Thus 3 is an R-monomorphism. It is unique by Proposition 18.11. O

(18.16) PROPOSITION. Let kK € R — gab for some semiring R and let M be a
strongly k-torsionfree left R-semimodule having an injective hull «: M — E. Then
Q< (M) is k-injective.

Proor. Let E’ be the submodule of E containing M« and defined by E' /M« =
T.(E/Ma). Then Ma is k-dense in E’ and E/E’ is k-torsionfree by Proposition
18.12(4). By Proposition 18.14, E’ is k-injective. By Proposition 18.7(4), E is
strongly k-torsionfree and so E’ is also strongly x-torsionfree.

Since E’ is k-injective, there exists an R-homomorphism 6: Q. (M) — E’ sat-
isfying @ = ppf. On the other hand, by Proposition 18.15, there exists an R-
homomorphism ¢: E/ — Q.(M) satisfying ¢pr = atp. Therefore @ = a(yf) and
om = pm(6vy). By Proposition 18.11, we see that 61 must be the identity map on
Q«(M) and ¥ must be the identity map on E’. Therefore E’ is R-isomorphic to
Qx(M), proving that Q.(M) is k-injective. O

Let k € R—gab for some semiring R. If M is a left R-semimodule then M/ = is
strongly k-torsionfree by Proposition 18.7(3). We then set Q4 (M) = Q< (M/ =).
This strongly x-torsionfree left R-semimodule is called the semimodule of «-
quotients of M.

Now let us look at R, considered as a left semimodule over itself. If 5[{0}] #
k € R — gab then, by Proposition 14.36, R, = Endr(Qx(R)) is a semiring, called
the semiring of k-quotients of R. This terminology is justified by the following
result.

(18.17) ProprosITION. If R is a semiring and n[{0}] # k € R — gab then R, is
canonically a left R-semimodule R-isomorphic to Q. (R).

ProOF. Each element g of Q,(R) defines an R-homomorphism g, from R, con-
sidered as a left semimodule over itself, to Q.(R), given by @ +— aq. If a =, b
in R then ag =, bg. But Q.(R) is strongly k-torsionfree and so we must have
aq = bgq. Therefore g, induces an R-homomorphism from R’ = R/ =, to Q«(R)
which, by Proposition 18.15, can be uniquely extended to an R-endomorphism 6, of
the left R-semimodule Q4(R). For 7 € R, set r' = r/ =, € R'. Then we can define
the structure of a left R-semimodule on R, by setting ra = @« for each r € R
and a € R.. (The proof that this indeed does turn R, into a left R-semimodule
is straightforward, relying on the uniqueness of 6,.) Let 6:Q.(R) — Ry be the
function defined by ¢ — 6,. We claim that this is an R-homomorphism of left
R-semimodules. Indeed, if z,y € Q«(R) then 26 + yf and (z + y)f# both extend the
map from R’ to Q(R) induced by 8, + 8, and so must be equal. Similarly,if r € R
and ¢ € Q,(R) then r(z6) and (rz)f are equal. This establishes the claim. We note
that, in fact, 6 is surjective since if & € R, then « is the image of (1/ =, )a under 6.
Similarly, 6 is injective since if z # y in Q< (R) then (1/ =)0, =z # y = (1/ =«)by
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and so z6 # y6. Thus, by Proposition 15.15, § is an R-monomorphism and so is
the R-isomorphism we seek. [

The isomorphism 6 defined in Proposition 18.17, composed with the R-
homomorphism from R to Q. (R) defines an R-homomorphism A* from R to R,.
Indeed, A* is a morphism of rings for if a,b € R then A*(ab) and A*(a)A*(b) are
both R-endomorphisms of @, (R) which extend the R-homomorphism from R/ =
to Qx(R) defined by r/ =4+ rab/ = and so, by Proposition 18.15, they must be
equal.

(18.18) ProPOSITION. If R is a semiring and n[{0}] # k € R — gab then any
strongly k-torsionfree left R-semimodule has the structure of a left R-semimodule
which naturally extends its structure as an R-semimodule.

ProoF. If N is a strongly k-torsionfree left R-semimodule then any element
z of N defines an R-homomorphism from R to N given by a — az. If a =, b
in R then ar =, bz in N and so ar = bz. Therefore this R-homomorphism
induces an R-homomorphism from R/ =, to N which, by Proposition 18.15, can
be uniquely extened to an R-homomorphism ¢,: Qx(R) — N. If « € R, define
a -z to be (1)ayy, € N. This defines on N the structure of a left R.-semimodule.
Furthermore, if @ = A*(r) for some element r of R then « - & = rx and so the
R.-semimodule structure on N naturally extends its R-semimodule structure. O

Further results on the nature of semimodules of quotients can be developed along
the lines of the corresponding results for modules presented in [Golan, 1986].



19. LINEAR ALGEBRA OVER
A SEMIRING

The techniques of linear algebra over a semiring have important applications in
optimization theory, models of discrete event networks, and graph theory, partic-
ularly if the semiring is in fact a semifield. For further examples, see [Baccelli &
Mairesse, 1998] and [Gaujal & Jean-Marie, 1998].

If A and B are nonempty sets and if R is a semiring then R4*Z can be turned
into an (R, R)-bisemimodule by defining addition and scalar multiplication com-
ponentwise. We denote this bisemimodule by M 4xp(R). If the set A is either
finite or countably-infinite then M4, p(R) can be turned into a left M4 ,(R)-
semimodule by defining addition componentwise and scalar multiplication as fol-
lows: if u € M4xB(R) and f € M4 (R) then fu:(¢,j) — Yokea f(& k)u(k, j) for
all (4,5) € A x B. (Note that the sum is well-defined since, for each ¢ € A, only
finitely-many values of f(,k) are nonzero.) As in the case of elements of M 4(R),
we often use matrix notation rather than functional notation to denote the elements
of Maxp(R). If the set A [resp. B] is finite and has order n, we will sometimes
write My xB(R) [resp. Maxn(R)] instead of M 4xp(R).

If u € Maxp(R) and v € Mpyc(R) satisfy the condition that either u is
row finite or v is column finite, then we can define the matrix product uv to
be the element of Maxc(R) defined by wv:(3,j) — Y, cpu(i, k)v(k,j) for all
(1,j) € Ax C. If v is a fixed column-finite element of Mpxc(R), then it is
straightforward to see that for all u,u’ € Maxp(R) and for all f € M4 ,(R) we
have (u+u')v = wv+u'v and (fu)v = f(uv). Thus we see that the function u — uv
is an M 4 »(R)-homomorphism from M 4x8(R) to M axc(R). Moreover, if A and
B are nonempty sets and if n € P then we have a function

an:MAxn(R) X Man(R) - MAxB(R)

defined by 0,: (u,v) — uv. If S = M, (R) then M 4x,(R) is a right S-semimodule
and M, xp(R) is a left S-semimodule. Moreover, the map 6, is S-balanced. There-
fore, by Proposition 16.14, there exists a unique N-homomorphism

Y: Maxn(R) ®s Muxp(R) — Maxp(R)[/]{0}

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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satisfying the condition that ¢¥(u ® v) = uv[/]{0}.

A matrix u € Maxp(R) defines a function u;, € RB for each i € A by setting
Ujx:j — u(u, j). Similarly, for each j € B the matrix u defines a function Uyj € RA
by setting u,;:i — u(7, j). The row semimodule of u is the subsemimodule of RB
generated by {u;, | i € A} and the column semimodule of u is the subsemimodule
of R4 generated by {u.; | j € B}. The row rank [resp. column rank] of u is the
rank of its row [resp. column] semimodule. If these two values coincide, and they
may not, their common value is the rank of u.

Other definitions of rank abound in the literature. Following a defintion origi-
nally given for semiring theory [Schein, 1976], one can define the Schein rank of
a matrix u to be the cardinality of the smallest set of matrices having rank 1 the
sum of which is u.

(19.1) ExaMPLE. [Kim & Roush, 1980] Let R = (I, V, A) and let

1 08 0
u= 108 0.7 0
0.7 06 0

Then the column rank and Schein rank of u equal 2, while its row rank is 3.

Another notion of rank is the following: an element of M4 p(R) belonging to
the image of 6,, but not to the image of 6, for any k < n has factor rank equal to
n.

(19.2) EXAMPLE. [Beasley & Pullman, 1988b] The matrix
1 011
u=1{1 1 0 0
0110

in M3zx4(B) has column rank 4 but factor rank 3.

Matrices of factor rank 1 over subsemirings of I are discussed by Scully [1991,
1993].

If u € Maxp(R) then the transpose of u is the matrix u” € Mpy 4(R) defined
by uT:(j,4) — u(i,j) for all i € A and j € B. Clearly (u + v)T = uT +vT and
uTT = u for all matrices u and v in M 4x5p.

Let A be a nonempty set which is either finite or countably-infinite and let B be
an arbitrary nonempty set. Each morphism of semirings v: R — S defines a function
Maxp(7): Maxp(R) = Maxp(S) by u— yu. This function is surjective when ¥
is. Moreover, if u € M4xp(R) and v € Mpxc(R) satisfy the condition that either
u is row finite or v is column finite, then y(uv) = (yu)(yv).

We begin by looking at some more properties of semirings of matrices over certain

semirings.

(19.3) PrROPOSITION. Let R be a zerosumfree semiring and n a positive integer.
An element A = [a;;] of M, (R) Is a unit if and only if the following conditions are
satisfied:

(1) For each 1 < i,j < n there exist elements b;;, z;;, and y;; of R satisfying

aijbji + xij = bjiai; +yi; = 1 and bjizij = aijyi; = ®ijai; = yiibji = 0;



LINEAR ALGEBRA == 213

(2) Foreach 1 < i < n we have a;1b1; 4+ -+ + @inbni = 1 and a;jbjiairbi; = 0
foralll1<j#k <n;

(3) For each 1 < j < n we have bj1a1; + -+ -+ bjnan; =1 and bj;a;;bjrar; =0
foralll1<i#k<n.

ProOF. Since R is zerosumfree, A is a unit of M, (R) if and only if there exists
a matrix [b;;] € M, (R) such that the conditions

*) EZ=1 airby; = 1= 22:1 biray; for all 1 <7 < n; and

(**) aipbrj =0=1bjrarj foralll<i#j<nandalll<k<n
are satisfied.

If these conditions are satisfied, then for each 1 < ¢,j < n define z;; =
D iz @irbrj and yi; = 37, bjkar;, and it is straightforward to verify that condi-
tions (1) - (3) hold.

Conversely, assume that these conditions hold. Then (*) is satisfied. By (2) and
(3) we see that for all 1 <i# j <nandalll <k <n we have

aikbr; = (@irbriair)(brjajrbe;) = aix(briairbrjajr)br; =0

and similarly b;zaz; = 0, showing that (**) is satisfied as well. O

(19.4) ProprosiTION. Let R be a commutative zerosumfree semiring and n a
positive integer. Let A = [a;;] be an element of M, and let B = [b;;] be a matrix
satisfying AB = I, where I is the multiplicative identity of M,(R). Then:

(1) aijaix = ajiar; = bijbix = bjibp; =0foralll <i<mnandalll <j#k<n;

(2) aixbr; = arsbjr =0foralll<k<nandalll<i#j<mn;

(3) (X ikl my bg) = [y @[y bim] = L for all 1 <, <

(4) a;;5ji € I*(R) for all 1 <4,j < n;

(5) If e, = [1i=, @i 0(i)bo(i),i for each permutation o of {1,...,n} then {e,} is

a complete set of orthogonal central idempotents of R.

ProoF. (1) Since AB = I and since R is zerosumfree, we have a;tbx; = 0
forall1 <i# j<nandl=1[["_[> %, aixbrj]. By commutativity, all terms
of the form a;zbria;xbr; with ¢ # j are equal to 0 and so this product reduces to
Y[ @i 0(:)bo(i),i], where the product ranges over all permutations o of {1,...,n}.
If j # k then a;xa;r = airajr(d_, [I] @i 0:)bo(i),i]) and this is 0, since each summand
contains a factor of the form a;;a;rbg (k) with either (k) # ¢ or o(k) # j. By
similar arguments we obtain the rest of (1).

(2) We have already noted that a;xbx; = 0 if i # j. Also,

aribjr = agibjr (Z [H ai,a(i)bo(i),i]) =0

4

since each term has a factor of the form a;;b;1b; 5(i)a0(j),j = akibi o(i)@0(;j),;05% and
either k # o(i) or k # o(j).
(3) By the above,

k=1 k=1



214 CHAPTER 19

The other equality is proven analogously.
(4)If1<1i,j <nthen

n

aijbjiaijbji = aijbji l:z aikbki] = ;5051 = a;jbj;.
k=1

(5) By (4) and the commutativity of R, we see that each e, is a central idem-
potent. Moreover, > e, = 3 I, @i o(i)boi),i = 1. If 0 # 7 then there exist
1 < i # j < nsuch that g(¢) = 7(j) and so e,e, = 0 since it has a factor
ailg(i)ba(i),j =0. O

If n is a positive integer then S, denotes the symmetric group on {1,...,n} and
A, denotes the alternating group on {1,...,n}. If R is a semiring, if n is a positive
integer and if A € M,(R), we define the positive determinant |A|* and the
negative determinant |A|~ of A as follows:

|A|+ = Z{al,o(l) Tt Qnio(n) | o€ An}

and

A7 =3 {o1,001) - oy | 0 € Sn\ A}

The pair |A|* = (|4|7, |A[*) is the bideterminant of A. If R is a nonzeroic semir-
ing with ring of differences R® and if v: R — R® is the canonical morphism, then
the determinant of A is defined to be |A| = v(JA|*)v(]A|7). For an application
of bideterminants in graph theory, see [Kuntzmann 1972].

Let A € My, (R). If the matrix B € M, (R) is formed by multiplying all of the
eniries of one row or one column of A by an element r of R, then |B|* = r|A|*. In
particular, if one column or one row of A consists entirely of 0’s then |A|t = (0, 0).
If one column [resp. row] of A is a linear combination of the other columns [resp.
rows] of A then |[A|* = |A|~. The converse of this statement is false, as the following
example shows.

(19.5) ExaMPLE. [Gondran & Minoux, 1984b] Let R be the semiring
(R* U {oo}, maz, min) and let A be the matrix

12 14 3
11 15 7
6 8 10
Then |A|* = |A|~ = 10 but no column [resp. row] is a linear combination of the

other columns [resp. rows].

Ify: R — S 1s a morphism of semirings then for each positive integer n we have an
induced morphism of semirings v, : Mp(R) — My (S) defined by v,: [r5;] — [v(ri;)].
As an immediate consequence of the definitions, we see that for each A € M,(R)
we have Y(JA|*) = |y.(4)|t and similarly y(JA|7) = |y (4)|".
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(19.6) ProOPOSITION. Ifn is a positive integer and if R is a commutative semir-
ing then for A = [a;;] and B = [b;;] in My(R) we have:
(1) There exists an element r of R satisfying |AB|T = |A|T|B|* +|A|7|B|~ +r
and |[AB|~ = |A|*|B|~ + |A|7|B|t +r.
(2) |ABJ* +|A[*|B|~ + |AI7|BI* = |AB|~ + |AI*|B|* + |AI7|B|~.

Proor. (1) By Proposition 9.42, we know that there exists a cancellative semir-
ing S and a surjective morphism 4:S — R. By the above remarks, it therefore
suffices to assume that R is cancellative and thus is a subsemiring of R®. Since R
is commutative, so is R2.

By definition, |AB|+ = E{H:lzl ailbi,o(l) =+ -+ ainbn,o(n) | o€ .An} If
we expand this product of a sum of monomials, we obtain n! terms of the form
Hin=1 ai 7(i)br(i),0(i), for 7 € Sn, as well as various other terms, the sum of which
we will denote by /. For fixed ¢ € A,,, let 7/ = o7~ !. Then 7’ € A, if and only if
7 € A,. Moreover, we have

n n n
Hai,T(i)bT(z'),o(i) = (H az',T(z')) (H bi,T'(i)) .
1=1

i=1 i=1

bi,r’(i))
bi,P(U)
bi,P(i))

+ 7.

3,7 (i
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A similar computation shows that there exists an element r” of R such that
|AB|~ = |A[*|B|~ + |A|7|B|t + r". We are left to show that ' = r”. But R is a
subsemiring of the commutative ring R® and there we have

(1A = 1AI710BI* - B]7]
= |A||B| = |AB| = |AB|* — |AB|~
= [|A[*IBI* + [AI7IB]™ + ] = [|A[*|B|™ + |A]7|BI* + "]
= [lAI* = A7 BIY = |B[7] + (' = "),
implying that ' = r”.
(2) This is an immediate consequence of (1). O

If R is a semiring, if n is an integer greater than 1, and if A € M,(R) then
for each 1 < i,j < n we can define the (i, j)-positive minor pm; ;(A) of A to be
|A’|*, where A’ is the matrix in M, _1(R) obtained by deleting the ith row and
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Jjth column of A. Similarly, we define the (¢, j)-negative minor nm;;(A) of A to
be |A’|~. We then define the positive comatrix A% of A to be the matrix [b;;]
defined by the condition that b;; = pm;;(A) when i + j is even and b;; = nm;;(A)
when ¢ + j is odd. Similarly, we define the negative comatrix A~ of A to be the
matrix [c;;] defined by the condition that ¢;; = nm;;(A) when 7 + j is even and
cij = pm;j(A) when ¢+ j is odd.

(19.7) PrOPOSITION. Ifn Is an integer greater than 1, if R is a commutative
semiring, and if A = [a;;] € M, (R) then for each 1 < j < n we have:

(1) |AI* = a1;pmi; (A) + azjnma;(A) + asjpms;(A) + ... and

|A|™ = ayjnmy;(A) + azjpme;(A) + azjnms;(A) + ... whenever j is odd;
(2) |A|+ = aljnmlj(A) + anmej(A) + agjnms; (A) + ... and
|A|™ = ay;pmy;(A) + agjnmg;(A) + azjpms;j(A) + ... whenever j is even.

PROOF. Let S be the cancellative semiring N[{z;; | 1 < ¢,j < n}] in n? com-
muting indeterminates &;;. Then there exists a canonical morphism of semirings
¥: Mp(S) — M,(R) which takes the matrix X = [;;] to A. Since, by the above
remarks, |A|* = y(|X|*) and |A|~ = ¥(|X]|7), it suffices to prove then proposi-
tion for the case R = S and A = X. We see that R is a subsemiring of the ring
RA = Z[zi;]. There, we have

n

AT = 1417 = 4] = 3 2(=1) i [pmis (4) — nmis (A)]

i=1

If we assume that j is odd, we obtain the equation
|A|+’A|_ = [:cljpmi]-(A) + l’zjnmzj(A) + .. ] — [xljnm,-j(A) + T2;pMa; (A) .. ]

Note that the left-hand side of this equation is the sum of n monomials in the
z;;. There is no cancellation of terms in |A|t and |A|~ since these are all distinct.
Since each of the two sums on the right-hand side of the equation is the sum of
n!/2 monomials, there can be no cancellation here either. Thus we can identity the
positive and negative parts of the two sides of the equation, and (1) follows. The
proof of (2) is analogous. O

(19.8) PrROPOSITION. Letn > 1 be an integer, let R be a commutative semiring,
and let A = [a;;] € M, (R). Then

(1) AT A = [¢;;], where
{ [AIY ifi=j
Cij = - .
! ICi|t ifi#
where Cj; is the matrix obtained from A by replacing the ith column of A

by its jth column.
(2) A~ A = [d;;] where

{|A|- ifi=j
di; = e
¢ij ifi#j
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Proor. (1) If i is odd then
cij = pmyi(A)ay; + nmai(A)azj + pmai(A)as; + . ...

If i = j, this is just |A|*, by Proposition 19.7. If i # j then, by Proposition 19.7, it
equals |C;;|T. (Since C;; has two equal columns, this is the same as |Cy;|~.) The
reasoning is analogous of ¢ is even.

(2) The proof of this is similar. O

(19.9) PROPOSITION. Letn > 1 be an integer, let R be a commutative semiring,
and let A = [a;;] and B = [b;;] be elements of M, (R) satisfying AB = I, where
I is the multiplicative identity of My,(R). Let C = [¢;;] be the matrix defined by
the condition that ¢;; = 0 if i = j while ¢;; = |C’,-j|+ otherwise, where Cjy; is the
matrix obtained from A by replacing the ith column by the jth column. Then the
matrices |B|* and |B|~C have additive inverses in My (R).

ProoF. Since AB = I, we have Zzzl aixbg; = 0 for all ¢ # j. Therefore a;ibx;
has an additive inverse in R for all 1 < 7,7,k <n with 7 # j.

If i = j, then the (4, j)-entry in |B|* is 0, which certainly has an additive inverse.
If ¢ # j then the (i, j)-entry is

|B|+Cij = [ Z bl,o(l) Teeet bn,o(n)l [ Z Ur(1),1 " .- u‘r(n),nJ

0EA, TEA,

= Z {H bk,o(k)Ur(k)k | O, T € An} ,
k=1

arm Hm#i
Ukm =

ay; ifm=1

where

for all 1 < k < n. For each of the permutations ¢ and 7 in Aj, either a(j) # 7(j)
or o(j) # 7(7). In either case, each term in the above sum contains a factor of the
form a,4b,;, with r # t. Thus each term has an additive inverse in R and so |B|*¢;;
has an additive inverse in R. Thus |B|* has an additive inverse in M, (R). The
proof that the same is true for |B|~C is similar. O

(19.10) ProrosITION. Ifn is a positive integer, if R is a commutative semiring,
and if A = [a;;] and B = [b;;] are elements of M,(R) satisfying AB = I, where 1
is the multiplicative identity of M,(R), then BA = I.

ProoF. If n =1 the result follows directly from the commutativity of R. Hence
we can assume that n > 1. Let C be the matrix obtained from A as in the statement
of Proposition 19.9. Then by Proposition 19.8 we see that AB = I implies that
AtA = AY(AB)A = |A|"BA+ CBA and A~A = A~ (AB)A = |A|"BA+ CBA.
If we multiply the first of these equations by |B|* and the second by |B|~ and then
add, we obtain |B|*At A+ |B|"A~A = [|A|*|B|* + |A|7|B|"]BA + |B|TCBA +
|B|~CBA.
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We now apply Proposition 19.8 again and obtain |A|*|B|t + |A|~|B|~ + |B|* +
|B|=C = [|A|*|B|T + |A|7|B|"]BA + |B|*CBA + |B|~CBA. Since AB = I, we
know by Proposition 19.6(2) that

1+ [A[F|B|™ + |A]7|BI* = |A[*|B[* + |A|7|B|".
We apply this and Proposition 19.8 to the above equation, obtaining

14 |AIT|B|- +|A|"|BI* +|B|T +|B|"C
= BA+[|A|T|B|” +|A|"|B|T|BA+ |B|TCBA+ |B|"CBA
= BA+ |B|*[|A|"I + C)|BA+ |B|"[|A|"I + C]BA
= BA+|B|"A"ABA + |B|"ATABA
=BA+|B|tTA~A+ |B|"ATA
= BA+ |B|T[|A|"I + C]+ |B|"[|A|TI + C]
= BA+ |A[*|B|™ + |A|"|B|* +|B|T + |B|™C.

By Proposition 19.9, |B|* and |B|~C have additive inverses in M,(R). From
Proposition 19.6(1) and the fact that |[AB|~ = |I|~ = 0, we conclude that r =
|A|*|B|~ +|A|"|B|* has an additive inverse in R and so R has an additive inverse
in M, (R). Hence we can conclude that I = BA, as desired. O

If R is a semiring, n a positive integer, and A € M,(R) then perm(A4) =
|A|* + |A|™ is the permanent of A. This is an element of R and so we do not
need to avail ourselves of the map v: R — R®. For the theory of permanents over
rings, see [Minc, 1978]. Permanents of matrices in M, (B) play an important role
in the analysis of switching circuits and have been extensively studied. Permanents
of matrices in M, (%), where R is a bounded totally-ordered set on which addition
is maz asnd multiplication is min, are studied in [Cechldrova & Plavka, 1996]. For
the special case of permanents of matrices in M, (1), see [J. B. Kim, 1984] and [Kim,
Baartmans & Sahadin, 1989]. For permanents of matrices over the schedule algebra,
see [Olsder & Roos, 1988]. For permanents of matrices of bounded distributive
lattices, see [Zhang, 1994].

(19.11) ExaMPLE. Permanents do not have the nice properties of determi-
nants. For example, perm(AB) is not necessarily equal to perm(A)perm(B). Thus,

. . _ [o14025 _ fos 03
for example, in Mo(I), we note that if A = [0'12 0'14} and B = [0'2 0'16] then

perm(A)perm(B) = 0.14 # 0.16 = perm(AB). See [Kim, Baartmans & Sahadin,
1989].

(19.12) ExaMPLE. The fact that perm(A) # 0 does not necessarily imply that

A is invertible or even multiplicatively cancellable. For example, if R is the schedule
algebra (R U {—o0}, maz,+) and if A € M3(R) is the matrix

1 3 5
2 01
0 4 2
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then perm(A) # —oo but

0 -0 —© 2 —o00 —o©
Al2 0 —-o|=A4A}12 0 -—-o0}.

3 —© 0 3 —o0 0

If Ais a matrix in M, x,(R) and if 2 € N then we define r4(A) by setting
ro(A) = 1 and, for A > 0, setting 74(A) as the sum of all submatrices of A in
M;(R). The polynomial r4(t) = 3 ra(A)t" in R[f] is the rook polynomial of
A. For the importance of this polynomial in the analysis of matrices over certain
semirings, see [Beasley & Pullman, 1988a].

(19.13) EXAMPLE. If R is a simple semiring and A = [a;;] € M, (R) is a matrix
satisfying a;; = 1 for all 1 < ¢ < n then perm(A) = 1.

Let R and S be semirings and let M be an (R,S)-bisemimodule. If s € S, then
an element m of M is an R-eigenelement of s in M if and only if there exists an
element r of R satisfying rm = ms. Such an element r is called an R-eigenvalue of
s associated with the element m. Given an element r of R, we denote the (possibly
empty!) set of all elements m of M for which R is an associated eigenvalue of s by
eigpr(r, ). If this set is nonempty, it is a subsemigroup of (M,+). If M is also a
right R'-semimodule for some semiring R’, then eigps(r, s) is a right R'-semimodule
of M.

In particular, if R is a semiring and S = M,(R), then R is an (R, S)-
bisemimodule and we will consider the eigenelements of matrices in S as being
in R™ and the associated eigenvalues as being in R. If M is a left R-semimodule
and « is an R-endomorphism of M then the eigenelements of o belong to M and
the associaied eigenvalues are in R.

(19.14) EXAMPLE. In the “classical” example, M = R" for some positive inte-
ger nand S = M, (R). For the case of R being the semiring (RU{co, —co}, maz, +),
this situation is considered in [Cuninghame-Green, 1979], [Cuninghame-Green &
Burkard, 1984] and [Cuninghame-Green & Huisman, 1982]. If A = [a;;] € S and
r € R. then m = (b1, ...,b,) € eigar(r, s) if and only if

r+bi:max{aij+bj|1§j§n}

for each 1 < i < n. In the case of R being the semiring (R*, maz, -) or the semiring
(R* U {co0}, min, -), this situation is considered in [Vorobjev, 1963]. Refer also to
[Gondran & Minoux, 1978], especially for the case of R a division semiring. For the
case of R being the schedule algebra (RU{—oc}, maz, +), refer to [Cochet-Terrason
et al., 1998] for specific computational algorithms.

For the general relation between eigenvalue problems and problems in graph
theory and combinatorics, see [Zimmermann, 1981].

(19.15) EXAMPLE. [Gaubert, 1996a; Olsder, 1992] Consider the schedule alge-
bra R = (RU {—o0}, maz,+). A matrix A = [a;;] € M,(R) is irreducible if and
only if no permutation matrix P exists such that P~! AP has upper-triangular block
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structure. Any such matrix admits a unique eigenvalue p(A) = Y p_, tr(4%)/*,
where tr(B) denotes the trace of a matrix M. Moreover, p(A) < Y7 | E?:l aij,
with equality in the case A is symmetric. Furthermore, if ¢ € R then there exists
an element u € R™ satisfying AuT + cu” = cu” if and only if p(4) < ¢ and there
exists an element u € R™ satisfying AuT + cu” = Au” if and only if ¢ < p(A).

If the matrix A is not irreducible, it may have more than one eigenvalue. Thus,

for example, the matrix [_; *go] has eigenvalues 1 and 2, associated respectively
with eigenelements [0, —o0]” and [—o0, 0)7. On the other hand, it is straightforward
to check that the matix [_loo g] has a unique eigenvalue, 1, even though it is not
irreducible. See [Baccelli et al., 1992] for details. Also refer to [Mairesse, 1997].

The matrix 4 = [g _2°°] € M3 (R) has two distinct eigenvalues, 0 and 2, cor-
responding to eigenelements [0, —oc]T and [0,0]7. Nonetheless, A is not a unit of
My (R). See [Wagneur, 1991].

We can consider a matrix A = [a;;] € M,(R) as representing a weighted directed
graph with nodes {1,...,n}, where a;; is the weight on the arc i — j (if this weight
is —oo then the arc doesn’t exist). The condition that the matrix A be irreducible
corresponds to the condition that this graph be strongly connected. In that case,
the unique eigenvalue is equal to the maximum cycle mean of the graph.

For the importance of eigenvalue problems over the schedule algebra in graph

theory and the theory of discrete-event dynamical systems, refer also to [Baccelli
et al., 1992], [Braker & Olsder, 1993], and [Braker & Resing, 1993].

(19.15h) ApPLICATION. [Gaubert & Max Plus, 1997] In statistical physics one
considers the asymptotics, as h — 0%, of the spectrum of n x n matrices with
nonnegative real entries of the form A, = [exp(h~'a;j)], where a;; € R for 1 <
1,7 < n. The Perron eigenvalue p(B) of a matrix B with nonnegative entries is
the maximal eigenvalue associated with a nonnegative eigenvector, which is equal
to the spectral radius of B. Then one can show that limy_,o+log p(Ap) is just the
maximal eigenvalue of A = [a;;] over the schedule algebra. For related results, see
[Akian, Bapat & Gaubert, 1998].

(19.15m) ExaMPLE. [Lesin & Sambourskii, 1992] Let S be a closed subsemiring
of the schedule algebra R = (R U {—o00}, maz,+) and let p: R — R be a concave
differentiable function satisfying the condition that {im,_, . ¢(r) = 0. (For example,
we can take ¢:z — €%.) Then ¢ defines a metric on R given by

d(a,b) = lp(a) — ¢(b)],

which in turn restricts to a metric on S. Let X be a totally-bounded metric
space and let C(X,S) be the S-semimodule of all continuous bounded functions
from X to S. Each S-valued relation §: X x X — S on X defines a function
ag: C(X,S) — C(X,S) given by

(ao)(f):z— \ 8(z,9) + f(»).

yeX
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If 6 is a bounded function uniformly continuous in the first argument and equicon-
tinuous in the second, then ay is an S-endomorphism of C(X,S). Moreover, there
exists a nonzero subsemimodule N of C(X,S) and an element s of S such that s is
an eigenvalue of ay and N C eigc(x 5)(s,0a). This result has important applica-
tions in dynamic programming.

It is natural at this stage to try to define the notion of the characteristic polyno-
mial of a matrix over a commutative semiring. If ¢ is an indeterminate over M,,( R)
and if I is the multiplicative identity of M, (R) then we can consider the polyno-
mial perm(A + tI) € R[t]. Such polynomials over the schedule algebra are studied
in [Cuninghame-Green, 1983] in connection with their application to problems in
optimization theory.

Another approach is given in [Straubing, 1983a]. If R is a semiring, n is a
positive integer, and ¢ is an indeterminate over M,,(R), then for each matrix A in

M (R) we can construct the matrix A*(t) in Mo, (R[t]) defined by A*(t) = [‘}1 tII] :

where I is the multiplicative identity of M,(R). Note that an element R of R
is an R-eigenvalue of A associated with some element m of R” if and only if the
columns of this matrix are linearly dependent over R. The positive characteristic
polynomial p*(¢) of A is now defined to be p¥(t) = |A*(t)|* and the negative
characteristic polynomial of A is defined to be p7 (t) = |A*(¢)|™.

If R is a commutative semiring, if A is a matrix in M,(R) and if g € R[t] is a
polynomial over R in an indeterminate t then we can define g(A) to be 3,y g()A.
This is well-defined since M,(R) is a left R-semimodule and since only finitely-
many of the values ¢g(¢) are nonzero.

(19.16) ProrosiTiON. (Cayley-Hamilton Theorem) If R is a commutative
semiring and if A € M,(R) for some positive integer n then p%(A) = p, (A).

ProOOF. Let A = [a;;]. If X = {t11,...,tan} is a set of n? distinct elements
then we have a function ¢: X — R defined by ¢:t;; — @;;. As in Example 9.19,
this function induces a p-evaluation morphism v = ¢,: N(X) — R which, in turn,
induces a morphism v, : M, (N(X)) — M, (R) having the property that v,(T) = A,
where T is the matrix [t;;]. By the remarks before Proposition 19.6, it therefore
suffices to prove the result for the case of R = N(X). But N(X) is a commutative
cancellative semiring and so can be embedded in a commutative ring of differences.
Here the result follows by the usual Cayley-Hamilton Theorem for commutative
rings. O

(19.17) ExaMPLE. [Baccelli et al., 1992] Let R = (RU {—o0}, maz, +). If

1 2 3
A=1(4 1 -0
0 5 3
then p}(t) = max{3t,4+t,9} and p;(t) = maz{3 + 2t,6 4 t,12} and, indeed,
12 11 9

pE(A)=p;(4)= |10 12 10
12 11 12



20. PARTTALLY-ORDERED
SEMIRINGS

Many of the semirings originally studied, such as N and ideal(R), have a partial-
order structure in addition to their algebraic structure and, indeed, the most in-
teresting theorems concerning them make use of the interplay between these two
structures. In is therefore natural for us to study semirings, and semimodules over
them, on which a partial order is defined. A hemiring (R, +, -) is partially-ordered
if and only if there exists a partial order relation < on R satisfying the following
conditions for elements r, r’, and r” of R:

(1) fr <7 thenr+7r" <7 +7";
(2) If r <7 and 7" > 0 then rv” < 7'’ and r"r < r''r'.
If the relation < is in fact a total order, then R is totally-ordered.

An element a of a partially-ordered hemiring R is positive if and only if a > 0.
Clearly, this condition is equivalent to the condition that a+r > r for allr € R. The
set Rt of all positive elements of R, called the positive cone of R, is nonempty
since 0 € R*. It is also easy to verify that this set is closed under finite sums and
products. Thus it is a subhemiring of R, which is a subsemiring if R is a semiring
satisfying 1 > 0. The partially-ordered hemiring R is positive when Rt = R. The
nonzero elements of Rt are said to be strictly positive.

(20.1) ExaMPLE. [Acharyya, Chattopadhyay & Ray, 1993] The positive cone
of a partially-ordered semiring R does not determine R, even if R is a ring. Indeed,
let define a partial order on R by setting a < b if and only if 6 — a € N. Then
R* =N. But Z* is also N, where Z is ordered with the usual order.

Note that if a is a positive infinite element of a semiring R thena=a+r > r
so a is the unique maximal element of R*. In particular, if R is a positive simple
semiring then 1 > » > 0 for all » € R.

(20.2) EXAMPLE. Any frame (R,V, A) is a partially-ordered semiring.

(20.3) ExaMPLE. The semiring N with the usual order is a totally-ordered
semiring. Similarly, the schedule algebra (RU {—oc0}, maz, +) with the usual order
is a totally-ordered semiring, as is (RT U {oo}, min,+), with the reverse of the

J. S. Golan, Semirings and their Applications
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usual order. If R = (RU {—o0}, maz,+) then we can define the structure of a
totally-ordered semiring on R? by setting

(a,b) ifa>cora=candb>d
(1) (@) +(e.d) = { (e,d) otherwise ’
(2) (a,b)-(c,d) = (ac,bd).
for all (a,b),(c,d) € R?.. The order on this semiring is just .the lexicographic
order. Obviously, this construction can be iterated.
Wagneur [1991] has considered the problems of linear independence and bases
for semimodules over certain classes of totally-ordered semirings.

We know that if R is a hemiring then R can be embedded in its Dorroh extension
S = R x N, which is a semiring. If R is partially-ordered by a relation <, then
we can define a relation <’ on S by setting (a,n) <’ (¢/,n’) if and only if n < n’
and @ < a/. This relation restricts to < on the image R x {0} of R in S and it
is straightforward to check that S is a partially-ordered semiring under <’. Georg
Karner, in a private communication, has pointed out that the lexicographic order on
S defined by setting (a,n) <’ (a’n’) if and only if n < n’ or n = n’ and a < a’ does
not work. Indeed, if R = 2N then we would have (10, 1) <’ (1,2) and (0,0) <’ (2,0)
but (10,1)-(2,0) = (22,0) £’ (6,0) = (1,2) - (2,0).

(20.4) EXxaMPLE. [Janowitz, 1976] A ring R having no nonzero nilpotent ele-
ments is a Rickart ring [Maeda, 1960] if and only if for each a € R there exists
a (necessarily unique) idempotent e, of R satisfying ab = 0 if and only b = eyb.
Thus, for example, any integral domain R is a Rickart ring with e, = 0 for a # 0
and eg = 1. On a Rickart ring there is a natural partial order defined by a < b if
and only if ab = a? (or, equivalently, if and only if ba = a?). Note that 0 < a for
each a € R. If we set aAb = eq_pa for all a,b € R then (R, A) is a meet semilattice
in which multiplication distributes over meets from either side. Moreover, a < b if
and only if a = eb for some idempotent e of R.

Let R be a Rickart ring and let co be an element not in R. Set S = RU {oo}
and extend the definitions of - and A to S by setting s- 0o = 0o s = oo and
s ANoo=00As=sfor each s € S. Then (S,A,-) is a partially-ordered semiring in
which 0g = oo and 15 = 1g. Moreover, St = {co}.

(20.5) ExaMPLE. If A is a nonempty set and R = sub(A)? is the semiring
defined in Example 6.3, then we can define a partial order on R by setting f < g
if and only if f(a) C g(a) for all @ € A. This partial order turns R into a positive
partially-ordered semiring.

(20.6) EXAMPLE. A subsemiring of a partially-ordered semiring is itself
partially-ordered under the induced partial order. However, a given semiring may be
a subsemiring of many other semirings, and inherit different partial orders from each
of them. Consider the following example [Karner, 1992]: Let R = (RU {oo},+, -).
This semiring is surely totally-ordered under the restriction of the usual relation
<. For each 1 < a € R, the subset R, = NU{r € R|r > a} of R is in fact a
subsemiring and it has a partial order C, defined by r C, #' if and only if there
exists an s € R, satisfying r + s = /. If a < b, then R is a subsemiring of R,
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and the restriction of C, to R, is also a partial order on Ry, which is different from
Cp. Therefore, for each a > 1, there are uncountably-many different partial orders
definable on R,.

(20.7) ExaMmPLE. If R is a cancellative partially-ordered semiring having ring
of differences R® and if v: R — R® is the canonical morphism, then the partial
order on R can be extended to a partial order on R? by setting v(a)v(b) < v(c)v(d)
if and only if a + d < b+ ¢. Indeed, this is the only possible way of extending the
partial order on R to one on R2.

(20.8) ExaMPLE. If {R; | ¢ € Q} is a family of partially-ordered semirings
then the product semiring R = Xx;eqR; is also partially-ordered when we define
{(a;) < (b;) if and only if a; < b; for all € Q. Indeed, R is just the product of the
R; in the category of all partially-ordered semirings. Conversely, if R = X;eqR; is
partially-ordered then each R; is partially-ordered by restriction.

If each R; is positive then so is R and conversely. In particular, a semiring R is
partially-ordered if and only if R* is partially-ordered for some (and hence every)
nonzero set A, and it is positive if and only if some (and hence every) R4 is positive.
Thus, for example, since N{oo} is a partially-ordered semiring, so is the semiring
of multisets on any nonempty set A. Similarly, R is partially-ordered if and only if
M, (R) is partially-ordered for some (and hence every) natural number n.

(20.9) ExaMpPLE. [Wechler, 1977} Let {R; | ¢ € Q} be a family of disjoint
positive partially-ordered hemirings and, for each : € Q, let 0; be the additive
identity of R;. Denote the operations on R; by +; and -; and the order relation on
R; by <;. Let u, z be elements not in any of the R; and let S = U{[R;\{0:}] | ¢ € ©}.
Define additior, multiplication, and order on R = S U {u, z} as follows:

(1) If @, b # z then a + b equals a +; b if a and b both belong to R;, and equals
u otherwise;

(2) If a,b # z then a - b equals a -; b if a and b both belong to R;, and equals u
otherwise;

(3) If a,b € S then a < b if and only if a <; b for some i;

(4) z+a=a+z=aandz-a=a-z =z forall a € R, while z < a for all

a € R;
b)) u+a=a+u=uandu-a=a-u=uforall z# a € R, while a < z for
alla € R.

Then (R, +, ) is a hemiring and, in fact, is the coproduct of the R; in the category
of all hemirings.

A subsemiring S of a partially-ordered semiring R is full in R if and only if
a <be S impliesthat a € S.

(20.10) ExaMPLE. [Wongseelashote, 1979] Let R = N{co}* be the semiring
of multisets of elements of a nonempty set A. Then the subsemirings {f € R |
Yaea f(a) # oo} and {f € R | supp(f) is countable} of R are full.
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(20.11) ExaMPLE. If nis apositive integer and R is a partially-ordered semiring
then the matrix semiring M, (R) can be partially ordered by [a;;] < [b;;] if and only
ifa;; <b;; foralll <45 <n. Ifn> 2, this order cannot be total. Similarly, if A
is a nonempty set and R is a partially-ordered semiring then the semirings R{{A))
and R(A) are partially-ordered by the order f < g if and only if f(w) < g(w) for
all w € A*. If R is positive then so are R{{A)) and R(A).

(20.12) ExaMPLE. [Bleicher & Bourne, 1965] Let 1 < ¢ € N and define a new
partial order < on N by setting a < b if and only if a < b and ¢ = b (mod ¢). Call
this new semiring R. Then R = {a € N|a =0 (mod ¢)} so R is not positive.

(20.13) EXAMPLE. Let 5: R — S be a morphism of 3 semirings and assume that
S is a partially-ordered semiring with respect to the relation <. Define a relation
< on R by setting » < ' if and only if y(r) < ¥(r’). Then it is straightforward to
verify that R is partially ordered by the relation <.

(20.14) EXAMPLE. Let R be a semiring and let {<;| ¢ € Q} be a family of
partial-order relations on R each of which turns R into a partially-ordered semiring.
Then R is a partially-ordered semiring with respect to the relation < defined by
r <7 if and only if r <; 7' for all 1 € Q.

(20.15) ProOPOSITION. If a is an element of a partially-ordered semiring R
satisfying a < b for all b € R then a € I*(R).

Proor. By hypothesis we have a < 0 and so a < a+a < a+0 = a. Thus
a=a-+a. O

(26.16) PROPOSITION. Positive partially-ordered semirings are zerosumfree.

ProoF. Let R be a positive partially-ordered semiring. If a,b6 € R then b > 0
soa+b>a+0=a>0. Hence a + b = 0 implies that 0 > a > 0 and thus a = 0.
Similarly 6 =0. O

An element a of a partially-ordered semiring R is transitiveif and only if a® < a.
Clearly 0 is transitive, as 1s every element a of R satisfying 0 < a < 1. f Risa
commutative semiring then the set of all transitive elements of R is closed under
taking products. The transitive elements of semirings of the form M, (R), where
R is an additively idempotent semiring, are studied in [Hashimoto, 1985}.

(20.17) ProPosITION. If R is a positive partially-ordered Gel’fand semiring
then for each a,b € R there exist units u,v € U(R) such that ab < au and ab < vb.

Proor. Since R is Gel’fand we know that ifa,b € Rthen u = 1+band v = 1+a
are units of R. Moreover, since R is positive we have a < a+ 1 and 6 < b+ 1. The
result then follows from the definition of a partially-ordered semiring. O

Note that if R is a simple semiring then ab < a and ba < a for all a,b € R, by
Proposition 4.3.
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(20.18) PRrROPOSITION. Ifay,...,a, are elements of a positive simple semiring
R and if 1 < h < k < n are indices such that apa;, =0 thenay -... a, = 0.

PROOF. Let b =a;-...-ap and let ¢ = ap41 ... - ax. Then, by Proposition 4.3,
0 <b<apand 0 < c¢ < ag. This implies that 0 < be < apar = 0 and so be = 0.
Hence ay - ... ap =bcagy1-...-a, =0. O

(20.19) ProposITION. If R is an additively-idempotent semiring then R is
partially-ordered by the relation a < b if and only if a4+ b = b. Under this relation,
R is positive and, indeed, R is a join semilattice with a Vb = a + b. Moreover, if
a,b € U(R) then a > b if and only ifa™! < b~1!.

Proor. That R is partially-ordered by the above-defined relation is an imme-
diate consequence of the definition and of the additive idempotence of R. Clearly
0 < a for every element a of R, so R is positive. Moreover, since R is additively
idempotent we have a,b < a+bfor all a,b € R. Now let ¢ be an element of R satis-
fyinga,b < c. Then a+c=candb+c=cso(a+b)+c=a+(b+c)=a+c=cand
hence a+b < ¢. Thus we have a+b = aVb. Finally, we note that if a,b € U(R) then
a<boatb=boal=atbbl=al(a+b)b ' =b"14+al b1 <a"l. O

From now on, whenever we consider additively idempotent semirings we will
assume that they are partially-ordered by the relation given in Proposition 20.19.
In particular, this will be true of simple semirings.

(20.20) ProrosITION. If R Is an multiplicatively-cancellative additively-
idempotent commutative semiring and if ai, ...,a, € R thenaj-...-a, < > i, al.

PrOOF. By the remark after Proposition 4.43 we see that

Za?:(Za,) =a;-...-ap+b
i=1 i=1
for some b € R, and so the result follows. O

(20.21) ExaMPLE. [Shubin, 1992] Proposition 20.20 is not true if multiplicative
cancellation is not assumed. For example, let M = (N2 +) and let R = sub(M), the
operations on which are given in Example 1.10. Then R is additively-idempotent
but not multiplicatively-cancellative. If a = {[0,0],[0,1]} and & = {[0,0],[1,0]}
then ab = {[0, 0], [L, 0], [0, 1], [1, 1]} while a? + % = {[0, 0], [1, 0], [0, 1]}.

(20.23) ProPOSITION. If R is a simple ring then
(1) a<b<ac<din R implies that a < d.
Moreover, if R is positive then

(2) a<b and c<ad in R imply that ac + ca 4bd; and
(3) a,c<ab impliesa+ cab.

In particular, if R is positive and a € R then I = {r € R|r <a} is an ideal of R.
ProoF. (1) By hypothesis, there exists an element e of R satisfying be = 0 = eb

and e+c¢ = 1. Since a < b we have a+b = b. By Proposition 4.3, we have b = ab+b
and so a+b = ab+b. Thus ae = ae+be = abe+be = 0. A similar argument shows
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that ea = 0. Since e < dwe have c+d=d. Hencee+d=e+c+d=1+d=1
by simplicity. Therefore a < d.

(2) By hypothesis there exist elements r and s of R satisfying ar = ra =0 =¢s =
scand r+b=1=s+d. Set e = bs+r. Then e(ac+ ca) = bsac + bsca + rac + rca
and this equals 0 by Proposition 20.18. Similarly, (ac + ca)e = 0.. Moreover,
e+bd=0b(d+s)+r=>b+r =1. Therefore ac + ca < bd.

(3) Since a, c ab we know there exist elements r and s of R satisfying ar = ra =
O=cs=scandr+b=1=s+b. Set d = rs. Then, since R is positive, we have
0 < d(a+c) = rsa+rsc < ra+ sc =0, implying that d(a + ¢) = 0. Similarly,
(a+¢)d=0. Moreover, d+b=d+1b=d+(r+ )b =rs+rb+b=r(s+b)+b=
rl4+b=7r+b=1. Therefore a + c ab.

Finally, if » € I and ' € R then r'r < r <a and so, by (1), »'r 9a. Similarly
rr’ aa. Thus r'r,rr’ € I. If r,7' qa then r + 7' qa by (3). Thusr+7r €. O

A partially-ordered semiring R is [uniquely] difference ordered if and only if
a < bin R when and only when there exists an element [resp. a unique element]
c of R such that a + ¢ = b. Difference-ordered semirings are clearly positive and
hence zerosumfree.

(20.23) ProPOSITION. A difference-ordered semiring R is uniquely difference-
ordered if and only If it is cancellative.

ProoF. Cancellative difference-ordered semirings are surely uniquely difference-
ordered. Conversely, assume that R is uniquely difference-ordered and that a+b =
a + c for elements a, b, and ¢ of R. If this common value is d then we have d > a
and so, by uniqueness, we must have b =c¢. O

A difference-ordered semiring is totally ordered precisely when it is a yoked
semiring. A semiring R is extremal if and only if a + b € {a,b} for ali a,b € R.
The boolean semiring B and the semirings in Example 1.8 and Examgle 1.22 are
extremal. The extremal semirings R are precisely the additively-idempctent yoked
difference-ordered semirings. Simple extremal semirings are called Dijkstra semir-
ings. The semirings B, (I, maz,-), (NU{oo}, min, +), and (RU{oco}, maz, min) are
examples of Dijkstra semirings. Determinants of matrices over extremal semirings
are studied in [Gondran & Minoux, 1978]. In particular, it is shown there that if
R is an extremal division semiring and if A € M, (R) satisfies the condition that
|A|* = |A|~ then the columns (and rows) of A are linearly dependent.

(20.24) ExaMPLE. The semiring N is uniquely difference ordered in its usual
ordering.

(20.25) ExaMPLE. If R is a semiring then ideal(R) is a simple difference-
ordered semiring with infinite element R.

(20.26) ExaMPLE. The order on an additively-idempotent semiring defined in
Proposition 20.19 is just the difference order. Indeed, if a+ b = b then surely a < b
in the difference order. Conversely, assume that a < b in the difference order. Then
there exists an element ¢ of R such that a+c=bsob=a+c=a+c+c=b+ec.
This implies that a+b=a+b+c=b+b=0b.
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(20.27) ExaMPLE. If R is a difference-ordered semiring and A is a nonempty
set then the partially-ordered semiring R4 (see Example 20.8) is difference-ordered.
Indeed, if f,g € R satisfy f < g then f(a) < g(a) for each a € A and so for each
a € A there exists an element h(a) € R such that f(a) + h(a) = g(a). Therefore
f+h =g in R4 Similarly, the partially-ordered semirings M,(R), R{{4)) and
R(A) (see Example 20.11), are difference ordered.

A difference-ordered semiring R is a weakly uniquely difference-ordered
semiring (WUDO-semiring) if and only if @ < b implies that there is a unique
element ¢ of R satisfying a + ¢ = b. We will denote this unique element ¢ by b © a.
We also set a © a = Og for all a € R. WUDO-semirings were first introduced and
studied in [Wu, 1998].

(20.28) EXAMPLE. Surely every uniquely difference-ordered semiring is a
WUDO-semiring. The following are examples of totally-ordered semirings which
are weakly uniquely difference ordered but not uniquely difference ordered:

(1) B

(2) (I, maz,N), where M is any triangular norm on I;

(3) (I, min,U), where U is any triangular conorm on I
(4) (RU{~o0}, maz,+);
(5) (RU {0}, min,+)

In particular, if R is a WUDO-semiring and a < b are elements of R then
a©0r =aand b = (bSa)+a. Since R is positive, one also sees that 6 > b a for
alla<bin Rand that ifa<b<cin RthencSa<cob.

(20.29) ProPosITION. Let R be a WUDO-semiring

(1) fa<candb<cthencSa>band cOb>aimply that (cSb)6a =
(coa)ob;

(2) a+b=a+c>c thenb=c.

(3) Ifb>aand ¢ > 0gr then (b+c¢)oa= (b©a)+cifand only ifb+c¢ > a.

PRroOOF. (1) The result is obvious if a = Og or b = Og, so we may assume that
that is not the case. By definition, we then see that (c©b)©a=0gif cOb=a
and, otherwise, (¢ © b) © a is the unique element d of R satisfying c© b = a + d.
On the other hand, if ¢ © b = a then ¢ = b + a, which implies that ¢ & a = b (since
cSa > b > 0 implies that ¢ > a). Hence c6a)© b =0g. If c&b > a then
c=(coOb)+b=a+d+b Again, since c©a > b > 0g we have ¢ > a and so
cSa=b+d Ifcoa=>bthen c=a+band c© b = a, which contradicts the
fact that ¢ © b > a. Thus we must have cS e > b and (¢ © a) © b = d. Therefore
(cCa)ob=0rifcob=aand (cGa)eb=dif cob > a, proving that
(cob)oa=(coa)eb.

(2) Let d=a+b=a+c. Then both d > a and so, by uniqueness, b = c.

(3) Assume b+ ¢ > a then

(b+c)ca)+a=b+c=(bSa)+a)+c=((b&a)+c)+a

and so (b+c)©a = (boa)+c by (2). Conversely, assume that (b+c)Sa = (bSa)+c.
Then (bSa)+c¢> ¢ > 0g and so (b+c)Sa > Og, which implies that b+¢ > a. O
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If R is uniquely difference-ordered then it is straightforward to check that the
following conditions are equivalent for a,b,c € R:

(1) a>b+c

(2) aob2> ¢

(3) a®dec>b.
Also, if a,b,c€ Rand a > bthen a6 (a&bd)=band (a®b)+c=(a+c)Sb.

A nonempty subset A of a partially-ordered semiring R is convex if and only if
a,be A and a < r < bimply that r € A.

(20.30) ProPOSITION. Every zerosumfree division semiring R is difference or-
dered. Moreover, if v: R — S Is a morphism of semirings then mker(vy) Is convex
with respect to this order.

ProoF. If a and b are elements of a division semiring R we will write a < b if
and only if there exists an element ¢ of R satisfying a + ¢ = b. Clearly a < a for
all @ € R and a < b < ¢ implies that a < ¢. Moreover, it is also clear that if we
complete showing that < is indeed a partial order relation on R then, relative to
that relation, R is a partially-ordered semiring. What we are left to show is that if
a<band b<ain R then a = b.

First, however, we will prove the second part of the proposition. Let K =
mker(y) for some morphism of semirings y: R — S and let @ and b be elements of
K. Let r be an element of R satisfying a < r < b. We can clearly assume that
r # a,b. Then there exist nonzero elements v and v of R satisfying a + v = r and
7+ v = b. Since R is zerosumfree, we also see that u +v # 0. Set w = (u +v)~!.
Then wv + wu = 1 and so, by Proposition 10.24, awv + bwu € K. But

awv +bwu = awv + (a + v+ v)wu = aw(u+v) + (u+v)wu =a+u=r,
proving that r € K.

Now suppose that a < b and b < a in R. If both a and b equal 0, we are done.
Hence we can assume that @ # 0. Then 1 < a~!b < 1. Since {1} = mker(:), where
¢ is the identity morphism from R to itself, we see that a~'b = 1 and so a = b, as
required. O

(20.31) ProPoSITION. If R is an additively-idempotent semifield then every
pair of elements of R has an infimum in R.

PRrROOF. Let a,b € R. If a = 0 or b = 0 then 0 is the infimum of {a, b} since R is
difference ordered. Hence we can assume that a,b € R\ {0}. Since R is additively
idempotent and hence zerosumfree, this implies that a+b # 0. Set ¢ = ab(a+b)~1.
Then (¢ + a)(a + b) = ab+ a® + ab = ab + a® = a(a + b) and so ¢ + a = a, proving
that ¢ < a. Similarly ¢ < b. Now suppose that d < a and d < b. Thend+a =a
and d+b="bso

d(a+b)+ ab = da + db+ (d + a)(d + b) = da + db + d* + da + db + ab
=d’+da+db+ab=(d+a)(d+b)=ab

and hence d(a + b) < ab, implying d < c. Therefore c is the infimum of {a, b} in
R. O

As a consequence of Proposition 20.30, we can characterize the morphisms from
o other semirings.
* to oth g
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(20.32) ProPoSITION. If v:Q% — R is a morphism of semirings then either
tm(7) is isomorphic to B or v is monic.

PRroOF. If mker(y) = Q*\ {0} then 7 is the morphism which sends 0 to Or and
every nonzero element of Q¥ to 1 so that 2m(y) is isomorphic to B. Otherwise, we
can assume that mker(7y) is properly contained in Q*\{0}. By Proposition 10.25, ¥
is injective if we can show that mker(y) = {1}. Assume that thisis not the case and
let a be an element of mker(y) not equal to 1. Then a~! also belongs to mker(y)
and so, without loss of generality, we can assume that 0 < a < 1. Similarly, let
0# b€ Qt\ mker(y). Then b=! ¢ mker(y) and so we can assume that 0 < b < 1
as well. But then there exists a natural number k such that a® < b < 1. Since
a* € mker(7y), this contradicts the convexity of mker(y). Thus 7 is injective. O

(20.33) CoROLLARY. If there exists a morphism from Q% to a semiring R then
1t is unique.

PROOF. Assume there exists a morphism v: Q* — R. If im(y) = {0,1} then R
is additively idempotent since 1g = y(1) = ¥(2) = y(1) + 7(1) = 1r + 1r. Hence
it cannot have a subsemiring isomorphic to Q* and so, by Proposition 20.32, there
is no other morphism from Q7% to R. Therefore we can assume that v is injective.
If 6 is another morphism from Q7 to R then it too must be injective by the above
reasoning. For each n € N we therefore have §(n) = né(1) = n-1g = ny(1) =v(n)
and so for each p/q € Q% we have 8(¢)8(p/q) = 6(p) = ¥(p) = ¥(a)¥(p/q) so
8(p/q) =(p/q). Thus 6 =~. O

If R is a zerosumfree division semiring then there does exist indeed exist a
morphism of semirings from Q% to R, namely the map 7y, defined by vo:p/q —
(p1r)(qlg)~!. For such a semiring R, let L(R) be the set of all those elements
r € R for which there exist elements a and b of Q1 satisfying yo(a) < r < go(b).

{20.34) PRrorosITION. If R is a zerosumfree division semiring then L(R) =
mker(8) for some morphism 6: R — S.

PRrROOF. Let »,7/ € L(R). Then there exist a,a’,b,b’ € Q% satisfying yo(a) <
r < () and yp(a’) < v’ < (V). As an immediate consequence of the definition
of a partial order we then have yp(aa’) < rr’ < (b)), 70(b)~! < 771 < yo(a)7t,
and 7o(a) = uy(a)u < u=lru < u”lyo(b)u = yo(b) for any 0 # u € R. Thus
L(R) is a normal divisor of R. Moreover, if u and v are elements of R satisfying
u+v =1, if @ = min{a,d’}, and if ¥" = maz{b, b’} then

Y0(a”) = y0(a”)u +y0(a”)v < rutr'v < (B )u + 70 (b")v = 70(b")
so that ru + v € L(R). The result now follows from Proposition 10.24. O

(20.35) ProPosITION. If R is an additively-idempotent partially-ordered semir-
ing satisfying 0 < 1 then S = {r € R |0 <r < 1} is a subsemiring of R.

ProoF. Clearly {0,1} C S. If 5,5’ € Sthen0 < s+s <141 =1 and
0=250<ss <sl=s5<1soboths+s and ss’ belong to S. O

Note that if R and S are difference-ordered semirings and if y: R — S is a
morphism of semirings then v preserves partial order. Indeed, if a < b in R then
there exists an element ¢ of R satisfying @ + ¢ = b so y(a) + y(¢) = y(b), which
implies that y(a) < ¥(b).
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(20.36) ProOPOSITION. If R is an arbitrary semiring then there exists a
difference-ordered semiring S and a surjective morphism of semirings S — R.

PRrROOF. Let A = {a, | »r € R} be a set bijectively corresponding to R and let
A:A — R be this bijection. Then A extends to a map A* from A* to R given by
A*(@) = 1 and M (w) = A(a1) - ... A(apn) for each nonempty word w = a; -...-a,
in A*. Let S = N(A). Then there exists a morphism of semirings 7:.S — R, which
is clearly surjective, defined by v: f — 3 f(w)A*(w). Moreover, the semiring N is
surely difference-ordered and hence so is N{A) by Example 20.27. O

(20.37) PrOPOSITION. The following conditions on a semiring R are equivalent:

(1) R is difference ordered;
(2) Ifa,b, c are elements of R satisfyinga=a+b+c, then a = a+b.

Proor. Assume that R is difference ordered and let b,c € R. f a=a+b+c¢
then @ < a + b < a, proving that a = a + b. Conversely, assume that (2) holds and
define the relation < on R by setting r < 7/ if and only if there exists an element
r" of R satisfying » + '/ = r’. Then clearly a < a for all @ € R, while a < b, and
b <cimply a < eforall a,b,c € R. If a and b are elements of R for which there
exist elements ¢ and d satisfying a + ¢ =band b+d =athenaea+c+d = aso
a + ¢ = a. This implies that b = a + ¢ = a, proving that < is a partial order on R
which turns R into a partially-ordered semiring. Thus R is difference ordered. O

(20.38) CoRrOLLARY. If R is a nonzeroic difference-ordered semiring then Z(R)
is a strong ideal of R.

Proor. If b+ c € Z(R) then, by definition, there exists an element a of R such
that a+b+c = a. By Proposition 20.37, this implies that a+b = a and so b € Z(R).
Similarly ¢ € Z(R). O

(20.39) PROPOSITION. An ideal I of a difference-ordered semiring R is strong
if and only if a < b and b € I imply that a € I.

PrOOF. Assume that I is strong. If a < b and b € I then there exists an element
¢ such that a+c¢ € I. By assumption, a € I. Conversely, assume the given condition
holds. If a and b are elements of R satisfying a+b € I then a < a+b € I and so
a € I. Similarly b € I and so [ is strong. O

(20.40) ProPosITION. If R is a difference-ordered semiring and A is a subset
of R then (0 : A) is a strong ideal of R.

ProoF. If c < b€ (0: A) and a € A then 0 < ca < ba = 0 so ca = 0. Thus
¢ € (0: A) and so, by Proposition 20.39, (0 : A) is a strong ideal of B. O

(20.41) ProprosITION. If R is a difference-ordered Gel’fand semiring and d >
c € U(R) in R then d € U(R).

PRroOF. Since R is difference-ordered, we know that there exists an element r
of R satisfying d = ¢ + r. Then d € U(R) by Proposition 4.50. O

An element a of a partially-ordered semiring R is prime if and only if @ is not a
unit and be < @ in R implies b < a or ¢ < a. An element a of R is semiprime if and
only if a is not a unit and b2 < @ in R implies that b < a. If R is multiplicatively
idempotent then clearly every nonunit of R is semiprime.
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(20.42) EXxaMPLE. If R is a semiring then the prime elements of the semiring
ideal(R) are precisely the prime ideals of R and the semiprime elements of ideal(R)
are precisely the semiprime ideals of R.

(20.43) ExaMPLE. [Solian & Viswanathan, 1988] If A is a set having at least
two elements then. f € I4 is prime if and only if there is an element a of A such
that f(a) <1 and f(b) =1 for all b € A\ {a}.

(20.44) ExaMPLE. If R is the semiring of all open subsets of a topological space
X then the prime elements of R are precisely the complements of closed irreducible
sets. If the space X is sober (namely, if every closed irreducible set is the closure
of a point) then the primes of R are the complements of closures of points in X.

A maximal nonunit of a partially-ordered semiring R is an element a of R\
U(R) satisfying the condition that {r € R |r > a} is a nonempty subset of U(R).
Note that if R is simple then the maximal nonunits of R are precisely the coatoms
of R. Frames R for which the prime elements are coatoms have been studied in
detail in [Rosicky & Smarda, 1985).

Since ideal(R) is certainly a positive difference-ordered Gel’fand semiring, we
see that the following result generalizes Corollary 7.13.

(20.45) ProrosiTION. If R is a positive difference-ordered Gel’fand semiring
then every maximal nonunit of R Is prime.

PROOF. Let a be a maximal nonunit of R; let b and ¢ be elements of R satisfying
b £ a, ¢ £ a, and bc < a. Then a,b < a+ b and so a < a + b, proving that
a+be U(R). Similarly a + ¢ € U(R) and so d = (a + b)(a + ¢) € U(R). But

d=(a+blatac+bc<(a+blatac+a
=(a+bat+a(c+1)<(a+b+ l)e(c+ 1),

where a + b+ 1 and ¢+ 1 are units of R, since R is a Gel’fand serniring. Therefore,
since R is positive, (a + b+ 1)"*d(c + 1)~ < a and so, by Proposition 20.41, we
have a € U(R). This is a contradiction, proving that a must be prime. O

(20.46) COROLLARY. Any coatom of a simple difference-ordered semiring is
prime.

Proor. This is an immediate consequence of Proposition 20.45. O

(20.47) ProprosSITION. Let R be a simple difference-ordered semiring and let
A be a nonempty subset of R satisfying the condition that if a,a’ € A then there
exists an element a” € A with @’ < ad’. Let B={r € R|a £ r for all a € A}.
Then every additively-idempotent maximal element of B is prime.

PRrooF. Let b be an additively-idempotent maximal element of B and let r, 7’ €
R satisfy »,7/ < b. Then » +b,7' + b > b. By the choice of b, this means that r + b
and 7’ +b do not belong to B and so there exist elements a, a’, and a” of A satisfying
a<r+b,a <r'+b,and a” < aa’. Hence a”’ < (r+b)(r' +b) = rr’ +br' +rb+b2.
By Proposition 4.3, br' + b+ b < b+b+b=band so a” < rr'+b. If rr’ < b then
a” < b+ b=2», contradicting the fact that b6 € B. Thus rr’ £ b, proving that b is
prime. O
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(20.48) ProOPOSITION. Let R be a simple difference-ordered additively-
idempotent semiring and let a be an element of R which is not a unit. Then a
is prime if and only If there exists a character v, on R satisfying ker(y,) = {r €
R | » < a}. Moreover, if a and b are distinct prime elements of R then v, and 7
are also distinct.

PROOF. Assume that a is prime and define the function y, : R — B by 7,(r) =
if and only if » < a. Then 7,(0) = 0 since R is difference ordered and v,(1)
since 1 £ a. Moreover, if r,7” € Rthen y,(r+7) =0 r+r <a & r <
and 7 < a & 7.(r) = 0 = v4(7’) 50 ¥4(r) + va(7') = 7a(r + r'). Similarly, by
primeness, 7,(rr’) = 0 7' < a o r<aor 7’ < a<< v(r)y(r) = 0 and so
Ya(r7') = Ya(r)7a(r').

Conversely, assume that there exists a morphism v,: R — B satisfying ker(y,) =
{r € R|r <a}. Ifrr € R satisfy rr’ < a then 7,(r)7.(r") = 7v4(rr') = 0 so
Ya(r) = 0 or v4(r") = 0. Hence either » < a or v’ < a, proving that a is prime.

Finally, if @ and b are prime elements of R satisfying v, = 73 then v;(a) = 0 and
so a <b. Similarly b<aandsoa=5. 0O

0
1
a

If R is a partially-ordered semiring then a function v: R — R is a nucleus if and
only if the following conditions are satisfied:

(1) If r <7’ in R then v(r) < v(r');

(2) If r € R then v3(r) = v(r) > r;

(3) If r,7" € R then v(rr’) > v(r)v(r').
Note that if v is a nucleus then r < v(r') if and only if v(r) < v(r').

(20.49) PROPOSITION. Let R be a partially-ordered semiring and let v: R — R
be a nucleus on R.
(1) If R is positive then v(rr') = v(v(r)r') = v(v(rp(r')) = v(rv(r')) for all
r,r' € R;
(2) If R is additively idempotent then v(v(r)+v(r')) == v(r+7r') for allr, 7’ € R.

Proor. (1) If R is positive and if r,7» € R then v(r) >
v(r)v(r') > v(r)r’ > rr’. This implies that v(v(r)r’) > v
v(v(r)v(r')) > v(v(r)r'), proving that v(rr’) = v(v(r)r') =
proof shows that v(rr') = v(rv(r')) = v(v(r)v(r')).

(2) If r,7" € R then r + 7' > r, 7" and so v(r + ') > v(r),v(r'). Since R is
additively idempotent, this implies that v(r + ') > v(r) + v(7'). Thus v(r + ') =
vi(r+r') > v(v(r)+v(r')). Conversely, v(r) > r and v(r') > r' so v(r) + v(r') >
r + r'. Therefore v(v(r) + v(r')) > v(r + r’) and hence we have equality. O

A nucleus v on R is strict if and only if condition (3) can be replaced by:

(3’) If r,r' € R then v(rr') = v(r)v(r').

The notion of a nucleus is usually defined for frames. Refer to [Johnstone, 1982].

Examples of several nuclei on the frame of torsion theories are given in [Golan &
Simmons, 1988].

(20.50) ExaMmPLE. [Kirby, 1969] If R is a commutative ring R then the map
I+ /T is a nucleus on the semiring ideal(R).
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(20.51) ExaMPLE. [Banaschewski & Harting, 1985] Let R be a ring and let v
be the function which assigns to each ideal I of R the ideal v(I) defined by the
condition that v(I)/I is the Levitzki radical of R/I. Then v is a nucleus on the
semiring ideal(R). The same is true if we take, instead, the Jacobson radical or the
Brown-McCoy radical.

(20.52) ExaMPLE. If Ris a C*-algebra, then the map which takes each element
of ideal(R) to its closure is a nucleus on the semiring ideal(R).

(20.53) ExaMPLE. If R is a commutative integral domain then the semiring
fract(R) of all fractional ideals of R is partially-ordered by inclusion. A function v
from fract(R) to itself is a »-operation on R if and only if the following conditions
are satisfied:

(1) v(aR) = aR and v(al) = av(I) for all a € R and all I € fract(R);

(2) I Cv(I)=v%I)forall I € fract(R);

(3) v(I) Cv(H) whenever C H in fract(R).
See [Gilmer, 1972] for details. Examples of such functions include the function v,
which assigns to each I € fract(R) the intersection of all principal fractional ideals
of R containing I, and the function v; defined by

Z{I/v ) | H a finitely-generated subideal of I}.

For further examples, see [Anderson & Anderson, 1991]. It is straightforward to
verify that a x-operation on fract(R) is a nucleus. Commutative integral domains
R satisfying the condition that the nuclei v, and v, coincide are studied in [Houston
& Zafrullah, 1988]. Noetherian domains, Krull domains, and Mori domains are of
this type.

(20.54) EXAMPLE. If R is a difference-ordered semiring then any morphism of
semirings v: R — R satisfies conditions (1) and (3’) of the definition of a nucleus.
Thus such a morphism is a strict nucleus if and only if v*(r) = v(r) > r for all and
only if v is a closure operator on R.

(20.55) EXAMPLE. Let R be a semiring and let the function v:ideal(R) —
ideal(R) be defined by v:I — 0/I. Then v is a nucleus which, in general, is not
strict.

If v 1s a nucleus defined on an additively-idempotent semiring and if p is the
relation on R defined by r p ¢’ if and only if v¥(r) = v(r'), then it is immediate
that p is an equivalence relation. Moreover, as a straightforward consequence of
Proposition 20.49, we see that it is in fact a congruence relation.

If R 1s a partially-ordered semiring then a function py: R — R is a modality if
and only if the following conditions are satisfied:

(1) If » <7 in R then p(r) < p(r');
(2) If r € R then p2(r) = p(r) < r;

(3) Ifr,r" € R then p(u(r)u(r')) = u(r)n(r’).
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(20.56) ExampPLE. If H is an ideal of a semiring R then the function I — INH
is a modality on the semiring ideal( R).

Let R be a partially-ordered semiring. A left R-semimodule M is partially-
ordered if and only if there exists a partial order relation < defined on M satisfying
the following conditions:

(1) Im <m'in M and if m"” € M then m+m” <m' + m";
(2) Tm<m in M and if » > 0 in R then rm < rm/;
(3) If r <7 in Rand if m > 0 in M then rm < r'm.

Partially-ordered right R-semimodules are defined analogously. If the relation < is
in fact a total order, then we say that the semimodule is totally-ordered. Totally-
ordered N-semimodules are studied in [Clifford, 1958] and [Lugowski, 1964a, 1964b].

(20.57) ExamMpPLE. Clearly Q is a totally-ordered left (and right) semimodule
over N.

(20.58) ExaMPLE. If R is a partially-ordered semiring then R* is a partially-
ordered left and right R-semimodule.

(20.59) ExaMPLE. Let R be a partially-ordered semiring and let A be a non-
empty set. Define a relation < on R4 by setting f < g if and only if f(a) < g(a) for
alla € A. Then R4 is a partially-ordered left R-semimodule. A function f € R4 is
bounded if and only if there exists an element r; € R such that f(a) < b for all
a € A. The set B(A, R) of all bounded elements of R4 is clearly a subsemimodule
of R4. For an analysis of such R-semimodules of bounded functions, when R is
an additively-idempotent semifield, refer to [Dudnikov, 1992] and [Dudnikov and
Sambourskii, 1989].

If R is a commutative additively-idempotent semiring and if B(A, R) = M; [[ M-
for nonzero R-semimodules M; and M>, then A can be partitioned into a disjoint
union A = A; U As such that M; = B(4;,R) for i = 1,2. See [Dudnikov and
Sambourskii, 1992] for details.

(20.60) ExaMPLE. Let R be a partially-ordered semiring and let m and n
be positive integers. Then the set My, n(R) of all m x n matrices with entries
from R can be partially-ordered by setting [a;;] < [b;;] if and only if a;; < b;;
forall1 <7< mand 1 < j<mn. Moreover, as we have seen in Example 20.11,
M (R) is a partially-ordered semiring and one easily checks that M, ,(R) is
a partially-ordered left M, (R)-semimodule, under the usual definition of matrix
multiplication and addition.

(20.61) ExaMPLE. A Riesz space is a vector space L over R which is partially-
ordered in such a manner that the positive cone {f € L | f > 0} is a partially-
ordered R*-semimodule. Such spaces play an important part in functional analysis,
and especially spectral analysis. They were studied in [Freudenthal, 1936] and in
detail by H. Nakano in an unpublished manuscript partially printed many years
later in [Nakano, 1966]. For a detailed work on Riesz spaces and their place in
functional analysis, refer to [Luxemburg & Zaanen, 1971] and [Zaanen, 1983]. For
topological Riesz spaces, see Fremlin, 1974.
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As with semirings, a partially-ordered left R-semimodule M is difference or-
dered if and only if m > m’ in M when and only when there exists an element
m'” € M satisfying m = m’ + m”. Additively-idempotent semimodules are canon-
ically difference-ordered under the partial order defined by m > m’ if and only if
m=m+m.

(20.62) ProPOSITION. If R is a positive semiring and M is a difference-ordered
left R-semimodule then:

(1) M'={m e M | m <0} is a submodule of M;

(2) M" ={m € M | m > 0} is a subsemimodule of M;

(3) If0 #m € M’ then m+m < m;

(4) If0 #m € M" then m+ m > m.

Proor. (1) If m,m’ € M’ then m+m' <04+0=0som+m' e M. f me M’
and r € R then » > 0 and so rm < r0 = 0. Thus M’ is a subsemimodule of M. If
m € M then m < 0 and so there exists an element m” of M such that m+m' = 0.
Hence V(M') = M'.

(2) The proof that M” is a subsemimodule of M follows as in (1).

(3) If m < 0in M then there exists an element m” of M satisfying m+m” =0
and so m+m+m’’ = m. Thus m+m < m. If m4+m = m then m = m+(m+m'’) =
(m+m)+m” = m+ m"” =0, which contradicts the choice of m.

(4) This is proven in a manner similar to the proof of (3). O

Note that if R is a positive semiring and M is a difference-ordered left R-
semimodule then either one of the sets M’ and M defined in Proposition 20.62
equals {0} or M # M’ U M”. Indeed, if 0 # m’ € M’ and 0 # m" € M”,
consider m = m’ + m”. If m € M’ then there is an element u of M satisfying
0=m+u=m"+ (m + u) and so m” € M’ N M”, which is a contradiction since
m' # 0. A similar coatradiction is obtained if we assume that m € M”. Thus
me¢ M UM,



21. LATTICE-ORDERED
SEMIRINGS

A semiring R is lattice-ordered if and only if it also has the structure of a
lattice such that, for all ¢ and b in R:

(1) a4+ b=aVb;and

(2) ab<aAb,
where partial order here is the one induced naturally by the lattice structure on
R. If R, as a lattice, is distributive, then R is a distributive lattice-ordered
semiring (DLO-semiring). Clearly any lattice-ordered semiring is a partially-
ordered semiring in the sense of Chapter 18, with respect to the partial order
induced by the lattice structure. (Note in passing that some authors replace (1)by
a weaker condition; see, for example, [Ranga Rao, 1981].)

As an immediate consequence of the definition we see that lattice-ordered semir-
ings are additively idempotent. Also, if a and b are elements of a lattice-ordered
semiring satisfying ab = a or ba = a then a < b. Therefore, if a is an element of
a lattice-ordered semiring R then a = al < 1. Any element a of a lattice-ordered
semiring R defines a nucleus v, on R given by v,:7 +— r + a.

(21.1) ExaMPLE. Any bounded distributive lattice R is clearly a DLO-semiring
if we define a+b = aVb and ab = aAbfor alla,b € R. The set R’ of all complemented
elements of R is a subsemiring of R which is a ring (in fact, it is a boolean algebra).

(21.2) ExaMPLE. The semiring of all ideals of a semiring is lattice ordered but
1s not, in general, a DLO-semiring. Indeed, as we have seen in Example 6.36, the
lattice ideal(R) need not even be modular.

If d is a derivation on a semiring R then a d-differential ideal of R is an ideal
I satisfying d(a) € I for all @ € I. If I and H are d-differential ideals of R then
clearly so are I+ H and IN H. Moreover, if {ay,...,a,} C I and {by,...,b,} C H

then . .
d (E a,'bi> = Zaid(bi) + Zd(a,‘)bi e€IH
i=1

i=1 =1
so IH is again a d-differential ideal of R. Thus the set of all d-differential ideals of
R forms a subsemiring of ideal(R) which is also a lattice-ordered semiring.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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(21.3) ExaMPLE. One does not even need a semiring. If (M, *) is a commu-
tative groupoid, i.e. a set on which we have a binary operation, which may not
even be associative, then a nonempty subset I of M is an ideal of M if and only if
axm € I for all a € I and m € M. Denote the set of all ideals of M by ideal(M)
andset I« H = {axb|a€l,be H} forall I, H € ideal(M). Then ideal(M),U,N)
is a lattice and (ideal(M),U, #) is a lattice-ordered semiring.

(21.4) ExaMPLE. [Alarcén & Anderson, 1994a] If R is a division semiring which
is not a ring and which does not have characteristic 0 then R is a lattice-ordered
semiring of the form (R, V,-), where (R \ {0}, -) is a lattice-ordered group.

(21.5) ExaMPLE. F. A. Smith [1966] defines operations +, -, and A on R =
{0,1,a,b,c,d} which turn R into a lattice-ordered semiring which is not a DLO-
semiring.

(21.6) ExaMpPLE. In Example 1.7 we noted that the set R — fil of all topolo-
gizing filters of left ideals of a ring R i1s a semiring in which addition is given by
intersection and multiplication is given by the Gabriel product. It is easy to see
that this semiring is zerosumfree and hence additively idempotent. If we consider
R — fil as a partially-ordered set with the order being the reverse of the usual order,
we see that R — fil has the structure of a lattice in which join is taken to be N.
This lattice is not necessarily distributive. See [Golan, 1987] for details.

(21.7) ExaMpLE. [Arnold, 1951] Let A and B be bounded distributive lattices.
Then R = A x B is again a bounded distributive lattice on which the operations of
Jjoin and meet are defined by (a,b) V (a’,4") = (a vV a’,b VvV ¥') and (a,b) A (a’, ') =
(aAa,bAb). We can define an operation * on R which is equal to neither of
these by setting (a,b) * (a’,b') = (a A d’,bV ). Then (R,V,*) is a commutative
additively-idempotent semiring which is not a DLO-semiring since (a, b) * (a’, b’) >

(a,b) A (', V).

(21.8) EXAMPLE. Let a be a prime element of a lattice-ordered semiring R.
Then R, = {0}U{r € R|r £ a} is a subsemiring of R.

(21.9) ExaMPLE. Define a lattice structure on N by setting a M b equal to the
least common multiple of @ and b and a U b equal to the greatest common divisor of
a and b. (Note that this is the reverse of the usual definitions.) Thus, in this lattice
a < b if and only if b divides a. If - is ordinary multiplication in N then (N, U, -) is
a lattice-ordered semiring.

(21.10) ExAMPLE. Let R be the set of all functions from I to itself and let &,
®, and M be the operations on R defined by:

(1) (f ® g)(a) = min{f(a),g(a)} for all a € I;
(2) (f®g)(a) = f(a)g(a) for all a € T;
(3) (fNg)(a) = maz{f(a),g(a)} for all a € I.
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Then (R, ®,N) is a lattice and (R, ®,®) is a LO-semiring.

In Proposition 20.19 we saw that any additively-idempotent semiring is naturally
partially ordered. We now consider a condition for such a semiring to be a DLO-
semiring.

(21.11) ProPOsITION. Let R be an additively-idempotent semiring satisfying
the condition that a € bR N Rb whenever a < b in R. Then we can define an
operation A on R such that (R,+,A) is a distributive lattice; and multiplication
distributes over A from either side. If R is simple it is a DLO-semiring.

ProoF. We begin by noting a consequence of the condition in the hypothesis.
If » € R then surely r < r and so there exists an element r* of R satisfying
rxr=r. If ¥ < rin R then there is an element r" of R satisfying r' = rr” and so
rxr’ =rxrr’ = =0,

By hypothesis, we know that if a, b € R then there exist elements a’, a”, b, b" of
R satisfying a = (a + b)a’ = a”(a +b) and b = (a + b)b’ = b”’(a + b). Moreover,
ab’ = a”(a + b)b' = a’”’b, while ba’ = b”(a + b)a’ = b”a. Then

b=ab + b >ab =d"'b<a’a+ad’b=a

so ab’ < a,b. Similarly, ba’ < a,b. Therefore ab’ + ba’ < a + a = a and similarly
ab’ + ba’ < b. Suppose that r is an element of R satisfying » < a,b. Then there
exists an element 7' of R such that » = r’(a + b) and hence r = r'a + r'b =
r(a+b)a’+ 7 (a+b)y = ra’ +rd < ba'+ab’ = a”’b+b"a. Thus ba’+ab’ = a”"b+b"a
is a well-defined infimum of a and & in R, which is independent of the choice of a’,
b', a”, and ", and which we will denote by a A b.

If ¢ is another element of R then ca = (ca + cb)a’ and ¢b = (ca + ¢b)d’ and so
ca Ach = (ca)b’ + (cb)a’ = c(ab’ + ba’) = c(a Ab). Similarly, (a A b)e = ac A be.
Therefore multiplication distributes over A from either side.

Since b = aa’ + ba’, we see that ba’ < b and so there exists an element d of R

satisfying ba’ = db. Set e = (a + b)* A d. Then
eb=(a+b)*bAdb=bAdb=bAba' =ba' <a

while, similarly, ea = aAda < a. Therefore ba’ = eb = e(a+b)b' = (ea+eb)¥’ < ab'.
Similarly, ab’ < ba’ and so we conclude that in fact a A b = ab’ = ba’ = a’’b = b"a.

To complete the proof that (R,+,A) is a distributive lattice, we must show
that if a, b, and ¢ are elements of R then ¢ A(a+b) = (cAa)+ (cAb). It is
trivial that ¢ A (a +b) > (¢ A a) + (¢ A b) and so all we need to establish is the
reverse inequality. Since ¢ < ¢ + a + b, we know by hypothesis that there exists
an element r of R satisfying ¢ = r(c + a +b). Set »' = (¢ + a + b)* Ar. Then,
as above, ¢ = (¢ + a +b), 7a < a, and r'b < b, from which we conclude that
c+r'a=r1(ct+a+b+a) =c Hence r'a < ¢ and similarly #'b < ¢. Hence
cA(a+bd)=r'(a+b)=ra+r'b<(cAa)+ (cAb), as desired.

Finally, if R is simple then for a,b € R we have ab < a and ab < b by Proposition
4.3 and so ab < a A b. Hence, in this case, R is a DLO-semiring. [
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(21.12) PrROPOSITION. Ifa, b, and ¢ are elements of a lattice-ordered semiring
R then:

(1) a+ab=a;

(2) ab+c=(a+c)b+ec;

(3) a < b implies that ca < cb and ac < be;

(4) a < b implies that a* < ab < b?;

() abAac>a(bAc) and baAca> (bAc)a;

(6) (anb)(a+b)<ba+ ab;

(7) Ifa+b=1thenaAb=ab+ba;

(8) Ifa+b=1 then ac < b or ca < b implies ¢ < b;

(9) Ifa+b=a+c=1thena+bc=a+ (bAc)=1.
Proor. (1) By definition, ab < a and so ab+a=abVa = a.

(2)By (1), (a+c)b+c=ab+cb+c=ab+ec.

(3) By definition, a < b implies that a + b =a Vb =>b and so ¢b = c(a +b) =
ca+ cb =caV ch. Thus ca < ¢b. Similarly, ac < be.

(4) This is an immediate consequence of (3).

(5) Since b Ac < b, we have a(b A c) < ab. Similarly, a(b A ¢) < ac and so
a(bAc) <abAac. The second inequality is proven similarly.

(6) By (3) we have (a Ab)(a+b) = (aAb)a+ (aAb)b < ba+ ab.

(7) From the definition of a lattice-ordered semiring we know that ab + ba =
abVba < aAb. The converse follows from (6).

(8) Assume that ac < b. Then¢c = (a+b)c=ac+be<b+b="b. If ca < b the
proof is similar.

(Ifa+b=a+c=1thenl=(a+b)(at+c)=a’+abt+ac+bc<a+bc<1
so a + bc = 1. Since be < b A ¢, we immediately have a + (bA¢) =1 as well. O

(21.13) CoRrOLLARY. If R is a commutative lattice-ordered semiring and a, b,
and c are elements of R satisfyinga +b=a+ ¢ =1 then a(b Ac) = ab A ac.

Proor. By Proposition 21.12(9) we have a + (b A¢) = 1 and so by Proposition
21.12(7) we have a(bAc) = (aAbAc)(a+[bAc]) = anbAc = (aAb)(aAc) = abAac. O

Note too that, as a direct consequence of Proposition 21.12(9), we see that if a
and b are elements of a lattice-ordered semiring satisfying a+b = 1 then a” +b* = 1
for all positive integers h and k.

(21.14) PrOPOSITION. A lattice-ordered semiring R is multiplicatively idem-
potent if and only ifab=a A b for all a,b € R.

Proor. If R is multiplicatively idempotent and a,b € R then aAb = (a Ab)% <
ab < aAband so ab=aAb. The converse is trivial. [

(21.15) ProPOSITION. Every lattice-ordered semiring R is simple and positive,
having 1 as its sole unit.

PRrROOF. We note that R is simple by Proposition 21.12(1) and Proposition 4.3.
Also, for any element a of R we have 0 = a0 < a A0 < a and so 0 is the unique
smallest element of R. This proves that R is positive. Finally, we have already
noted that U(R) = {1} for any simple semiring R. O
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(21.16) PROPOSITION. Ifr is a semiprime element of a lattice-ordered semiring
R and if a and b are elements of R then the following conditions are equivalent:

(1) ab<r;

(2) ba<r;

(3) anb<r.

ProoF. By the definition of a lattice-ordered semiring, (3) implies (1) and (2).
Conversely, assume (1). Then, by Proposition 21.12(3) we have (a Ab)? < ab < r
and so, by semiprimeness, a A b < r, proving (3). Similarly (2) implies (3). O

(21.17) CoRrOLLARY. Ifr and 7' are semiprime elements of a lattice-ordered
semiring then r A v’ is semiprime as well.

PROOF. By Proposition 21.15, we note that » A #/ is not a unit. If a? < r A7’
then a? < 7, ' and so, by semiprimeness, a < r,7/. Therefore a < r A ', proving
that r A v/ is semiprime. 0O

If m and m’ are elements of a partially-ordered monoid (M, *), we define the
interval [m, m’] to be {m” € M | m < m'” < m'}. (Note that this set may be
empty!) We will denote the set of all such intervals by int(M) and define the op-
eration [+] on int(M) by [m, m'}[¥][n,n] = [m xn,m’' x n/]. It is easy to see that
if (M, %) is a partially-ordered monoid with identity element e then (int(M), [*]) is
a monoid with identity element [e,e]. In particular, we note that if R is a lattice-
ordered semiring then (R,+) and (R,-) are partially-ordered monoids, with the
partial order being that coming from the lattice-structure of R. As an immedi-
ate consequence of the definitions, we see that if R is a lattice-ordered semiring
then (int(R),[V], [A]) is a lattice and (int(R), [+],[]) is a lattice-ordered semiring.
Moreover, we have a morphism of semirings R — int(R) given by r — [r, r] for all
r € R.

(21.18) ProprosiTION. If R is a DLO-semiring then in int(R) we have:

(1) [a,8][+]le,d] = {u+v | u€ [a,b],v € [c,d]};
(2) [a,b][~][c,d] 2 {uv l u€ [avb]’v € [C’ d]}

Proor. (1) If u € [a,b] and v € [c,d] then a +¢ < u+v < b+ d and so
u+ v € [a,b][+][c,d]. Conversely, if w € [a, b][+][c,d] then @ < wAb < b and
c < wAd < d. Moreover, (wAb)+ (wAd)=wA(b+d) = w. Thus we have
equality.

(2) If v € [a,b] and v € [c,d] then ac < av € uv < bv < bd and so uv €

[a,b][)le,d]. O

(21.19) ExampLE. If (R,V,A) is a lattice which is not distributive, then
[a,b][V][c,d] is not necessarily equal to {u Vv | u € [a,b],v € [c,d]} and, in-
deed, the latter may not be an interval at all. To see this, consider the lattice
R ={0,ay,az2,a3,1} in which 0 < a; < 1for 1 <7< 3 but the a; are incomparable
among themselves. Then R = [0, a;][V][0, ag] but [0,a3] € {u Vv |u € [0,a4],v €

[0,(12]}.

If we have equality in Proposition 21.18(2), then we say that the lattice-ordered
semiring R is divisory.
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(21.20) AppricaTION. The lattice-ordered semiring int(R) is introduced and
studied in detail in [Moore, 1966] as a tool in numerical analysis and the treatment
of floating-point computations in computers with a fixed word length. Refer also
to [Alefeld & Herzberger, 1983] and [Moore, 1979]. For the use of int(R) and

int(R U {—00,00}) in global optimization theory, see [Hansen, 1992].

A subset A of a lattice L is a lattice ideal if and only if a € A and b € L
imply that a Ab € A. In particular, if a € A and b < a then b € A. Thus
every subset A of L is contained in a unique smallest lattice ideal of L, namely
(A]={b€ L|b<aforsomeac€ A}. If a € L we write (a] instead of ({a}].

(21.21) ExamMPLE. Let (R, +, ) be a lattice-ordered semiring and let 1 # a € R.
Set [a) = {r € R | r > a} and define an operation * on [a) by r * 7' = rr’ + a.
Then, using Proposition 21.12, it is straightforward to verify that ([a), +, *) is also
a lattice-ordered semiring with additive identity a and multiplicative identity 1.
Moreover, the function v,: R — [a) given by r — r + a is a surjective morphism of
semirings. Note that [a) is a lattice ideal of R but is not an ideal of R.

(21.22) ProposITION. The following conditions on an ideal I of a lattice-
ordered semiring R are equivalent:

(1) I is a lattice ideal;

(2) I is a strong ideal;

(3) I is a subtractive ideal.

ProoF. (1) = (2): Let a and b be elements of R satisfying a + b € I. Then
a=aA(aVb)=aA(a+b) and so, by (1), a € I. Similarly, b€ I andso I is a
strong ideal of R.

(2) = (3): This is trivial.

(3) = (1): Let ac T andlet r€ R. Thena=aV(aAr)=a+ (aAr)€ I and
so, by (3), aAr € I. Thus I is a lattice ideal of R. O

In Chapter 5 we noted that the sum of subtractive ideals of a semiring need
not be subtractive. However, this condition does hold in the case of lattice-ordered
semirings.

(21.23) CoroLLaRY. If {I; | k € Q} is a family of subtractive ideals of a
lattice-ordered semiring R then ) q I; is subtractive.

PROOF. Let a € 3. I; and let b € R. Then there exists a finite subset A of
Q and elements a; € I for all k € A such that a = EkeA ay. Thus, by Proposition
21.22, a AN b = (ZkeA ag) AN b= ZkeA(ak Ab) € Ejeﬂ I; and so ) I; is a lattice
ideal of R and hence, by Proposition 21.22, a subtractive ideal of . O

In particular, if R is a lattice-ordered semiring then the family consisting of R
and all of its subtractive ideals is a sublattice of ideal(R).

(21.24) ProPOSITION. If I is an ideal of a lattice-ordered semiring R which is
also a lattice ideal and if a and b are elements of R satisfying ab € I then (a)(b) C I.

ProoF. If r, #', and r” are elements of R, then rar’ < a and br” < b so
rar’br’ < ab. Thus rar’br’” € I. Since every element of (a)(b) is a finite sum of
elements of R of this form, it follows that (a)(b) C 1. O
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(21.25) ProrosITION. The following conditions on an ideal I of a lattice-
ordered semiring R which is also a lattice ideal are equivalent:

(1) I is prime.

(2) Ifa and b are elements of R satisfying ab € I then eithera€ I orb € I.

ProoFr. Assume (1) and suppose that I is prime and that a and b are elements
of R satisfying ab € I. By Proposition 21.24 we see that (a)(b) C I and so either
(a) C I or (b) C I. This implies that either a € I or b € I. Thus (1) implies (2).
Conversely, (2) implies (1) by Proposition 7.4. O

Let R and S be lattice-ordered semirings. If y: R — S is a morphism of semirings
then 4 is a morphism between the semigroups (R, +) and (5,+), and so is order-
preserving. Indeed, if » > r' in Rthen v’ + 7 = Vr = r and so (') V¥(r) =
7(r') +7(r) = 7(r' + r) = 7(r) and so y(r) > ¥(r').

(21.26) PrROPOSITION. Let R and S be lattice-ordered semirings, let v: R — S
be a morphism of semirings, and let é: R — S be a morphism of lattices. Then:

(1) ¥(r A?") <H(r)A¥(r') for all »,7' € R;

(2) 8(r+7") > 6(r)+ 6(r') for all r,7’ € R.

Moreover, if either 4 or § is bijective then the corresponding inequality becomes an
equality.

ProoF. Since, as already noted, morphisms of semirings between lattice-ordered
semirings are order-preserving, we have y(r A 7') < y(r) and similarly y(r A7) <
4(r'"). This suffices to establish (1). If v is bijective then it has an inverse y~!. Note
that y~!(y(r) + 7(r')) = v "9(r + ') = r+ ' = vy '4(r) + v '4(') and so y~!
is a morphism between the semigroups (S, +) and (R, +). This implies that y~! is
order-preserving and so, as before, y~1(y(r) Ay(r")) < v 1y(r) Ay Iy(r') = r AP
so, applying v, we get v(r) A v(r') < 4(r A7’), ard thus we have equality, proving
(1). The proof of (2) is similar. O

If R is a lattice-ordered semiring and »: R — R is a nucleus then v(ab) <
v(a) A v(b) for all aghb € R, since v is order-preserving. The following result gives
necessary and sufficient conditions for equality.

(21.27) ProPosITION. If R is a lattice-ordered semiring and v:R — R is a
nucleus then v(ab) = v(a)Av(b) for all a,b € R if and only if the following conditions
are satisfied:

(1) v(ab) = v(ba) for all a,b € R;

(2) v(a?) =v(a) for alla € R.

Proor. If v(ab) = v(a) A v(b) for all a,b € R then surely (1) and (2) are
satisfied. Conversely, assume that they are satisfied. Then a A b < v(a) A v(b) and
so v(a A b) < v(v(a) A (b)) = v([v(a) A (D) < w(p(@w(b) < v((ab)) = v(ab).
The reverse inequality, as we have noted above, is always true and so we have
equality. O

Note that the nucleus given in Example 20.50 satisfies the conditions of Propo-
sition 21.27.

A multiplicative filter on a partially-ordered semiring R is a nonempty subset
F of Rsatisfying r,r’ € F=>rr€ Fandr>r e F=>recF.
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(21.28) ExaMPLE. If a is an element of a semiring R then F = {I € ideal(R) |
a™ € I} for some n > 1 is a multiplicative filter on the partially-ordered semiring

ideal(R).

(21.29) EXaMPLE. Let p be a congruence relation an a difference-ordered semir-
ing R having a multiplicatively-idempotent infinite element a. Then {r € R | r p a}
is a multiplicative filter on R.

If {F; | ¢ € Q} is a family of multiplicative filters on a partially-ordered semiring
R then N;enF; is again a multiplicative filter on R, so the set of all multiplicative
filters on R is a complete lattice. If a € R then the smallest multiplicative filter on
R containing A is {r € R | r > a*} for some k € N.

If F'is a multiplicative filter on an additively-idempotent simple semiring R and
a is an element of R, set Fy = {r € R|r+a € F}. Then clearly Fy = F. Define
a relation =r on R by setting a =p b if and only if F, = Fy. This is clearly an
equivalence relation. We claim that it is a congruence relation as well. Indeed,
assume that ¢ =r b and ¢ =p d in R. Then

Foye={r€R|r+a+ceF}
:{T€R|T+GEFC}
={reR|r+a€ F;}
={reR|r+a+deF}
={reR|r+deF,}
={reR|r+de F;}
={reR|r+b+deF}
:Fb+d

Thus a+c¢ =f b+d. Moreover,r € Fye = r+ac€ F =>r4+a € Fandr+ce F =
r+beFandr+de F = (r+b)(r+d) € F = ri+br+rd+bd€ F = r+bde F
since r > r2 + br + rd = r € Fyd and so F,. C Fjq. A similar argument shows the
reverse containment, and so we have F,, = Fj;. Thus ac =p bd.

The same argument used above can make another point: let R be a lattice-
ordered semiring and let F' be a multiplicative filter on R. If a,b € R and r € Fy;
then r+ab € F and so r+ (a Ab) € F since ab < aAb. Thus r € F,»;. Conversely,
if r € Fgnp then r + (a Ab) € F, whence r +a € F and r + b € F. Thus
r’+rb+ar+ab=(r+a)(r+b)€ F and so r+ ab € F, whence r € F,;. This
shows that ab =p a Ab. As an immediate consequence we see that ab =g ba for all
a,be R.

If R is an additively-idempotent simple semiring and F is a multiplicative filter
on R, we can therefore form the factor semiring R = R/ =r. The elements of
Rp are just the sets of the form F, for @ € R. The operations on R are defined
by Fo + Fy = Fuyp and F, - Fy = Fy;. In particular, we note that if R is a lattice-
ordered semiring then F, - Fy = Fy - F, and (F,)? = F, for all a,b € R. Thus
Rp is commutative and multiplicatively idempotent. Moreover, it is simple and
additively idempotent since R is. Therefore, by the result cited in Example 1.5,
Rp 1s a bounded distributive lattice.



22. COMPLETE SEMIRINGS

We now want to consider the possibility of infinite sums in semirings. Semirings
having infinite sums, such as ideal(R) for any ring R, are well-known and the
ability to take infinite (or at least countably-infinite) sums is, as we shall see, very
important in certain applications.

Let R be a semiring. A family A of functions of the form #: Q@ — R, where €2 1s
a set, is admissible if and only if to each § in A we can assign a value .0 in R
such that the following conditions are satisfied:

(1) fQ = o then Y 0 =0.

(2) fQ = {hy,..., h,} is a finite set, then any function : Q2 — R belongs to 4
and >0 =0(hy) + -+ 0(hy).

(3) A function 0: Q — R belongs to A if and only if, for each » € R, the functions
r8:Q — R and 6r:Q — R defined by r8:i— rf(i) and 0r: i — 6(i)r belong
to A. Moreover, in this situation, Y [rf] = 7[>, 0] and Y [0r] = [>_ 0]r.

(4) If Q@ = U;eaQ; is a partition of  then 6: Q — R belongs to A if and only if
the restriction 6; of # to each Q; belongs to 4 and the function ¢: A — R
defined by ¢:j — 3 8; belongs to A as well. Moreover, in this situation,
0=

The assignment § — > 6 is called a summation on 4. A semiring R is A-
complete if A is an admissible family of functions with values in R with a specified
summation. In particular, R is countably complete if A is the family of all
functions from countable sets to R and R is complete if and only if A4 is the family
of all functions with values in R.

Complete semirings have been studied in [Eilenberg, 1974], [Goldstern, 1985],
and [Krob, 1987], based on ideas first presented in [Conway, 1971], all in connec-
tion with automata theory, where the problem of infinite summation is central.
Semirings which are .4-complete were also studied in [Mahr, 1984]. See also [Higgs,
1980]. For an application of such semirings to quantum statistics, refer to [Belavkin,
1987]. On the face of it, the notion of a complete semiring seems to run into foun-
dational difficulties since the family of all functions with values in R is clearly a
proper class. However, Goldstern [1985] has shown that if R is a complete semiring
then there exists a cardinal number ¢ such that for each function #: Q@ — R there
exists a subset A of 2 having cardinality at most ¢ such that 26 = " ¢’, where ¢’
is the restriction of 8 to A.

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999

247



248 CHAPTER 22

Note: to simplify notation, we will often identify a function §: Q2 — R with its
imagein R and write Y A, where A is an indexed family of (not necessarily distinct)
elements of K.

(22.1) ExaMPLE. The boolean semiring B is complete if, for each function
0:Q2 — B we define Y_ 6 to equal 0 if im(6) = {0} and to equal 1 otherwise.

(22.2) ExaMPLE. If (R,V,A)} is a frame, then R is a complete additively-
idempotent semiring in which, for each function :Q — R, we define } 0 =
Vienfd(i). In particular, the semiring of open subsets of a topological space is
complete.

(22.3) EXAMPLE. Let R be the semiring (Rt U {—o00, 00}, maz,+). Then R is
complete since, for each function : Q2 — R we can define Y 8 to be sup{8(h) | h €

(22.4) EXAMPLE. In Example 1.10 we considered the semiring (sub(A4A*),U, )
of all languages on an alphabet A. This semiring is surely complete.

(22.5) ExaMPLE. If R is a complete semiring and A is a nonempty set then
the semiring R4 is complete if, for each function 6:Q — R4, we define (3 6)(a) =

ZaEA H(G)

(22.6) ExampPLE. Countably-complete semirings have important applications
in the analysis of iteration theories [Bloom & Esik, 1993] and in automata theory.
Such semirings are not necessarily complete [Krob, 1987]. Indeed, let P be the set
of all countable subsets of R and let R = PU{R}. Then (R,U,N) is an additively-
idempotent semiring. Moreover, if :N — R then we can define Y 6 to be U;en(%).
Thus R is countably complete. We claim that R is not complete. Indeed, let
Q =R\ {0} and let : Q2 — R be the function defined by 6:r — {r}. Set b= >0
Suppose b € P. Since 2 is uncountable, there exists an element ¢ in Q\b. If 8’ is the
restriction of 8 to Q\b, then b = {c}UY" 6’ and hence ¢ € b, which is a contradiction.
Therefore we must have b= R. Then 5N {0} = {0} = 3 [0Nn {0} = 3. 2 = o,
which is again a contradiction. Thus Y 6 cannot exist, and so R is not complete.

(22.7) ExaMPLE. [Goldstern, 1985] Let R = NU {z,2'}, where z and 2’ are
elements not in N. Define operations of addition and multiplication on R to be the
usual operations of addition and multiplication on N augmented as follows:

()n+z=nz=z4+z=z2z=zforall0 #neN;

2 n+=nd =242 =42 = ==z =2 forall 0 #n€eN;

(3) 042 =z;

(4) 0+ 2" = 2/;

(5) 0z =02 =20=2'0=0.

If 6: Q2 — R then we set
Y {0(i) | 6(3) # 0} if A = supp(P) is finite
0 P if A is uncountable or if there exists a j € Q2
Z B such that 6(j) = 2’ '

z otherwise
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Then R is a complete semiring.

(22.8) AppPLICATION. Let D be a nonempty set and let S = sub(D x D) be the
set of all relations on D. Define addition and multiplication on S by setting 7+ s =
rUs and rs = {(d,d”) € D x D | there exists an element d’ € D with (d,d’) €
r and (d',d”) € s}. Then S is a complete positive zerosumfree semiring partially
ordered by inclusion, having additive identity @ and multiplicative identity A =
{(d,d) | d € D}. Assume that D has a distinguished element L and let R =
{sYu{reS|(L,d)erifandonlyifd=L1}. Then R is a subsemiring of S. As
a partially-ordered set, R has a unique atom z = {(L,1)}. If @ # r,7’ € R then
z = 22 C rr’ and so R is entire. This semiring R was used in [Main & Black, 1993]
as a model for computations in an abstract “computer” completely determined
by being in one of a set D of states, among them the distinguished state L of
being in an unending loop. The nonempty elements of R are nondeterministic
procedures which the computer is to execute.

Let {R; | i € A} be a family of semirings and let R = x;eaR;. For each ¢ in
A, let 7;: R — R; be the canonical projection onto the ith component. Let A be a
family of functions into R and, for each i € A, let A; = {y;0 | # € A}. Then it is
easy to verify that:

(1) If A is admissible then so is A; for each ¢ € A. In this case, summation on
A; is defined by 3 v:(6) = 4 (> 6) for each § € A.

(2) If A; is admissible for each ¢ € A then A is admissible. In this case, the
summation on A is defined by the condition that v (3} 8) = Y 76 for all
1 €A,

The following examples show how a complete semiring generates new semirings.

(22.9) ExampPLE. [Goldstern, 1985] If R is a complete semiring and if A is a
nonempty set then the semiring of formal power series R{{A)) in A over R is also
complete. Indeed, if 8: @ — R{(A)) is a function, then for each word w € A* we have
a function 6y :Q — R defined by 8, (¢) = [8(¢)](w). Then define (3 0)(w) = 3. by,
for each w € A*.

(22.10) ExaMPLE. If Ris an .4-complete semiring and €2 is a nonempty set such
that every function from € to R belongs to A, then we can define the semiring
Maq(R) of (2 x Q)-matrices on R. This is the set R?*? on which addition is
defined componentwise. If f,g € R®*® and if (¢,5) € Q x , then (fg)(i,j) is
defined to be Y 6, where 8:Q — R is the function defined by 6(k) = f(i, k)g(k, 7).

(22.11) ExampPLE. If R is a complete semiring and if (M, *) is a monoid, then
any favorable family C of subsets of M is R-favorable and so we can define the
convolution algebra (R[C], +, (*)).

(22.12) AprpricaTiON. By Example 1.5, we know that (I, maz, min) is a simple
semiring, which is complete, idempotent, and commutative. A function f:R* — I
is called a fuzzy nonnegative real number if and only if, for each {r € Rt |
f(r) > h} is a nonempty closed interval in R*. In particular, we see that this
condition implies that there exists a real number rg for which f(rg) = 1. We will
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denote the set of all fuzzy real numbers by fuzz(R*). For details, see [Kaufmann
& Gupta, 1985]. In particular, it is shown there that fuzz(R1) is closed under the
convolutions (+), defined by

(F(+H)9)(r) = sup{min{f(+'), g(r")} | r =+ + "}
and () defined by
(F()9)(r) = sup{min{f(r'), (")} | r = r'7"}.

Moreover, (fuzz(R71), (+),(")) is a commutative semiring, the additive identity fo
and the multiplicative identity fi; in which are defined by fi(r) = k if » = k and
Jx(r) = 0 otherwise. This semiring has important applications in the computation
under conditions of uncertainty.

The notion of a fuzzy nonnegative real number can be generalized in many
directions to fit different applications. Many such generalizations are considered in
[Kaufmann & Gupta, 1985]. Thus, for example, we can define the notion of the
set fuzz(R*") of all fuzzy nonnegative real numbers of dimension n, for n
some positive integer, which, in a manner analogous to the above, can be turned
into a semiring by using the convolutions (+) and (-) appropriately defined.

(22.13) APPLICATION. Let R be a complete simple semiring. A constraint
system over R consists of a pair (D, V), where D is a finite set and V is an
ordered set of variables. A constraint is a pair (K, §), where K C V is the type of
the constraint and é: DX — R is the value of the constraint. Problems involving
constraints and constraint satisfaction play an important role in optimization theory
and the modeling of optimization schemes. By considering the general framework of
constraints over semirings, one can model not only classical constraint problems but
also fuzzy constraint problems and weighed constraint problems. Refer to [Bistarelli
et al., 1997a, 1997b] and [Georget & Codognet, 1998} for an introduction to this
theory.

(22.14) PROPOSITION. Let R be an entire positive totally-ordered semiring
and let co be an element not in R. Extend the order on R to one on R{oco} by
setting r < oo for all r € R. For each function §:Q — R{oc} define 30 to be
sup{)_ 0" | ¢ the restriction of  to a finite subset of Q}. Then R{co} is a complete
semiring.

ProoF. First note that R is zerosumfree by Proposition 20.16 and so, the semir-
ing R{occo} is well-defined. It is easily seen that it is complete. O

If particular, we note that N{oo} and R*{co} are complete semirings, as is
R{oc}, where R is the schedule algebra.

(22.15) ExaMPLE. [Goldstern, 1985] The above construction can be generalized
as follows: Let R be a uniquely difference-ordered semiring (e.g. N) having additive
identity z and multiplicative identity e and let R = {7 | € R} be a set bijectively
corresponding to R and disjoint from it. Set S = RU R and define operations &
and @ on S as follows:

(1) If a,b € R then a ® b and a © b are just the sum and product of these

elements in R;



COMPLETE SEMIRINGS 251

(2) Ifa,be Rthenadb=z2=a0b
(3) fac Rand b€ Rthen a®b=>b@a = ¢, where c = zif a £ b and c is the
unique element of R satisfying a + ¢ = b otherwise.

(4) e®@a=a=a0eforall a€ R,

(5) z0a=z=a®zfor all @ € R;

(6) aob=z2=boaforallac R\ {e,z} and b€ R.
Extend the partial order on R to a partial order on S by setting a < b for alla € R
and b€ R, and @ < b in Rif and only if a > b in R.

For each function 6:Q — S, define Y6 to be equal to 6(hy) & ---® 8(h,) if 6
has finite support {h1,...,h,}, and equal to z otherwise. Then the semiring S is
complete.

The following result is extremely important.

(22.16) ProPOSITION. Let R be a A-complete semiring and let 2 and A be
sets between which there exists a bijective correspondence 7:Q — A. If :Q — R
and ¥: A — R are functions in A satisfying %7 = 0 then ) 6(Q) = 3" ¥(A).

PROOF. Set a = Y 6(Q). Define a partition {; | j € A} of Q by setting
Q; = 771(j). Then 0(Q;) = ¥(j) for each j € A and so, by the definition of a
complete semiring, a = Y_ ¥(A). O

In particular, Proposition 22.16 implies that if R is an .4-complete semiring and
if 8 is a function in A4 then the sum Y_ 8 is independent of any ordering of Q. This is
a generalization of the condition that in a semiring the operation of addition is com-
mutative. Next, we note that summations are not necessarily uniquely determined
by the addition in R.

(22.17) ExaMPLE. [Goldstern, 1985; Kuich, 1987] Let co be an element not
in B and let R = B{oo}. Then R is commutative and additively idempotent.
Furthermore, it is totally ordered by the relation 0 < 1 < oo. Then, for each
function 6: Q — R, we can define Y @ in two different ways:

(1) 30 = sup{(:i) |t € Q}; and

(2) 360 = oo if and only if § does not have finite support.

We will say that a summation on an admissible family A of functions is nec-
essary if and only if, for functions 6,6':2 — R in A satisfying the condition
that each finite subset A of Q is contained in a finite subset A’ of © such that
YA0() | i € N’} = S {6/(d) | i € A’} we have Y8 = Y ¢. In particular, a
countably-complete semiring R has a necessary summation if and only if it sat-
isfies the condition that for any 6,6":N — R we have } 6 = > 6 whenever
6(0) + - - -+ 6(n) = ¢(0) + - - - + 6'(n) for each natural number n, for all n greater
than or equal to some ng € N.

(22.18) ExAMPLE. The summation given in Example 22.17(1) and in Proposi-
tion 22.14 is necessary that given in Example 22.17(2) is not necessary.

(22.19) ExaMpPLE. [Goldstern, 1985] If R is a countably complete semiring
having necessary summation and if 4: R — S is a surjective morphism of semirings
then the summation in S need not be necessary. For example, let y be an element
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not in N and let R = N{y}. For any countable set Q and any function §:Q — R,
define Y @ to be y if and only if # does not have finite support. This summation is
easily seen to be necessary. If S = B{oco} for some element co not in B and if for
each function 8: Q — S, with Q again a countable set, we define > 6 = oo if and
only if # does not have finite support then this summation is, as we have already
noted, not necessary. However, there exists a surjective morphism of semirings
y: R — S defined by setting ¥(y) = 0o, ¥(0) = 0, and y(n) = 1 for all 0 < n € N.

(22.20) ExaMmPLE. In Chapter 5 we noted that if R is a semiring then it is
possible to define infinite summation in the semiring ideal(R) of all ideals of R.
This summation is clearly necessary.

Let R be a positive partially-ordered semiring and let .4 be an admissible family
of functions of the form #:Q — R such that R is A-complete. Then R is finitarily
A-complete if and only if, for each function #:2 — R in A and for each element
a of R satisfying the condition:

(*) If A is a finite subset of  then )3, , 6(i) < a

we have Y8 < a. The semiring R is said to be finitarily [resp. countably]
complete if and only if it is finitarily A-complete, where A is the family of all
functions [resp. from countable sets] with values in R.

(22.21) EXAMPLE. The semiring N{co}, as defined in Proposition 22.14, is
finitarily complete.

(22.22) EXAMPLE. Let R be the semiring B{oo} with sums of the form Y6
defined as in Example 22.17(2). Then R is not finitarily complete.

(22.23) ExaMPLE. The semiring S defined in Example 22.15 is not finitarily
countably complete since if 6:N — S is defined by 6(n) = e for all n € N then
Y0 =%, while ;. , 8(¢) < & < Z for all finite subsets A of N.

(22.24) PrOPOSITION. Let R be a finitarily countably-complete semiring, let
a € R, and let : N — R be a function satisfying the condition that 6(0)+- - -+6(n) =
a for each natural number n. Then Y0 = a.

PROOF. If A is a finite subset of N having maximal element n then .., 0(:) <

6(0) + ---+ 8(n) = a. Since R is finitarily countably-complete, this implies that
376 < a. Since R is positive, a < Y 8 and so we have equality. O

(22.25) PROPOSITION. Let R be a finitarily countably-complete semiring. Then
a+ b+ c=aimpliesa+ b= a for all elements a, b, and ¢ of K.

PROOF. Let a+ b+ c = A and define a function §: N — R by
a ifn=0
On—<{ b ifn=2i—1forsome:ecP.

¢c ifn=2iforsomeieP

Let d =) 60. Then

d=Y[62n—1)+02n)] =a+(b+c)+(b+e)+....
n>1
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Since a + (b + ¢) = a, we see that all of the finite partial sums are equal to a and
so, by Proposition 22.24, we have d = a. On the other hand,

d=>"[6(2n) +0(2n+1)] = (a+b) +(c+b) +(c+b) +....
n>0

Since (a +b) + (¢ + b) = a + b, we see that all of the finite partial sums are equal
to a + b and so, by Proposition 22.24, we have d = a + b. Therefore a = a+b. O

Thus, combining Propositions 20.37 and 22.25, we see that every finitarily
countably-complete semiring is difference ordered. Goldstern [1985] has proven the
converse as well: any difference-ordered semiring is isomorphic to a subsemiring of
a finitarily countably-complete semiring.

Note that if R is a A-complete semiring and if § € A is the 0-function then

20=232ea00() =0(320) =0.

(22.26) ProPoOSITION. Let R be an A-complete semiring and let §:Q — R
and ¢o:A — R be elements of A. Then the function ¥:Q x A — R defined by

¥: (i) = 6(i)p(j) belongs to A and Y% = (¥ 0)(X ).

ProoF. For each j € A, the restriction of ¢ to ; = {(¢,) | ¢ € 2} is just b
for b = ¢(j), and this function belongs to A. Since @ x A = U{Q; | j € A} is a
partition of Q x A, the function % belongs to A. For each j € A, let 0;: Q2 — R be
the function defined by 6;:7 — 0(i)¢(j). Then > 60; = (3 0)¢(j) and so 3¢ =
E{Z]’e/\ 0;} = Eje/\(e)‘p(j) =0 e). O

Let us note one consequence of this result. A (possibly infinite) subset A of a
complete semiring R is a cover of R if and only if Y A = 1. For example, i R is
the set of all open subsets of R™ (in the usual topology) then (R, U, N)is a complete
semiring. For each ¢ > 0, the set of all elements of R having Lebesgue measure less
than € is a cover of R. If A and B are covers of R, Proposition 22.26 immediately
implies that A N B is also a cover of R.

(22.27) ProPOSITION. Every complete semiring R has an infinite element.

ProoF. Let @ = R x N and define the function §: Q2 — R by 6:(r,i) — r. For
each 7 € R, let Q, = {(r,7) € Q | i € N} and let 6, be the restriction of 8 to Q,.
Then Q = U,¢grQ, is a partition of Q and soif a = )" 4 then a = E{ETER 6,}.

If b€ R then R= {b} U(R\ {b}) and so a = ¢+ }_ 65, where

C:Z{Zﬂrlb¢rER}.

Then a+b=c+5 0, +b. Now let 7:N — N be the function defined by 7:7 — i +1.
Then 8(b, 2) = 6(b, 7(z)) for all i € N. Moreover, N = {0}Uim(r)so 3. 6, = 6(b,0)+
> 83, where 6; is the restriction of 6y to im(7). Thus 3.6, = b+3.6, = b+ 6;.
This shows that a + b =c+ )60, = a for all b in R, proving that a is an infinite
element of R. O
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(22.28) ProPOSITION. Every countably complete semiring is zerosumfree.

ProOF. Let a and b be elements of a countably-complete semiring R satisfying
a+ b = 0. Define the function 6 from N to R by setting 6(f) = a if 7 is even and
6(i) = bifiis odd. Set c = >80, d = 3 .{6(i) | i odd}, and e = Y _{6(¢) | ¢ even}.
Then ¢ = d + e. On the other hand, ¢ = > {0(i) + 6(i + 1) | i even} = 0.

If 7:N — N is the function defined by 7:¢ — i+ 2 then 6(z) = 07(¢) for all : € N.
Moreover,

e

0)+ Y {6(i+2)|ieven}
0) + Z{HT(z) | 7 even}

(
(
(0)+ E{H(z) | 2 even}
0)+e=a+e.

6
6
6
6

I

Therefore 0 =d+e=d4+a+e=aand0=a+b=0+b=b O

If we have a countably-complete semiring with necessary summation then we
can improve the result in Proposition 22.28.

(22.29) ProPosITION. If R is a countably-complete semiring with necessary
summation then R is difference ordered.

PRroOOF. Define the relation < on R by setting a < b if and only if there exists
an element ¢ of R such that a + ¢ = b. Then for elements a, a’, and a” of R we
clearly have a < a and a < a” whenever a < d’, and @’ < a”.

Assume that a and b are elements of R satisfying a < b and b < a. Then there
exist elements ¢ and d of R such that a+c=band b+d = a. Set ¢ = c+d. Then
a+e =aand b+ e = b. Indeed, for each positive integer n we have b+ ne = b.
Let 8:N — R be the function defined by 6(i) = e for each 4. Since R is countably
complete, u = Y 0 exists. If §p: N — R is the function defined by 6y(¢) = 0 for all
i then b+ 60(0) 4+ --- 4+ 8(n) = b+ 65(0) + - -- + 6p(n) for each natural number n
and so, since the summation on R is necessary, we see that b+ u = b+ > 6y = b.
On the other hand if ¢ and ¢’ are the functions from N to R defined by (i) = ¢
and ¢'(1) = d for each natural number i then, by Proposition 22.16, we have
b=bt+u=b+Yo+X ¢ =b+d+Ye+Y ¢ =d+b+u=d+b=a. Thus
< is a partial order relation on R, and so R is difference ordered. O

(22.30) ExaMpPLE. Complete semirings need not be entire. For example, let R
be the boolean algebra (sub(IN),U,N). This is a complete semiring. The additive
identity of R is @. If A is the set of all even elements of N and B is the set of all
odd elements of N then both sets are nonzero but AN B = 0g.

(22.31) PropPosSITION. If R is a complete simple additively-idempotent semir-
ing with necessary summation then there exists a bijective correspondence between
the set of all prime elements of R and the set of characters of R.

Proor. By Proposition 22.29 we see that R is difference ordered and so, by
Proposition 20.48, we know that each prime element a of R defines a character v,
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of R by 7,(r) = 0 if and only if r < a. Moreover, if a # b are prime elements
of R then v, # v;. Conversely, let v be a character of R and let a = 3 ker(y).
Since R has necessary summation, we see that y(a) = 0. If a is a unit, we obtain
v(1) = y(a)y(a™!) = 0, which is a contradiction. Thus a cannot be a unit of
R. If r < a then there exists an element 7’ of R satisfying » + 7' = a and so
v(r) + v(r’) = y(a) = 0. Since B is zerosumfree, this implies that y(r) = 0. Thus
ker(y) = {r € R | r < a} and so, by Proposition 20.48, a is prime and ¥ = 7,.
This proves that the map a — 7, is the bijection we seek. O

(22.32) PropPosSITION. If R is an entire zerosumfree semiring and oo ¢ R then
R{co} is a complete semiring.

ProoF. In Chapter 2 we saw how the semiring structure of a zerosumfree semir-
ing R can be extended to R{co}. Consider a function §:Q2 — R{oo}, and let
A={i€Q|0(:i)+#0}. If A is finite, set Y 0 to be the sum of the elements of R of
the form {6(j) | j € A}. Otherwise, set Y6 = co. Then R{oo} is complete. O

(22.33) ProrosiTiON. The following conditions on a complete commutative
semiring (R, +, ) are equivalent:

(1) (R,+,") is a frame in which arbitrary joins are given by 3 ;
(2) R is simple and idempotent.

Proor. (1) = (2): This is immediate.

(2) = (1): By Proposition 20.19 we see that R is partially ordered by the
relation @ < b if and only if a + b = b and, indeed, it is a meet semilattice with
aVb=a+bforalla,be R. Ifa,b € Rthenab+a=a(b+1)=al =asoab<a.
Similarly ab < b. On the other hand, if ¢ < a,b then ¢c+a¢ =a and c+ b = b so
ab=(c+a)(c+b)=c+cb+ac+absoc<c+chb+ ac<ab. Thus R is a lattice,
with a A b = ab.

If we are given a function 8: Q) — R then > 6 > 6(7) for each 7 € Q. Suppose that
b > 6(q) for each i € Q. Then b6(i) = 6(:) so b(3_8) = 3 ;cq b0(:) = > 0, whence
b > 5" 0. Therefore V[#(2)] = Y 6. The distributivity of meet over arbitrary joins
follows from the definition of a complete semiring. O

(22.34) ExaMPLE. If R is an entire zerosumfree semiring and co ¢ R then
R{oo} is a complete semiring by Proposition 22.32. However, (R{oo}, +, ) is not
a frame since, If it were a frame, then by the uniqueness of infinite elements, we
would have a = al = aco = oo for all @ € R, which 1s a contradiction.

If R is a complete semiring and if A, B,C are nonempty sets (or if R is an
arbitrary semiring and the set B is finite) and if h € RA*E and k € RBXC are
R-valued relations then we can define the R-valued relation k o h € RAXC by

koh:(a,c)— > h(a,b)k(b,c).

beB

It is straightforward to show that o is associative and distributes over addition
from either side. Also, if h = A’ + h” in RA*B or k = k' + k" in RB*C then
koh=koh'+koh” andkoh=k'oh+k"oh. If k and h are R-valued functions
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then k o h is also an R-valued function. Indeed, if ag € A then, if there exists an
element by € B for which f(ag, by) # 0 then that element must be unique. Similarly,
if there exists an element ¢ € C for which g(bp,co) # 0 then that element must
be unique. On the other hand, if (k o h)(aq,c1) # O for some ¢; € C, then there
exists an element b; € B such that h(ag, b1)k(b1,¢1) # 0, which, by the uniqueness
of by and cp, implies that b; = by and ¢; = ¢g. However, we do note that ho k
could be the 0-map even if £ and h are not. This would not be so if the semiring
R is entire, for then we would have (k o h)(aq, co) = h(ao, bo)k(bo,c0) Z0. If Ris a
complete difference-ordered semiring and A is a nonempty set, then ho h = h for
each R-valued equivalence relation h on A,

(22.35) PROPOSITION. Let R be a difference-ordered complete semiring and let
A be a nonempty set. Let f g, h € RA*4 be R-valued relations on A satisfying the
following conditions:

(1) im(f) C I*(R);

(2) The elements of im(f) and im(g) commute.
Let f' € RAX4 be defined by f':(a,b) s f(b,a). Then (f o g)h < fo[g(f oh)].
ProoF. If a,b € A then

[(f o g)h](a,b) [Zf (a,c)g(c b)} h(a,b)
cEA
=" f(a,c)g(c, b)h(a,b)
cEA
= Z f(a,e)g(e,b)f'(c,a)h(a,b)
cEA
<Y f(a,0)g(e, ) [(f o h)(c, )]
cEA

=Y f(a,e)[g(f o h)(c,b)]

cEA
= (folg(f o h)])(a,b).

from which the result follows. 0O

Compositions can, of course, be iterated. In particular, if b € RAXA we can

define h°* for all k > 0 by setting h°® = g and then setting h°¥ = ho(k=1) o h for
all k > 0. Moreover, if R is complete we can further define A°* = Y77 h°F to be
the reflexive and transitive closure of h. These definitions lead to the operational
semantics of R-valued computations, as studied in [Wechler, 1986a].

If R and S are [countably-] complete semirings then a function y: R — S is
a morphism of [countably-] complete semirings if and only if the following
conditions are satisfied:

(1) 7(Or) = 0s;
(2) v(1r) = 1s;
(3) y(rr') = y(r) - y(r') for all r,7' € R;
(4) v(X 8) = Y3(70) for all functions 6§ from a [countable] set Q to R.
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(22.36) ExaMPLE. [Goldstern, 1985] We extend Example 9.4. If R is a
countably-complete semiring then we define a morphism of countably-complete
semirings Yr:N{oo} — R by setting yr(n) = nlgr if n € N and ygr(o0) = Y9,
where §:N — R is the function defined by #(i) = 1 for all ¢ € N. Note that if
8: R — S is a morphism of countably-complete semirings, then for each a € N{co}
and each r € R we have §(yr(a)r) = v5(a)é(r) = é(r)ys(a).

(22.37) ExaMPLE. We now extend Example 9.19. Let R be a complete semir-
ing, let A be a nonempty set, and let ¢ be a function from A to the center C(R)
of R. Then ¢ defines a morphism of complete semirings €,: R{(A)) — R, called the
p-evaluation morphism, given by

cwszZ{f(alaQ~...-an)<,0(a1)-...-(an)|a1a2~...-aneA*}.

Let R be an A-complete semiring for some admissible family A of functions with
values in R. An element b of R is A-compact if and only if for each function
§:Q — R in A satisfying Y60 = 6 + b there exists a finite subset A of Q2 such
that the restriction 6 of 6 to A satisfies ) 6’ =3 6’ +b. The element is compact
if it 1s A-compact for the family A of all functions with values in R. We note that
compact elements play an important part in the study of frames; we will also make
significant use of this concept in the next chapter. From the definition it follows
that 1 1s a compact element of R if and only if every cover of R contains a finite
subcover. We will denote the set of all compact [resp. .A-compact] elements of a
semiring R by comp(R) [resp. A — comp(R)].

(22.38) EXAMPLE. If R is a semiring, then any finitely-generated ideal of R is
a compact element of the semiring ideal(R). In particular, R is a compact element
of ideal(R).

Let R be a complete semiring and let K be the family of all subsets V' of R
satisfying the condition that if 8: Q2 — R is a function and if }_ 8 € V then there
exists a finite subset Ag of 2 satisfying the condition that }Z;., 8(¢) € V for all
finite subsets A D Ag of 2. Then Kg is a topology on R, which we will call the
Karner topology, since it was first introduced in [Karner, 1994].

(22.39) ExamPLE. If R = (Q* U {oo},+,-) then the Karner topology Kg is
characterized as follows:
(1) Every a € Q% is isolated;
(2) A subset V of R containing oo belongs to Kg iff and only if R\ V is well-
ordered by the reverse of the usual order.

(22.40) ExampLE. If R = (R*U{oo}, +,-) then a base for the Karner topology
Kr is given by {0} and all subsets of R of the form {r € R | a < r < b} for some
a<binR.

It 1s straightforward to verify that if R and S are complete semirings and if
a:R — S is a function satisfying the condition that «(>.0) = Y (af) for all
functions 6: Q — R, then « is a continuous function from (R, Kr) to S, Ks).
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If {R; | i € Q} is a family of complete semirings and R = x;eq R;, then projec-
tion maps R — R} are continuous when R and R are endowed with the Karner
topologies and so the Karner topology contains the product topology on R. How-
ever, these topologies need not be equal. Thus, for example, Karner [1994] points
out that if By = R = (Q% U {c0}, +,-) then the map R; x R» — R; given by
(a,b) — a + b is not continuous when R; is endowed with the Karner topoogy
and R; x R, is endowed with the product topology but is continuous when both
semirings are endowed with the Karner topology.

As expected, if @: R — S is a surjective morphism of complete semirings then
Ks coincides with the final topology on S generated by «.



23. COMPLETE SEMIMODULES

In a manner analogous to that in the preceeding chapter, we can also define
the notion of a [countably-] complete semimodule over a [countably-] complete
semiring R. Refer to [R. Lee, 1979]. Note that if {M) | h € T} is a family of
[countably-] complete left R-semimodules then the left R-semimodule [], . Mh is
also [countably-] complete. Indeed, if {f; | i € Q} is a (countable) family of elements
of Hhel“ My, we define Zieﬂ fi to be the function from I' to Uper M} given by

Y ik Y filh),

i€Q ien
where f;(h) € My, for all h € T and all i € Q. In particular, we note that a direct
product of an arbitrary number of copies of a [countably-] complete semimodule is
again [countably-] complete.

(23.1) EXaMPLE. If Ris a complete semiring and X is a nonempty set such that
RX is a complete left R-semimodule, then summation in RX can be consdidered
as a form of integration. An important example of this is the case in which we
take R to be the schedule algebra and X to be a locally-compact space [Litvinov
& Maslov, 1998]. Indeed, let us write [y f(x) = Veex f(z) for all f € RX. If fis
continuous or upper-continuous, then we can define a function my: sub(X) — R by
setting my: B — Vzep f(z). Note that my(UeaBj) = Vieamy(B;) for any index
set Q. The function my is the R-measure defined by f and we can define an analog
of the Lebesgue integral with respect to this measure by setting

[ at@yimg = [ @)+ ) = @) + 1@
X X zeX
(Recall that + is the multiplication in R!). These considerations lead to the anal-
ogy between such functions and probability measures, which has been exploited
so fruitfully in “idempotent analysis”. Refer also to [Del Moral & Doisy, 1999a,
1999b].

Many other notions from functional analysis can be transfered to this context.
For example, if X is an appropriate space we can use the above formula to define
the notion of an R-valued inner product on RX by setting

()= [ U@ +g@1 = V o)+ 1)
X rzeX
J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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Also note that we clearly have the analog of Fubini’s Theorem: for a suitable
function f: X x Y — R we can easily reverse the order of integration:

/Xfyf(x,y)Z/Y/Xf(r,y)«

Loreti and Pedicini [1998] in fact give a somewhat more general form of this: if F
is a function from X to sub(Y') and if, for each y € Y, we write F~!(y) = {x € X |

y € F(z)}, then
/X o) f(z,y) =/F(X) /F_l(y) f(z,y).

If M and N are [countably-] complete left R-semimodules, then an R-homomor-
phism a: M — N is [countably-] complete if and only if it satisfies the aditional
condition that (Zi(—:ﬂ m;)a = Y ,cqmia for all [countable] index sets . We
will denote the set of all [countably-] complete R-homomorphisms from M to N
by CHomg(M,N) [resp. CCHomg(M,N)]. Similary, we denote the set of all
[countably-] complete endomorphisms from M by Cendg(M) [resp. CCEndgr(M)).

If M is a countably-complete left R-semimodule then the function §: M — M
which assigns to each m € M the sum m#é of a countably-infinite number of copies of
m is an idempotent member of CC Endgr(M) satisfying the condition that m+mfé =
mé for all m € M. We also note that every element of M@ is idempotent. More
generally, if M 1s a complete left R-semimodule and if ¢ is an infinite cardinal, then
the function #,: M — M which assigns to each m € M the sum m#, of ¢ copies of
itself is a member of Cendr(M) satisfying the condition that mé, + mf; = mé,
for all cardinals d < ¢ and all m € M. Moreover, that every element of M6, is
idempotent.

Let R be a partially-ordered semiring. A partially-ordered [courtably-] complete
left R-semimodule M is finitary if and only if for every (countable) family {m; |
i € 2} of elements of M and every element m’ of M satisfying the condition that
ZjeA m; < m' for any finite subset A of Q, we have 37, .om; < m'. As an
immediate consequence of this definition, w see that a direct product of finitary left
R-semimodules is again finitary.

(23.2) ProposITION. The following conditions on a [countably-] complete posi-
tive left R-semimodule M over an additively-idempotent semiring R are equivalent:
(1) M is finitary;
(2) M is a [countably-] complete lattice, if we set Vieam; = ),,cqm; for any
[countable] family {m; | i € Q} of elements of M ;
(3) mb. = m for all infinite cardinals ¢ [resp. m = m] and allm € M.

Proor. (1) = (2): If {m; | ¢ € Q} is a [countable] family of elements of M
then, by hypothesis, we know that m’ = )7, m; exists and that m; < m/' for all
1 € Q. Now let m"” € M satisfy the condition that that m; < m' for all 7 € Q.
Then m' = 37 cqmi < Y icq(mi +m”). But m; + m"” = m” for all i € Q and
s0 3 iea(m; +m”) = m” for each finite subset A of Q2. By (1), we then have

m <Y icq(mi +m") <m”, proving (2).
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(2) = (3): If m € M and if {m; | i € Q} is a [countably-] infinite family of
elements of M with m; = m for all ¢ € Q then, by (2), Zien m; = Vieami = m,
establishing (3).

(3) = (1): Let {m; | i € Q} is a [countably-] infinite family of elements of M.
If m’ € M satisfies the condition that EjeA m; < m’ for each finite subset A of
then, in particular, m; < m’ for all i € Q}. By (3), 3,,cqmi = m', where mj = m/
for all ¢ € Q}. Hence

Zmi+m’:Zmi+Zm{-IE(mi-i'mi'):Zm;:m/

i€Q ieQ ieQ i€q ieQ
and so ) ;.o mi < m', proving (1). O

(23.3) PrROPOSITION. If R is an additively-idempotent semiring, then every left
R-semimodule can be embedded in a finitary complete R-semimodule.

PROOF. Let M be a left R-semimodule. Since R is additively-idempotent, B(R)
is isomorphic to B and so R is a left B-semimodule. As in Chapter 15, set I(M) =
Homp(R,BY). For r € R and € I(M) we define the function rn: R — BY by
setting rn: ' — (r'7)n. It is straightforward to verify that r € I(M) and that this
definition turns I(M) into a left R-semimodule, which is additively idempotrent
since R is an additively-idempotent semiring.

We claim that I(M) is in fact complete. Indeed, let {n; | ¢ € 2} be a family of
elements of I(M) and define ), ., 7 to be the function from R to BM given by
(Xicam):r— 2ica(r)n:. This function belongs to I(M) since, if .7 € R then

(r+7") (an)—2r+r =N Il =Y i+ Y r'n

ien 1€Q 1€QN 1€Q 3
while
r') <r2m> = (r'r) (Z Ui) =2 ' =Y ()i = ( Z’h) ’
ien i€q i€n ieq en

Clearly B is a finitary complete semimodule over itself, and so, as previously
noted, B is also finitary and complete. Now suppose that {n; | ¢ € } is a family of
elements of I(M) and let 7y’ € I(M) satisfy the condition that 3., n; < ' for each

finite subset A of Q. Then for each such A and each r € R we have (r) (Eje/\ Uj) <

(r)n’ in B¥ . Since BY is finitary, this implies that (r) (Zien mi) < (r)n for each
r€ Randso ), .qm <n'. Thus I(M) is a finitary complete left R-semimodule.

We are left to show that there exists a monic R-homomorphism a: M — I(M)
and, indeed, such a map is defined as follows: if m € M and r € R let r(ma) € BY
map m'inM to 0 if ' > rm and map it to 1 otherwise. The fact that « is an
R-homomorphism is straightforward to verify. O
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(23.4) ProOPOSITION. If R is an additively-idempotent semiring and M is a fini-
tary [countably-] complete left R-semimodule then CEndg(M) [resp.
CCEndr(M)] can be made a finitary [countably-] complete additively-idempotent
semiring.

PROOF. It is easy to see that CEndr(M) [resp. CCEndr(M)] is a subsemir-
ing of Endgr(M) and so is additively idempotent. We claim that this semir-
ing can be made [countably-] complete by an appropriate definition of infinite
summation. Indeed, if © is a [countable] index set and if o; | 7 € Q} is a
family of elements of CEndr(M) [resp. CCEndr(M)], we define ) ;. a; by
(Zz‘en a,-) ‘m— Zieﬂ ma;. f m,m’ € M and r € R then we have

(m+m') (Z a,-) = Z(m +m')a; = Z(mai +m'a;)

ien ien ien
:E ma,-+§ m'ai:m(g a,-)—l—m'(z ai)
ien ien i€ ieQ

and

(rm) (Z a,-) = Z(rm)ai = Z r(ma;)

1€Q 1EN i€EQ

() = m (5o

Therefore ), ., @i € Endgr(M). Moreover, if {m; | j € A} is a [countable] family
of elements of M then

(£0) (£)-£(En)=-TEme

JEA i€Q i€Q \jeA iEQjEA
-3 S = s (o).
JEAIED JEA ieQ

Therefore ), . a; belongs to CEndr(M) [resp. CCEndg(M)]. It is now
straightforward to check that C Endr(M) [resp. CC Endgr(M)] is [countably] com-
plete as a left and right semimodule over itself, and so is a [countably-] complete
semiring.

We are left to show that this semiring is finitary. Let « be an endomorphism of
M and let ¢ be an infinite cardinal. Set o, = (), Then for each m € M we have
ma. = (ma)f, = ma by Proposition 23.2. Therefore @ = «, and so CEndgr(M)
[resp. CCEndgr(M)] is finitary. O

(23.5) PrOPOSITION. Every additively-idempotent semiring R can be embed-
ded 1n a finitary complete semiring.

Proor. By Proposition 23.3, we know that R, considered as a left semimod-
ule over itself, can be embedded in a finitary complete left R-semimodule M. By
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Proposition 23.2, the semiring S = CEndgr(M) is finitary complete, as is the semir-
ing T = CEnds(M). But there is a canonical embedding of R into T, establishing
the desired result. O

(23.6) ProPosSITION. If R is a zerosumfree semiring then there exists a mor-
phism of semirings from R to a complete additively-idempotent semiring.

PRrROOF. Define a relation p on R by setting » p v’ if and only if there exist
elements ¢,y € R and nonnegative integers n and m satisfying » + z = nr’ and
7’ + y = mr. This relation is clearly symmetric and reflexive. To show that it is
transitive, assume that » p 7' and ' p r’. Then r + & = mr’ and ' + y = nr” for
some z,y € R and m,n € N. It then follows that

"

r+ (z + my) = mr' + my = m(r' + y) = m(nr") = (mn)r".

Similarly, we can show that 7’ + z = kr for some z € R and k¥ € N. Therefore
r p v, proving that p is an equivalence relation on R. Note that if » p 0 then
r+ x = 0 for some z € R. Since R is assumed to be zerosumfree, this implies that
r=0.

We now prove that p is compatible with the operations on R. Indeed, suppose
that 71 p s; and that ro p s3. Then we have ry + 21 = mysy, 81 + y1 = myry,
Py + XTos = Mmoso, and s3 + Yy = marse, from which we deduce that

7y + (roza + 172 + T122) = (M181)(Mas2) = (Mmyima)s;s2

and
5152 + (s1y2 + Y152 + Y1y2) = (n1r1)(nare) = (ning)rire

SO 172 p s182. Also
ry+ re + [(m1 - 1)7“1 + mozy + (m1 — l)Tg + ml.tz] = mlmg(sl + 82)

and
51+ s2 +[(n2 — 1)s1 + nayy + (n1 — 1)sy + n1ya] = nina(r1 + 7o)

80 (r1+72) p (s1+s2). Thus we see that p is a congruence relation on R. Moreover,
the semiring R/p is additively idempotent. By Proposition 23.5, this semiring can
be embedded in a complete semiring and so this embedding, composed with the
canonical morphism R — R/p, is the morphism we seek. [

(23.7) PROPOSITION. Let R be a positive additively-idempotent semiring and
let M be a left R-semimodule which is a retract of a finitary [countably-] complete
left R-semimodule N. Then M itself is finitary and [countably-] complete.

Proor. By hypothesis, there exist R-homomorphisms a: M — N and §: N —
M such that af is the identity map on M. By Proposition 23.2 we know that N
is a [countably-] complete lattice in which Vieqn; = Y ;cqni for any [countable]
family {n; | i € Q} of elements of N. If n = 37, . m;a, then mpa < n for all
h € Q and so my = mpaf < nf. Therefore nf is an upper bound for {m; | i € Q}
in M. Assume that m € M is another upper bound for this family of elements.
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Then m, < m for all h € Q and so mpa < ma, Therefore n = Y, mia < ma so
nB < maf = m. Thus ng is the unique least upper bounded for {m; | i € Q} in
M, proving that M is a complete lattice. We now define Zieﬂ m; in M to be equal
to nf € M and claim that this definition turns M into a complete R-semimodule.
Indeed, if r € R then

Z}m:(Z}mmJﬂ:(Z}WMOﬂ

€N iEQ 1€Q

() ((5me)) = ()

Again, by Proposition 23.2, the semimodule M is finitary complete. O

(23.8) ProposITION. If R is a positive additively-idempotent semiring then
every injective left R-semimodule can be made finitary and complete.

PrOOF. Assume that M is an injective left R-semimodule. By Proposition 23.3,
we know that M can be embedded in a finitary complete R-semimodule. Since M
1s injective, this embedding is a retraction and so, by Proposition 23.7, we see that
M too is finitary and complete. O

Note that the converse of Proposition 23.8 is false. Indeed, any complete lattice is
a finitary complete B-semimodule, but injective left B-semimodules must be frames.

(23.9) ProPosITION. Let R be a complete semiring and let u: A — B be a
function between nonempty sets. Then:
(1) Ifg € R® then there exists a function g, € R satisfying h,[h'[9]]+9 = 9;
and
(2) IFf € RA then £ + hy ' [hul £]) = b3 (hulf]]

Proor. (1) If by € B
hulhZ (gl bo — > g [g)(a)hu(a, bo) = Y > hu(a, b)g(b)hu(a, bo).
a€A acAbeB

But this sum equals Or except in the case b = by = u(a), in which case it equals
g(bo). Thus, if g; € RP is the function defined by

0 if b € im(u)
g1(b) = :
g(b) otherwise.

then hy[hg![g]] + 91 = g.
(2) If ap € A then

2 hul ) a0 — Y hulao, B)hu[£](B)

beB

_ZZh ao, b)f(a)hy(a,b)

beBacA

= >, [

f(a)=f(ao)
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and so f + b '[hu[f]] = Ry [Ru[f]]. O

Note that Proposition 23.9 implies that if R 1s a complete semiring and if u: A —
B is a function between nonempty sets then the function g — hy,[h;1[g]] is an
interior operator on RP and the function f +— h7![hy[f]] is a closure operator on
RA.



24. CLO-SEMIRINGS

A lattice-ordered semiring R is a complete-lattice-ordered semiring (CLO-
semiring) if and only if (R,V,A) is a complete lattice. A CLO-semiring is a
quantalic lattice-ordered semiring (QLO-semiring) if and only if multipli-
cation distributes over arbitrary joins from either side; it is a frame-ordered
semiring (FO-semiring) if and only if it is a QLO-semiring and the underlying
complete lattice is a frame. As an immediate extension of Proposition 21.12(1), we
see that if @ a is an element of a CLO-semiring R then V(Ra) = a = V(aR).

The study of complete lattices equipped with an additional operation which dis-
tributes over arbitrary joins goes back to [Krull, 1924], [Dilworth, 1939], and [Ward
& Dilworth, 1939]. CLO-semirings are considered in [Fuchs, 1954, 1963] under the
name of complete lattice-ordered semigroups. Refer also to [Anderson, 1976].
The related notion of a quantale is studied in [Borceux & Van den Bossche, 1986]
and is based on an attempt by Mulvey to provide a constructive foundation for
quantum mechanics. Also see [Borceux, Rosicky & Van den Bossche, 1989] and
[Brown & Gurr, 1993a]. In a quantale @, multiplication is associative but 1 is only
a one-sided multiplicative identity: al = a for all elements a of ) but la is not
necessarily equal to a. An element a of @) is two-sided if la = a = al and the
collection @* of all two-sided elements of @ is a sublattice of @ which 1s in fact
a QLO-semiring. Since the meet of any arbitrary family of two-sided elements of
Q) is again two-sided, we see that for any a € @ there exists a unique smallest
element a* among those elements b of Q* satisfying & > a. In order to relate a
quantale and its subsemiring of two-sided elements, the notion of a quantum frame
was introduced in [Rosicky, 1989, 1995]. In particular, we can consider @ as a Q*-
semimodule. A more general notion of a quantale given in [Niefield & Rosenthal,
1988] and [Roman & Rumbos, 1991a]. For the application of quantales to process
semantics of computer programs, refer to [Abramsky & Vickers, 1993]. Another
related notion is that of a net, introduced in [Blikle; 1971, 1977], which differs
from that of a CLO-semiring in that multiplication is assumed to distribute only
over finite or countable joins. Such structures are also known as o-frames. For an
application of nets to the analysis of computer programs, refer to [Janicki, 1977].

Quantic lattice-ordered semirings provided a natural setting for fuzzy set theory,
as proposed in [Goguen, 1967] and for a logic of inexact concepts. The notion of a
logic over a QLO-semiring has been extensively expanded in [Pavelka, 1979a, 1979b,
J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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1979¢].

(24.1) ExampLE. If (R,V,A) is a complete lattice then R is surely a CLO-
lattice; 1t 1s a frame precisely when this lattice is a QLO-semiring. Any frame is a
frame-ordered semiring if we take multiplication to coincide with meet. Indeed, as
an immediate consequence of Proposition 21.14 we see that frames are precisely the
multiplicatively idempotent QLO-semirings. Thus, if R is a frame-ordered semiring
in which multiplication and meet are not the same, R has two canonical structures
of a complete semiring: (R, V,-) and (R, V,A).

(24.2) ExamPLE. If R is a semiring then (ideal(R),+,-) is a QLO-semiring.
Not every QLO-semiring is isomorphic to a subsemiring of a QLO-semiring of this
type. See [Bogart, 1969b]. If (S, *) is a monoid then (ideal(S),U, *) is an FO-
semiring, where A* B ={a*b|a € A,b € B} for all ideals A and B of S.

Similarly, if O is a sheaf of commutative rings on a locale then the sheaf of ideals
of @ is a semiring under the operations of sum and sheaf product. See [Niefield &
Rosenthal, 1990] for details.

(24.3) ExaMPLE. The semiring (I, maz,-) is frame ordered, where the frame
operations are sup and inf.

(24.4) ExaMPLE. If R is a semiring then the dual lattice (R — fil)? of R — fil
is a CLO-semiring. However, multiplication in (R— fil)% distributes over arbitrary
joins (i.e. intersections in R — fil)) from the left but not necessarily from the right.
Therefore (R — fil)®* is not a QLO-semiring. For the case of R a ring, this semiring
is studied in detail in [Golan, 1986].

(24.5) ExaMPLE. If Ais anonempty set then a relation on A is a subset of Ax A.
The family R of all relations on A is a frame under the operations of intersection
and union. In addition, we can define the product of two elements of R by setting
BC = {(a,d’) € A x A | there exists an a” € A with (a,a"”) € B,(a”,d') € C}.
This turns R into a FO-semiring. For the extension of this notion to fuzzy relations
refer, for example, to [Dubois & Prade, 1980].

This example can be generalized in several directions, one of the most important
being that of [Chin & Tarski, 1951]. In these generalizations, as a rule, we end up
with a QLO-semiring the underlying lattice of which is a complete atomic boolean
algebra with, perhaps, some additional structure.

(24.6) EXAMPLE. If A is a nonempty set then the semirings R = (sub(A4"),+, )
and R’ = (sub(A*®),+,-) of formal languages and formal co-languages on A, re-
spectively defined in Example 1.11, are QLO-semirings. In the semiring R’ we can
also define countably-infinite products as follows: if L, La, ... are elements of R’.
define LiLsL3 - ... to be the set of all words w € A® of the form w = ajasas - ...
where, for each ¢, we have O # a; € (L; N A*)U (L; N A*)* - (L N A%).
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(24.7) EXAMPLE. The semiring R = (RU {—o0}, maz, +) is certainly a CLO-
semiring. If A is a nonempty set, then the set M of all bounded elements of RA,
namely the set of those functions f € R4 for which there exists an element r € R
such that f(a) < r for each a € A, is an R-semimodule. For the importance of
this semimodule in optimization theory built around idempotent measures, refer to
[Gunawardena, 1998] or [Akian, Quadrat & Viot, 1998].

(24.8) PROPOSITION. If a is a prime element of a CLO-semiring R then A =
{a’ € R| d’ prime and a’ < a} has a minimal element.

ProoF. The proof of this is a straightforward variant of the proof of Proposition
7.14. O

The notion of a compact element of a complete semiring holds in particular for
complete lattices: an element a of a complete lattice R is compact if and only if
for each nonempty set A of R satisfying VA > a there exists a finite subset A’
satisfying VA’ > a. If a and b are compact elements of R then surely so is a V b.

(24.9) ExaMPLE. The semiring (R — fil,N,-) presented in Example 1.7 is a
CLO-semiring. The compact elements of this semiring are studied in [Golan, 1987]
(where they are called “ducompact”). A sufficient condition for k € R — fil to be
compact is that it have a cofinal subset of finitely-generated left ideals. This would
always be true, of course, if R were left noetherian.

The product of two compact elements of R need not be compact. We say that R
is compactly generated (or algebraic) if and only if every nonzero element of R
is the join of compact elements. Compactly-generated CLO-semirings satisfying the
condition that the product of compact elements is compact are studied in [Keimel,
1972]. The semiring sub(A) of subsets of a nonempty set A is compactly generated.

(24.10) ExaMPLE. If R is a semiring then any finitely-generated ideal of R is
a compact element of the CLO-semiring ¢d~al(R). Therefore ideal( R) is compactly
generated.

(24.11) ProPOSITION. If R is a CLO-semiring and A is a nonempty set then
RA is compactly-generated if and only if R Is.

PROOF. For each @ € A and 7 € R, let w,  be the function defined by we ,(a) =
r and w, r(a’) = 0 for a’ # a. We claim that an element r of R is compact if and
only if wg, is a compact element of RA for all @ € A. Indeed, assume that r is
a compact element of R and, for an element a of A, let U be a nonempty subset
of R4 satisfying w,, < VU. Then r = wy,(a) < Vgevg(a) and so there exists
a finite subset U’ of U such that r < Vgepyrg(a). Then wy, < VU, proving that
w,,r is compact. Conversely, assume that wg, is compact for all a € A and let
Y be a nonempty subset of R satisfying » < VY. Then for any a € A we have
Wa,r < VseyWaq,s. SiNce wg » is compact, there is a finite subset Y’ of Y such that
War < Vsey Wa s, whence r = wy r(a) < Vseyiwas(a) = VY.

For r € R we set C(r) = {s < r | s is compact}. Similarly, for f € R* we set
C(f) = {9 < f | g is compact}. Assume that R# is compactly-generated.and let
0 # r € R. Then, by the above, we see that for a € A we have wa,; = Vieo(r)Wa,s
and so 7 = wqr(a) = Viec(r)Wa,s(a) = VC(r). Thus R is compactly-generated.
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Conversely, suppose that R is compactly-generated. If 0 # f € R* then f =
VagaWa,f(a) = V{wa,s | @ € A;s € C(f(a))} where each of the functions wq, is
compact. Thus R* is compactly-generated. O

(24.12) ProprosITION. If R is a CLO-semiring in which 1 is compact then, for
eachl1#r € R, theset B={r' € R|r <7’ < 1} has a maximal element, which is
prime.

Proor. If B’ is a chain of elements of B then VB’ € B since 1 is compact.
Therefore, by Zorn’s Lemma, B has a maximal element. Since R is simple, addi-
tively idempotent, and difference ordered we see by Proposition 20.47, taking the
case of A = {1}, that such a maximal element is prime. O

(24.13) PrOPOSITION. Let A be a nonempty set of compact elements of a CLO-
semiring R and let B = {r € R | a < r for all a € A}. Then for each b € B there
exists a maximal element b’ of B with b < V.

PrROOF. Let B’ be a maximal totally-ordered subset of B with b € B’. Since
the elements of A are compact, b = VB’ € B. Clearly b’ is a maximal element of
B satisfying b < ¥. O

The following result generalizes Proposition 7.25.

(24.14) ProPosITION. In a compactly-generated CLO-semiring, every semi-
prime element is the meet of primes.

PROOF. Let s be a semiprime element of a compactly-generated CLO-semiring
R. Tt suffices to show that if > s in R there exists a prime element b of R satisfying
b> s and b # r. Indeed, let r > s. Define a sequence A = {ay, as, ...} of compact
elements of R in the following manner: Let a; be a compact element of R satisfying
a; < r and a; £ s. Such an element exists since R is compactly generated. Now
assume that we have found compact elements as,...,a, of R such that a; £ s for
all i and a; < (a;—1)%for all 2 < i < n. Then a2 £ s since s is semiprime and hence
there exists a compact element a, 41 of R such that a,4+; £ s and ap41 < a2.

By construction, we note that if a;,a; € A then there exists an element a; of
A satisfying ap < a;a;. Since a; £ s for all i, we see by Proposition 24.13 that
there exists a maximal element b of {r’ € R | a; £ ' for all ¢} such that s < b.
By Proposition 21.15, R is simple and positive so by 20.47, we conclude that b is
prime. Clearly »r £ 6. O

(24.15) PropPosITION. For a compactly-generated CLO-semiring R the follow-
ing conditions are equivalent:

(1) Every 1 # a € R is the intersection of prime elements;
(2) Every 1 # a € R is semiprime;

(3) R is multiplicatively idempotent;

(4) Ifa,b € R then ab=a Ab.

PRoOF. (1) & (2): Assume (1). If 1 # a € R then there exists a nonempty set
A of prime elements of R satisfying a = AA. If r> < a in R then r? < b for all
b€ Asor <bfor all such b. Hence r < a, proving that a is semiprime. Thus we
have (2). The converse follows from Proposition 24.14.
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(2) & (3): Clearly (3) implies (2). Conversely, assume (2). If 1 # a € R then
a? < a? and so a < a®. Conversely, a> < a Aa = a and so a = a?. Thus we have

(3).
(3) & (4). This follows from Proposition 21.14. O

(24.16) ExaMmPLE. [Keimel, 1972] Let (M, %) be a semigroup. Then the set R
of all semigroup-ideals of M is a compactly-generated CLO-semiring and so every
semiprime element I of R is the intersection of prime elements of R. Moreover, the
following conditions are equivalent:

(1) Every I € R is semiprime;

(2) Every I € R is idempotent;

(3 IH=INnHforallI,H € R.

If R is a CLO-semiring and if a and b are elements of R, then we define the
left residual ab\~?) = V{r € R | rb < a} and the right residual b{~a =
v{r € R | br < a}. Clearly b{~"a A ab{=1) > a for all b € R. Note that if
R is a QLO-semiring then (ab{~")b = V{rb | b < a} < a A b and similarly
b(b{=1a) = v{br | br < a} < a Ab. Note too that any CLO-semiring is simple
and positive by Proposition 21.15 and so we see that a0t=1 = 1 = 0{-Ya for
any element a of R and, if R is entire, we also have 0b{(~1) = 0 = b{=1)0 for any
nonzero element b of R. In general, if a is an element of a QLO-semiring R then
0al=Y = v{r e R|ra <0} = V{r € R | ra = 0} and (0a{~")a = 0. Thus 0al~"
is the unique maximal left annihilator of a. Similarly, a{=110 is the unique maximal
right annihilator of a.

(24.17) ExaMpPLE. If R is the CLO-semiring (I, maz, min) and a,b € R then
b-a = 1 when a > b while (~Va = a when a < b.

(24.18) ExaMPLE. Recall the notion of a triangular norm on I as defined in
Example 1.13. If N is a triangular norm on I and if a and b are elements of I then
a<lsoalb<1Mb==5 Similarly,anNb < a and so a Nb < min{a,b}. Thus
(T, maz, M) is a lattice-ordered semiring. (Example 24.3 is a special case of this.) If
Mis a triangular norm on I which is lower semicontinuous as a function from I x [
to I then in fact R = (I, maz,N)is a QLO-semiring and so we can define residuals
(sidedness is unimportant here, because of the commutativity of multiplication) in
R. Some of these are presented in detail in [Gottwald, 1984] for various triangular
norms. Thus, for example, if we consider the fundamental triangular norms we
have

(1) In the semiring (I, maz,My) we see that ab{=1) equals 1 if b < a and equals
a otherwise;
(2) In the semiring (I, maz,M;) we see that abl=!) equals 1if b = 0 and equals
min{l,b/a} otherwise; and
(3) In the semiring (I, maz, My) we see that ab{~!) = min{1,1 — a + b}. This
result is due to J. Lukasiewicz in connection with his studies in logic.
Other examples of residuals in semirings of this type are given in [Weber, 1983].
Thus, for instance, if 0 < ¢ € R one can define a triangular norm Mg on I by
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setting a I‘IH(C) b=ab/[c+ (1 —c)(a+b—ab)]. In the semiring (I, maz, Ng(.)) we
have ab{=!) = [a + (¢ — 1)a(1 — b)]/[b + (c — 1)a(1 — b)] for b > a.

(24.19) ExaMPLE. Let R be a CLO-semiring and let A, B, and C be nonempty
sets. If g € RAXB h ¢ RBXC, and k € RA*C then we can define

koht=0 =3"{g' e R**® |g' o h <k}

and
g(-l)ok:Z{h/eRBxC |g0h'§ k‘}

In particular, if h € R4*4 then
hoht=0 =3 "{ke R*** |koh < h}

and

h=Doh=""{ke R** |hok < h}.

These R-valued relations on A x A are called, respectively, the right and left traces
of h and have been studied, for the special case of R =1, in [Doignon et al., 1986],
[Fodor, 1992], and [Sanchez, 1976].

(24.20) ExaMPLE. If R is a CLO-semiring and A, B, and C are nonempty
sets then there are ways of defining compositions between relations h € RA*B
and k € RB*C other than those given previously. Some of these, along with their
applications, were considered in [De Baets & Kerre, 1993b] for the case of (I, V, A).
These can be easily extended further. For example, over an arbitrary CLO-semiring
we can set

(h<k):(a,z (Zh (a,b ) (/\ h(a,b)(”l)k(b,c)) (Z k(b, c)) .
beB beB beB

The reasons for considering such compositions are detailed in [De Baets & Kerre,
1993b].

If r and s are elements of a CLO-semiring R then, as an immediate consequence
of the definitions, we see that r(r(‘1>s) < sAr. If we have equality for all s € R, then
the element 7 of R is left weakly meet principal. Similarly, (=1 (rs) > s4+r{-10
for all »,s € R. If we have equality for all s € R, then r is left weakly sum
principal. An element of r is left weakly principal if and only if it is both left
weakly meet principal and left weakly sum principal. An element r of R is left
meet principal if and only if ra A b = r[a A r{=18] for all elements a and b of
R and is left sum principal if and only if #(~U[ra + 4] = a + #{~b for all a
and b in R. Clearly left meet principal elements are left weakly meet principal and
left sum principal elements are left weakly sum principal. An element of R is left
principal if and only if it is both left meet principal and left sum principal. Since
any CLO-semiring is positive and simple, we note that 0 is always both left and
right principal.

Note that if an element 7 of R is left weakly meet principal then an element s
of R satisfies s < r if and only if s = rr’ for some element 7’ of R.
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(24.21) EXAMPLE. [Anderson, 1975] If S is a commutative semigroup with 0
and R = ideal(S), then a principal ideal Ssy of S is always weakly meet principal.
It is weakly sum principal if and only if ssq = s’sg # 0 implies that Ss = Ss’ for
all s,s' € S.

(24.22) ExaMPLE. [Alarcén & Anderson, 1994a] Let R = ideal(Q*[¢]), where
t is an indeterminate. Then the principal ideal (1 + t) is a meet-principal element
of R which is weakly sum principal but not sum principal.

(24.23) PrROPOSITION. If a is an element of a CLO-semiring R which is not a
left zero divisor then a{=10 = 0. If, in addition, a is weakly sum principal then
al=Y(ab) = b for all elements b of R.

PROOF. If a is not a left zero divisor then a{~10 = V{r € R | ar = 0} = 0. If,
in addition, a is weakly sum principal then a{~!)(ab) = b+ a=0=b. 0O

(24.24) PROPOSITION. A commutative QLO-semiring R is isomorphic to
ideal(S) for some commutative multiplicative monoid S with 0 if and only if R
is an FO-semiring and there exists a subset S’ of R satisfying the following condi-
tions:

(1)
(2) Every element of S’ is weakly meet principal;

(3) Every element of R is of the form VA for some nonempty subset A of S';
(4) S’ is closed under products;

(5) If s € S’ then there do not exist nonzero elements s’ and s" of S’ satisfying
s=s8+¢".

Proor. If S is a commutative multiplicative monoid with 0 then in Example
24.2 we already noted that ideal(S) is an FO-semiring. Moreover, the set S’ =
{Sa | « € S} of principal ideals of S has the desired properties.

Conversely, let R be an FO-semiring having a subset S’ satisfying (1) - (5). Then
(S’,-) is a commutative monoid with 0. We define a function v:ideal(S’) — R
by v:H — Y, H. Clearly y(S') = 1 and v({0}) = 0. Moreover, y(H U K) =
Y(H)+v(K) and y(HK) = y(H)y(K) since R is additively idempotent. Thus v is a
morphism of semirings. For r € R there exists a nonempty subset A of S’ satisfying
r=VA. Then r = V{Sa | a € A} = y(H), where H = U{Sa | a € A} € ideal(S").
Thus « is surjective. To show that v is injective, it suffices to show that y(H) <

¥(K) implies that H C K. Indeed, let h € H. Then h < y(H) < y(K) = VK and
soh=hA(VK)=V{hAk|kE€ Ix} Since each element k of K is weakly meet
principal, we have h = h A k = k(k{=1h) for all k € K. Moreover, k{=1h = VA,
for some subset Ay of S’ and so h = V{kA; | k € K}. By (5), this implies that
h = ks for some s € S’, proving that h € S’k C K. Thus H C K, as desired. O

(24.25) PROPOSITION. For elements a, b, and ¢ of a QLO-semiring R the fol-
lowing conditions hold:

(1) a <b<«<cl=Na < =1,

(2) a<bebl-Ye<al-Ng

(@a>M®H Va>¢;

( b

4) =N (BN a) = (be)



274 CHAPTER 24

(5) =DM a) > (- 1b)a;
(6) (cI=1p)=D(el=1q) > cf=Ng;
(7) (=)D (cl=Na) > bi-Ya;
(8) a>bebl-ta=1;
(9) a=1{"Ya;
(10) a4+ b=1<bl"Ya=aq;
(11) af= b Ae) =al"DbAal-V¢;
(12) =1 (ba) > (f=b)a;
(13) (=DB) (6D a) < e-Va.

Similarly, the analogous conditions for right residuals are also true.

ProOF. (1) By definition, c(c{~"a) < a < bso cl~Na < cf=1b.

(2) ¢ > b(b{~1e) > a(bl=1¢) and hence al~le > b=,

(3) If @ > be then b{~1a < ¢ by definition. Conversely, if 6{~1'a > ¢ then
a > b(bi=a) > be.

(4) This is an immediate consequence of the definitions.

(5) By deﬁnltlon a < b(b{=1e) and b( Da > c[ct=({"Ya)] and so a
b(b( 1) ) > ble[ct =D (b{=1a)]) = (be)[c!~ ( ~1)a)]. This implies that (bc){~a

-1) (b Ya). Conversely a > (be)[(b ) Ua] = b(c[(be)~Ma]) and so b~ 1a
[( ¢){=a]. Thus {=1 (b= a) > (be){~Ya, proving equality.

(6) By definition, b > ¢(c{=1b) and so ba > [c(c!{~1b)]a = ¢[(c!""b)a]. This
implies that ¢{~ )(ba) (c(‘1 b)a.

(7) We know that b > ¢(c{=1b

(AVAAVELY,

SO

v

b> b(bS=Na) > [e(=10)](61-a) = (1) (b1~ V).

Then cf~Na > ({=1b) (b= a) so we have (7).

(8), (9) These are immediate consequences of the definition.

(10) Since a+ b =1, we have @ = la = (a + b)a = a? + ba. In particular, a > ba
so a < b{=Ya. Conversely, a > a(b{~"a) since ab < a Ab and a > b(b{~'a) by
definition. Therefore a > a(b{~"a) + b(b{~"a) = (a + b)(b{~1a) = b{~a, proving
equality.

(11) By definition, b A ¢ > afaf~ )( Ac)] so al=b Aal=te > al=1(b A ¢).
Conversely, b A ¢ > a(al=1b) A a(al~Ve) > a(al="b A al=¢) and so bAc >
a(al=1b A af~1¢). This suffices to prove the reverse inequality, and so we have
equality.

(12) If » € R satisfles ¢r < b then cra < ba since R is positive and so ra <

~1)(ba). In particular, for r = ¢{=1b we have (c{=1b)a < {=Vba.

(13) Since b(b{~Ya) < a we have, by (12) and (1), that (c{=1b)(b{~1a) <
Db Na)] < el~Ya.

The analogous conditions for right residuals are proven in the same manner. 0O

Note that by Proposition 24.25(8) we have b(~1'1 =1 = 15{~1) for all b € R.

(24.26) ProprosITION. The following conditions on a QLO-semiring are equiv-
alent:

(1) Every element of R is left meet principal;
(2) Every element of R is left weakly meet principal.
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Proor. Clearly (1) implies (2). Conversely, assume (2). If a,b,7 € R then, by
(2) and Proposition 24.25(4), we have raAb = ra[(ra){=1b] = r(afa{~1(#(-1b)]) =
r(r{=1b A a), proving (1). O

(24.27) PrROPOSITION. If R is a QLO-semiring then:

(1) The set of all meet-principal elements of R is a submonoid of (R, -);
(2) The set of all sum-principal elements of R is a submonoid of (R, -);
(3) The set of all principal elements of R is a submonoid of (R, -).

ProoFr. (1) By Proposition 24.25(9) we see that 1 is a meet-principal element
of R. Assume that » and s are meet-principal. If a,b € R then, using Proposition
24.25(4), we note that (rs)[(rs)("DbAa) = r(s[s"V(r=Vb)Ad]) = r(r(-VbAsa) =
b A (rs)a and so rs is also left meet-principal.

(2) Again, by Proposition 24.25(9) we see that 1 is a sum-principal element of
R. Assume that r and s are sum-principal. If a,b € R then

(rs){ =V (rs)a + b] = s~V (#=Vr(sa) + b))
= s{"U(sa 4+ r{-1p)
=a+ {7 ({=p)
=a+(rs)\=1b

and so 7s is also left sum-principal.
(3) This is a direct consequence of (1) and (2). O

In particular, if R is a commutative QLO-semiring and if A is the set of all
principal elements of R which are not zero divisors then A is an @re set and we
can construct the classical semiring of fractions A~!R of R. Indeed, recall that
A7'R is defined to be (A x R)/ ~, where ~ is the equivalence relation defined
by (a,r) ~ (a’,7’) if and only if there exist elements v and u' of R satisfying
ur = u'r’ and wa = v'd’. If (a,r) and (a’,7’) are elements of A x R satisfying
ar’ = a'r then, taking u = o’ and v’ = a, we see that (a,r) ~ (a’,7'). Con-
versely, if (a,7) ~ (a’,r’) then uv’ar’ = uu’a’r and so, by Proposition 24.23,
ar’ = (uu')=V(uv'ar’) = (uu’){~1(uu'a’r) = a’r. Therefore this construction
generalizes that given in [Burton, 1975]. Note that A~!R is a semiring which is
partially-ordered by the relation a~!r < b~!s if and only if rb < as in R. In-
deed, A~!R has the structure of a lattice with operations given by a=!r Vv b=1s =
(ab)='[rb+ sa] = a™'r +b~1s and a~'r A b~'s = (ab)~![rb A sa]. Howeover,
A~!'R is not necessarily a lattice-ordered semiring since it does not follow from the
definitions that (a=!r)(b=!s) < a~lr Ab~!s.

(24.28) ProPosITION. The following conditions on an element r of a QLO-
semiring R are equivalent:

(1) r is left weakly principal;
(2) r is left principal.

Proor. Clearly (2) implies (1). Conversely, assume (1). Making use of (1) and
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Proposition 24.25(1), we see that for all a,b € R we have

ri=(a + rb) = r=Na + rb) + =10 = H=0([r=V(a + rb)])

1)[r A(a+rb)] = pl=1 [(r A a) + b

Dir(r=Ya) 4 rb] = vV [r(r("Va 4 b)]
=riDat b4 rl-No=r{-Yg 4

Furthermore, making use of Proposition 24.25(11) as well, we have

raAb=raArAb=r[ri"(ra Ab)
=[NV (ra Ar Ab)] = r(# D ra A r(+{(=1b))
= (e A (e8] = [ (@ + 0) A (b 4 2 10))
=r[r"(a+0) Ari=8) = r[rf = (@ A b) + r(=10]
=r[rrl" (@ A B)]+ 0 = r[r{ "V (a A D),

proving (2). O

(24.29) ProposITION. If a, b, and ¢ are elements of a QLO-semiring R then
a(—l)(bc(_l)) —_— (a(_l)b)c(_l)_

PROOF. As a direct consequence of the definitions, it is easy to see that both of
the mentioned expressions are equal to V{r € R | arec < b}. O

(24.30) ProPOSITION. Ifa and b are elements of a QLO-semiring R then:
(1) b= a(—l)(ab) if and only if b = a{~V ¢ for some = € R;

(2) b=a(al" b) if and only if b = ac for some ¢ € R;

3) b= (ba)a ) if and only if b = ca{~1} for some ¢ € R;

(4) b= (bal~1)a if and only if b = ca for some ¢ € R.

PRrROOF. (1) If b= a( )c for some ¢ € R then a(a{~"¢) < ¢ and so, by Propo-
sition 24 25, al [a(a )] < a( Le. Moreover, al~te < al="a(al~"¢)] and so
b=al"Ne=al"Na(al"e)] = al=1 (ab). The reverse implication is trivial.

(2) Ifb = ac for some ¢ € R then al~!(ac) > c by Proposition 24.25 and
so afa{~"(ac)] > ac. On the other hand, ac > afa{~"(ac)] by definition and so
b=ac=alal" 1)(ac)] a(af=11b). Again, the reverse implication is trivial.

The proofs of (3) and (4) are given in an analogous manner. [

(24.31) ProposITION. Ifa, b, and c are elements of a QLO-semiring R then:
u)@M*UPUaZa+u

@)qu— ) >a+b

(3) al(abt=M){- a] = abl~1;

(4) [a(pNa)=1]Na = bl=Va

ProOF. (1) From the definitions, we know that (ab{~1){="a > a. To show
that (ab{~1){=2q > b we have to show that a > (ab{=))b and this, indeed, is an
immediate consequence of the definition.
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(2) The proof of this is similar to the proof of (1).

(3) Since a > (abl~1)(~1a > b we have (abl~1)(~g > b and so abl-1} >
al(abl=1){=Dg]{-1). The reverse containment follows by definition.

(4) The proof is similar to that of (3). O

(24.32) ProPOSITION. For an element a of a QLO-semiring R which is not a
unit the following conditions are equivalent:

(1) a is prime;

(2) ab{~1 = a for all b € R satisfying b £ a;

(3) ¥~Ya = a for all b € R satisfying b £ a.

PrOOF. Assume (1). If r € R satisfies b < a then r < a since b £ a and a
is prime. Therefore ab{~!) < a. The reverse inequality is trivial and so we have
equality. Conversely, assume (2) and let b,¢ € R satisfy b,¢ £ a and bc < a. Then
b < act~1 = a, a contradiction. Thus a is prime, proving the equivalence of (1)
and (2). The equivalence of (1) and (3) is proven similarly. O

(24.33) CoROLLARY. Ifb is a prime element of a QLO-semiring R then a{~1b
and ba‘~1) are also prime for all a £ b in R.

PROOF. Assume that ¢ £ a{~1b in R. By Proposition 24.25(4), we have
A= (al=1) = (ac)\~1b. Since ¢ £ a{~1b, ac £ b and so, by Proposition 24.32,
=(at=1b) = b. But b < al"1b < =1 (al-1b) so we have c{=1(al-1b) =
al=1b, proving that a{~''b is prime by Proposition 24.32. Similarly, baf=! is
prime. [

(24.34) PrROPOSITION. Let a be an element of a QLO-semiring R satisfying the
condition that {r € R | r > a} has a unique minimal element c. Then ac{~1!) is
prime.

PrRoOOF. If 7 and ' are elements of R satisfying 77/ < ac{~1) then rr'c < a.
Assume that » £ ac{=1). Then r’c £ a and so a < a + r’c < ¢. By the minimality
of ¢, this implies that a + ¢ = ¢ and so rc¢ = r(a + r'¢c) = ra+ rr'c < a. Thus
r < ac{=1) proving that ac{~1) is prime. O

(24.35) PrOPOSITION. Let a be an element of a QLO-semiring R and let U be
a nonempty subset of R. Then:

(1) (vU)Va=A{{"Na|beU};

(2) a(vU)= = Afabl=V |b e U};

(3) at=HAU) = A{al"Db |be U};

(4) (AD)at=) = A{bal=D | b€ U}.

ProoF. (1) If b € U then VU > b implies that b{~Ya > (VU){~a and so
c=Ab"Va|be U} > (VU)Na. Conversely, b~1a > ¢ for all b in U and so
(VU)e = V{be | b € U} < a. Therefore ¢ < (VU)!~!a, proving equality.

(2) This is proven similarly.

(3) Note that a[al~"}(AU)] < AU < b for all b € U and so a{~1(AU) < al=1b
for all bin U. Thus al~"N(AU) < d = A{a{"1b | b € U}. Conversely, d < a{~1b
and so ad < b for all such b. Thus ad < AU and so d < a{=1)(AU), proving equality.
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(4) Note that [(AU)al=1]a < AU < b for each b € U and so (AU)a{~1) < bal-1)
for all such b. Therefore (AU)al~1) < ¢ = A{bal~1) | b € U}. Conversely, if
b € U then bal~" < ¢ and so b > (ba{~1)a > ca. Therefore AU > ca and so
(AU)a!=1) > ¢, proving the desired equality. [

(24.36) PropPOSITION. Let R be an entire QLO-semiring. For any subset A of
R and any nonzero left principal element b of R we have b\~ (vVA) = v{b{-1a |
a € A}

PRrOOF. Set d = VA. By Proposition 24.23 and the fact that b is weakly left
meet principal, we have b{~=1d = b= (b(b{-1'd)) = b~ (d A b). Since R is a
QLO-semiring we then have

b -1d = bl=(dAb) = b (v{aAb]|a e A))
= b (v{p(b!"Va) | a € A}) = b Vp[v{p!"Na | a € A}
=v{t~ta]ae 4}

O

(24.37) CoROLLARY. If R is an entire QLO-semiring in which 1 is compact
then every left principal element of R is compact.

Proor. If b is a left principal element of R and A is a nonempty subset of R
satisfying b V A then, by Proposition 24.36, 1 = b(‘l)(VA) = v{¥\-Ya|a € A}.
Since 1 is compact, there exists a finite subset A’ of A such that 1 = v{b{-Va|a e
A’} = b1 (VA’) and so b < VA', proving that b is compact. O

Let & be a nonzero left principal element of an entire QLO-semiring R. By
Proposition 24.25(11) and Proposition 24.36 we see that b defines a congruence
relation =, on R by setting » =; s if and only if b{=1p = pi=1g,

(24.38) ProOPOSITION. The following conditions on an element a of a QLO-
semiring R are equivalent:

(1) abl=1 = b-Nq for all b € R;
(2) Ifby-...-bpy <athenby-...-byby <aforalln>2andallby,... b, € R.

PRrOOF. (1) = (2): Set ¢ = bs-...-b,. Then bjc < aand so b < act=1) = cf~1q,
proving that by - ... - b,by = ¢b < a.

(2) = (1): For any r € R, if rb < a then, by (2), br < a. Then (1) follows from
the definitions. O

(24.39) PropPoSITION. Let R be a CLO-semiring and let A be a nonempty set.
Then S = RA*4 with operations @ and ® defined by

(1) (s® s')a,d) = s(a,a’)+ s'(a,a’);

(2) (s©s')(a,a') = V{s(a,b)s'(b,a’) [b € A};
is a semiring. Furthermore, if D is a nonempty set then (RP*4 A) is a left S-
semimodule, with scalar multiplication defined by

(sf)(d,a) = A{f(d,b)s(a,b){~1 | b e A}.
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PrOOF. The proof that S is a semiring is straightforward, as is the fact that

(R4, A) is an abelian monoid.
If s,s € S, f € RP*4  and (d,a) € D x A then, by Proposition 24.35 and
Proposition 24.25(4), we have

[(s© ') f)(d, a) = A{f(d,b)[s ©s')(a, )" | b € A}
= A f(d, b)[V{s(a, c)s'(c,b) l ce A) b e A}
= AMf(d, b)[s(a, e)s'(c, )] [ b,c € A}
= AM[f(d, b)s'(c, )" Ns(a, ¢)=1) | b, c € A}
= [s(s'f)](d, a)

and so (s @ s')f = s(s'f).
If s€ S and f,g € RP*4 then, by Proposition 24.25(11),

[s(f Ag)l(d,a) = A{(f A g)(d, b)s(a,b)\=1) | b € A}
= A{f(d,b)s(a,b)\" 1 A g(d, b)s(a,b) =) | b € A}
= (sf)(d,a) A (sg)(d,a)

for all (d,a) € D x A and so s(f Ag) =sf A sg.
If s,s' € S and f € RP*4 then for each (d,a) € D x A we have, by Proposition
24.35,

[(s + s")f1(d, a) = A{f(d, )(SVS)(G b)=1 b€ A}
= A{f(d, b)s(a,b)\=1) A £(d,b)s'(a,0)"1) | b € A}
= [sf A S fI(d, a)

andso (s+s')f =sf ANSf.
If f € RP*A and (d,a) € D x A then

(1sf)(d,a) = A{f(d, )0 | a#be A} A f(d,a)1~Y) = f(d, a)

and so lsf = f.

Finally, if e € RP*4 is defined by e(d,a) = 1 for all (d,a) € D x A then
eANf=fAe=cforall fe RP*A Moreover, ifsESand (d,a) € D x A then, by
Proposition 24.25(8), we have se(d,a) = A{ls(a, b))~} |be A} =1= e(d a) and
sose = e. If f € RP*4 and (d,a) € D x A then (0f)(d,a) = A{f(d,5)0¢"1) | b e
A}=1landso0f =e. O

Note that we can take the particular case of D being a singleton and thus see
that if R is a CLO-semiring and A is a nonempty set then (R4, A) is a left S-
semimodule, where S = RA%4 is the semiring defined in Proposition 24.39. Also,
note that, in this case, if we take R = B we come back to the semiring S constructed
in Example 22.8.

Furthermore, we remark in passing that it is possible to consider residuation in
more general situations. For example, if R is a CLO-semiring and M 1is a partially-
ordered left R-semimodule then for each pair m, m’ of elements of M we can define
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m'm{~1) to be the element V{r € R | rm < m'} of R. See, for example, [Johnson
& Johnson, 1970]. However, we will not pursue this matter further here.

In Proposition 6.48 we showed that if R is a simple semiring, and hence, in
particular, if R is a CLO-semiring, then for each 1 # d € R the set I; of all d-small
elements of R 1s an ideal of R. It is also immediate that the set I; of all 1-small
elements of R 1s all of R. If d < d’ are elements of a CLO-semiring R and if a € I4
then a +b = 1 implies that d+ b = landsod +b=d+d +b=d +1 = 1.
Therefore a € Iy. Thus Iy C Iy

(24.40) ProrosiTION. If R is a CLO-semiring in which 1 is compact and if
d € R then I; = (a] for some a € 1.

PRroOF. The result is clearly true for d = 1 and so we can assume that d # 1.
Set a = VI;. We claim that a € I;. Indeed, assume that a +b = 1. Since 1 is
compact, there exists a finite subset U of Iy such that VU + b = 1. Since I; is an
ideal, VU € I; and so this implies that d + b = 1. Hence a € I;. This implies that
I; C (a]. Conversely, if a’ € (a] then a’ + a = a € I; and, since the ideal I; is
strong by Proposition 6.48, we see that a’ € I, proving equality. O

In Chapter 18 we considered nuclei on partially-ordered semirings. We now turn
to consider them in the special case of CLO-semirings and QLO-semirings.

(24.41) PropPosITION. If R is a CLO-semiring in which 1 is compact then the
function o: R — R defined by d — Al; is a nucleus.

ProoF. If d < d’ are elements of R then, as we have noted above, Iy C Iy and
so o(d) < o(d’). Moreover, we know that if d € R then d € I3 and so d < o(d) and
similarly o(d) < 02(d). Suppose that a is a o(d)-small element of R. If a +b =1
then o(d) 4+ b = 1 and so, by the compactness of 1, there is a finite subset U of I4
satisfying VU +4- 5 = 1. But I; is an 1deal of R so VU € I; and hence d + b = 1.
Thus a is d-small. This shows that Iy = I,(4) and so o(d) = 6?(d).

Finally, assume that d and d’ are elements of R and that o(d)o(d’)+b = 1. Then
o(d)+b=1and o(d')+ b =1 and so, since o(d) is d-small and o(d’') is d’-small,
we have d+b=1=d +b. Thus dd' +bd =d' so1l=dd +bd +b=dd +b,
proving that o(d)o(d’) is dd’-small or, in other words, that o(d)o(d’) < o(dd’). O

(24.42) ExaMPLE. [Banaschewski & Harting, 1985) If R is the semiring of open
subsets of a topological space X and d € R then a € R is d-small if and only if
every closed subset of X contained in a is contained in d. In particular, if X is a
Ti-space then o is the identity map on R. The converse is false.

(24.43) ProrosiTION. If R is a QLO-semiring then a function v:R — R is a
nucleus if and only if v(b)r(a)\=1) = v(b)al~1) and v(a){~v(b) = al~11u(b) for all
a,beR.

PROOF. Assume that v is a nucleus and let a, b be elements of R. Since a <
v(a), we have v(b)v(a)l=1! < v(b)al~!) by Proposition 24.25(2). On the other
hand, [v(b)a!~"Mr(a) < ov[v(b)at=Mv(a) < v([v(b)al=Ya) < v(v(b)) = v(b) so
v(a)at=1 < v(b)r(a)!=?), proving the first equality. The second equality is proven
similarly.
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Now assume that both equalities hold for all elements a and b of R. By Propo-
sition 24.25, we see that 1 = v(a){~Yv(a) = a{~"v(a) and so a = al < v(a) for
each a € R. Moreover, if @ < b in R then a < v(b) and so, by Proposition 24.25(8),
we have 1 = al=Dy(b) = v(a){~"v(b). Thus v(a) = v(a)-1 < v(b). Ifa € R
then 1 = v(a)v(a){~1 = v(a)r?*(a){~1 and so, as before, v?(a) < v(a) < vi(a),
proving that v(a) = v?(a ) Finally, if a,b € R then ab < v(ab) implies that
a < v(ab)b\=1 = v(ab)y(b){~1) and so av(b) < v(ab). This in turn means that
v(b) < al=Yy(ab) = v(a)\"Nv(ab) so v(a)v(b) < v(ab). O

(24.44) ProprosITION. If R is a QLO-semiring and if v: R — R is a nucleus
then v(ba'=1) < v(b)al=1) and v(a!~1b) < al~Yu(b) for alla,b € R.

PrROOF. If a,b € R then v(bal~1)r(a) < v([bal~"a) < v(b) so v(bal~1) <
v(b)v(a){=1 = v(b)al=1). The other inequality is proven similarly. O

If R is a QLO-semiring, set Y(R) = {a € R | ab{~1) = b{~Ya for allb € R}. This
set is nonempty since 1 € Y(R). Moreover, as a direct consequence of Proposition
24.35 we see that Y (R) is closed under taking arbitrary meets. If R is commutative
then surely Y(R) = R. For each d € Y(R) we can define a function v4: R — R by
va:a — d(dal=1){=1) Note that v;:a+ 1 for all a € R.

(24.45) ProPosITION. If R is a QLO-semiring and d € Y(R) then vy is a
nucleus on R.

ProoF. By Proposition 24.25(2), we see that a < b implies that daf=1 > db{-1)
and so v4(a) < ng(b). By Proposition 24.31(1) we have v4(a) > a+d > a. Moreover,
by Proposition 24.31(4), we have

vﬂ@zﬂﬂﬂw“%“W“W“”:ﬂw“W“”=WW)

If a,b € R then [d ( ) ][ ~1)] < d. By Proposition 24.25(12), we have
[d(db( AN=D][db=1)al-1)] < dal 1> and so

dwd*w*mﬂ&“%“”m&“wd*ns¢
That is to say, [va(a)va(b)][(db{~)al=1)] < d. By Proposition 24.25(4), this says
that [va(a)ra(b)][d(ab){~1] < d and so v4(a)va(b) < va(ab). O

A QLO-semiring R is a Girard semiring if and only if there exists an element
d of Y(R) such that v, is the identity map on R. In such semirings the function
from R to R defined by a — da{~1!) is called the linear negation map. See [Yetter,
1989] for details. Complete boolean algebras are certainly Girard semirings.

(24.46) APPLICATION. In Example 1.10 we saw that if (M, %) is a monoid then
(sub(M), U, -) is a semiring, which is in fact easily seen to be a QLO-semiring. Note
that if A, B € sub(M) then

AB(—l):U{Cesub(M)|BC§A}:{mEM|b*m€Aforallb€B}.

An element A of sub(M) satisfies AB{~1) = B{(=1) A for all B € sub(M) if and only
fm+m' ¢ Ao m xm e Aforallmym' € M. Under the assumption that M
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is commutative, this situation was studied in [Girard, 1987] in connection with the
semantics of linear logic, developed as a suitable logic for the study of parallelism
in computer systems. For a development of proof theory using linear logic, see
[Girard, 1989]; for a sequent calculus for noncommutiative intuitionistic linear logic
based on QLO-semirings, see [Brown & Gurr, 1993b].

Given an element D of sub(M), let Sp = {4 € sub(M) | vp(A) = A}. Then
(S5,Vp,-p) is a Girard semiring with operations defined by VpA; = vp(UA;) and
A .p B = vp(AB). Rosenthal [1990] shows that in fact any Girard semiring is
isomorphic to a semiring obtained in this manner.

(24.47) ProprosITION. If R is a QLO-semiring then there exists a Girard semir-
ing S and a surjective morphism of semirings S — R.

ProoF. Let R be a QLO-semiring and set S = R x R. Define lattice operations
V and A on S by setting V(a;,b;) = (VA;, Ab;) and A(a;,b;) = (Aai, Vb;). Then
(5,V,A) is a complete lattice. Define operations + and - on S by setting (a,b) +
(c,d) = (aVe,bAd) and (a,b) - (¢,d) = (ac,dal=1 A cl=1)b) for all a,b,¢,d € R.

Clearly (S, +) is a commutative monoid with identity element (0,1). As a conse-
quence of Propositions 24.25, 24.29, and 24.35, we can verify that (S, -) is a monoid
with identity (1,1) and that multiplication distributes over addition from either
side. Furthermore, if (a,b) € S then (0,1) - (a,b) = (0,1) = (a,b) - (0,1). Thus
(S,+, ) is a semiring. As a consequence of Proposition 24.35, we also see that mul-
tiplication distributes over arbitrary joins in S and so S is in fact a QLO-semiring.

In S we see that

(a,b) - (e,d) < (e,f) @ ac<eand f< da'=1 Al
@agec(_l),fagd, and cf <b
Sa< ec(_l),a < f(_l)d, andcf <b
& (a,b) < (ect=1 A =04 cef)

and so we see that, in S, (e, f)(c,d){=1) = (ec\=1 A fi=10d, cf). Similarly,

(e, d) (e, £) = (Ve ndf=1, fe)

in S. Thus, (1,1) € Y(S) and, indeed, for each element (a,b) of S we have
(1, D)[(1,1)(a,b)=1]=1) = (a,b) and so v(1,1) is the identity map on S. This
shows that S is a Girard semiring.

Finally, we note that we have a surjective morphism of semirings y:S — R
defined by y:(a,b) —a. O

In frame-ordered semirings we can define not only infinite sums but infinite
products as well, using a construction based on that in [Levitzki, 1946]. Let R be a
frame-ordered semiring and let 8: Q2 — R. Without loss of generality we can assume
that there exists an ordinal h such that € is the set of all ordinals less than h. Then
we can define the element a = []" §(£2) inductively as follows:

(1) If h =0 then a =1,
(2) If h = k+1 > 0 is not a limit ordinal and if &' = Q\ {k} then a =
[TT" 6(2)]8(k); (3) If A > 0 is a limit ordinal then a = V{[]" 6(2') | ' C Q}.
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Note that, since R is lattice-ordered, we have [T" 8(€') C [ 8(2) whenever Q' C Q.
We can similarly define a = []' 6(Q) by changing the definition in (2) to be
a = 0(k)[T 6())-
(24.48) ExaMPLE. For infinite applications of triangular norms and conorms,
see [Gonzalez, 1999].



25. FIXED POINTS OF
AFFINE MAPS

Let R be a semiring and let M be a left R-semimodule. If a € R and m € M then
the R-affine map from M to itself defined by a and m is the function Ag p,: M — M
given by Ag m:m' — am’/+m. We will denote the set of all R-affine maps from M to
itself by Aff(M). Note that affine maps are written as acting on the side opposite
scalar multiplication, in this case on the right. We can define affine maps of right
R-semimodules in a similar fashion: if M is a right R-semimodule, if a € R, and if
m € M then we have an R-affine map pg n: M — M given by pg m:m’ — m+m'a.
These maps will be written as acting on the left.

(25.1) EXxaMPLE. Let R be a semiring and let M the the set of all functions
from N to R. This is clearly an (R, R)-bisemimodule. If S is the semiring of
all R-endomorphisms of M as a right R-semimodule, then M is also an (S, R)-
bisemimodule. Indeed, we have a morphism of semirings v: R — S defined by
Y¥(a): f—af for all @ € R and f € M. One of the elements of S not in the image
of v is the right shift R-endomorphism « defined in Example 14.34. We also have
an R-homomorphism of right R-semimodules : R — M defined by (8a)(i) = a if
i = 0 and (fa)(i) = 0 if i > 0. Combining these two, we see that for each a € R we
have an S-affine map 6, = Aq9, from M to itself defined by o,: f — af + fa for
all f € M. Maps of this form are called affine right shifts of M.

We define an operation + on Aff(M) as follows: if Aq » and Ay, are elements
of Aff(M) then Ag m +Apn = Aatb m4n. It is easily verified that (Aff(M),+) is a
commutative monoid the identity of which is the map Ag o which sends every element
m’ of M to Op. If Ao, € Aff(M) and r € R, set rA,m equal to Arg rm. This
turns Aff(M) into a left R-semimodule. Moreover, we have an R-monomorphism
from M to Aff(M) defined by m — g . Similarly, we have an R-epimorphism
from R x M to Aff(M) defined by (r,m) — Ay 1.

We can also define the product of two elements of Aff(M) to be their com-
position: Ay mAsn = Apasm4n. Again, it is clear that (Aff(M), ) is a monoid
with identity element A; ¢ which takes every element of M to itself. However,
Aff(M) is not a semiring with respect to these operations. Indeed, while it is
true that if Ay m, Apn, and A, are elements of Aff(M) then A. p(Aam + Apn) =
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AcpAa,m + AcpAp n, distributivity from the other side does not necessarily hold.
Similarly, while Ay Ao 0 = Ao,0, the same is not necessarily true for multiplication
by Ago on the left. (The structure of Aff(M) is known as a seminearring, an
interesting generalization of the notion of a semiring which we will not go into since
it is beyond the scope of this book.) Note, in particular, that if a € R and me M

then for each k£ > 0 we have A* = A« ,,, where n = =1 aiYm. In particular, if
a,m , 1=0

a is nilpotent with index of nilpotency & then m’/\zlm = (Efz_ol a’)m for all h > k.

An affine map in Af f(M) of the form A ,, for some m € M is a transformation
of M. The set Trans(M) of all transformations of M is a submonoid of (Af f(M), -).
The function M — Trans(M) defined by m — A1,m is an isomorphism from the
additive monoid (M, +) to the multiplicative monoid (Trans(M),-).

If X is any set and ¢ is a function from X to itself then a fixed point of ¢ is an
element ¢ of X satisfying ¢(z) = z. In particular, let R be a semiring and let M
be a left R-semimodule. For a € R and m € M we will denote the set of all fixed
points of the R-affine map A, n, by £(a, m). Similarly, if M is a right R-semimodule
then we denote the set of all fixed points of the R-affine map p, n by R(a,m). If
M is an (R, R)-bisemimodule, and in particular in the case M = R, then we denote
L(a,m) N R(a,m) by T(a,m). Thus L{a,m) = {m € M | m' = am’ + m},
R(a,m)={m' € R|m' =m/a+m},and T(a,m)={m' e M |m' =am' + m =
m'a + m}.” These sets may be empty. Thus, for example, if R = M = N then
L£(1,1) =R(1,1) =T(1,1) = @. If L(a,m) [resp. R(a, m)] is nonempty then we
say that the equation X = aX +m [resp. the equation X = Xa+m] is solvable in
M. If this set is a singleton, then the corresponding equation is said to be uniquely
solvable.

In what follows, when we will state results for sets of the form L(a, m), the
corresponding results for sets of the form R(a, m) will also be implied.

If R is a semiring and M is a left R-semimodule, and if A is a finite or countably-
infinite set, then the system of linear equations

{Xi=a;X;+m; |i€Aja, € Rm; € M}

can be represented as one linear equation of the form X = fX + g, where f €
Mar.(R) and g € M4 are given by g(i) = m; for alli € A and f(i,j) = a; if i = j
while f(7,j) = 0 otherwise.

(25.2) ExaMPLE. If M is a left R-semimodule then the set £(a,0p) is never
empty for any element a of R since 0y € L(a,0p). Indeed, £(1,0y) = M and
L(a,0xr) is a right ideal of R for all 1 # a € R.

(25.3) EXAMPLE. If R is a commutative semiring then clearly £(a,b), R(a,b),
and 7 (a,b) are equal for all a,b € R.

(25.4) EXAMPLE. It is clear that £(1,b) = R(1,b) = 7(1,b) for all elements b
of R. Moreover, Z(R)={be R|T(1,b) # @}.
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(25.5) EXAMPLE. If a is an infinite element of R, then a € T(1,r) for every
element r of R. In particular, if R is a simple semiring then 1 € 7(1,r) for all » in

R.

Let a be a nilpotent element of a semiring R having positive index of nilpotency
nandlet b=1+a+---+a""!. Then b € T(a,1). More generally, if a is an
element of a semiring R for which there exists a nonnegative integer n such that
l+a+---+a*=14+a+---+a"* thenb=1+a+ - -+ a™ belongs to 7(a, 1).
Such an element a of R is said to be stable and the least nonnegative integer n
such that 1+a+---+a” = 14+a+---+a"t! is the stability index of a. Note that
if @ and b are elements of R satisfying the condition that ab is stable with stability
index n, then ba is stable with stability index at most n + 1. Indeed,

l+ba+---4(ba)"T =141+ + (ab)"a
=14b[1+---+ (ab)"*]a
=1+ba+---+ (ba)"+%

Note that if a is a stable element of an additively-idempotent semiring having
stability index n then 1 +a+---+a" € I*(R).

The semiring R is simple if and only if every element is stable with stability index
0. Some conditions for the transition matrix of a graph with values in a semiring R
to be stable are given in [Wongseelashote, 1979]. Thus, if R is a bounded distributive
lattice and if n is a positive integer, any element of M, (R) is stable [Give’on, 1964].

By Proposition 20.37, we note that a semiring R is difference ordered if and only
if £(1,b+¢) C L(1,0) for all b,c € R. Also, we note that an element @ of a simple
semiring R is small if and only if 1 ¢ £(a,b) and 1 ¢ L£(b, a) for any element b of R.

(25.6) APPLICATION. One of the major motivations for the study of linear equa-
tions 1n semirings comes from graph theory. Let T’ be a directed graph on a finite
set V and let U be the set of edges of I'. Without loss of generality, we can assume
that V = {1,...,n} for some positive integer n. A path from vertex v to vertex v’
in the graph is a finite sequence of arcs of the form ((v,i2), (i2,43), ..., (Z1—1,v")).
We also assume that we have a function len: U — R* which assigns to each arc
in U a value called the length of the arc. For the sake of convenience, we extend
len to a function from V x V to Rt U {oo} by setting len(i,j) = oo whenever
(7,7) ¢ U. The length of a path P = {(v,12),...,(¢1—1,?")) is then defined to be
len(P) = Y {len(j,k) | (j,k) € P}. The Shortest Path Problem in I is that
of finding, for a given set v and v’ of vertices, a path from v to v' having minimal
length. There is no loss of generality in assuming that the vertices are numbered
such that v = 1.

The Shortest Path Problem is, to quote [Mahr, 1981], the “most famous and
important problem in combinatorial optimization”; it is extensively studied there
and in [Gondran & Minoux, 1984a], in which several solution algorithms are pre-
sented. Refer also to [Lawler, 1976] for a good introduction to this problem. For
an analysis of the algebraic complexity of path problems see [Mahr, 1982], and
for additional algorithms and explicit computer routines to solve this problem see
[Brucker, 1972], [Gallo & Pallottino, 1986, 1988], [Gondran, 1975], [Kolokol’tsov,
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1992], [Mehlhorn, 1984], [Minoux, 1979], [Moffat & Takaoka, 1987], [Shier, 1973],
[Tarjan, 1981a, 1981b], [Tong & Lam, 1996], and the other papers listed in [A.
R. Pierce, 1975]. Moreover, it is shown there that the problem can be considered
in the following setting: let R be the semiring defined in Example 1.22 and let
A = [a;;] be the matrix in M, (R) (where n is the number of vertices in V) de-
fined by a;; = len(4, j). Then solutions to the Shortest Path Problem are obtained
by finding elements of £(A,1). Refer to [Backhouse & Carré, 1975], [Carré, 1971,
1979], and [Zimmermann, 1981]. This application motivated Litvinov, Maslov &
Rodionov [1998] to refer to the problem of finding solutions of equations of the for
X = AX + B, where A, B € M,(R) for some additively-idempotent semiring R, as
the “generalized stationary Bellman equation”. For solutions to the Shortest Path
Problem in networks with fuzzy lengths, refer to [Chanas, 1987].

Martelli {1974, 1976] used similar reasoning to solve a related problem. If T is a
directed graph as above with vertex set V and if A is a set of arcs of ', let =4 be
the graph having the same set of vertices and defined by setting

=4y, o) = { [(v,v") if (v,v’? ¢ A .
0 otherwise

If v # ¢ are distinct vertices of I' then a (v,v')-cut set for I' is a set A A of arcs
of T such that in the graph I'"4 there is no path from v to v’. The family of all
(v, v')-cut sets for T' is partially ordered by inclusion. Making use of the semiring
R defined in Example 1.20, he considers elements of £(A, 1) for certain matrices A
in My (R), and in this manner identifies all minimal (v, v')-cut sets for any given
pair (v,v’) of vertices in V. A variant on this problem, in which one wants to
find the k shortest paths for some k& > 1, is discussed in [Minieka & Shier, 1973],
[Shier, 1976], and [Wongseelashote, 1976]. The analysis of this problem is done in
the additively-idempotent commutative semiring (R, @, ®), where R is the set of all
k-tuples (ay, ..., ax) of elements of R U {oo} satisfying a1 < as < -+ < ay (where
we take 0o < 00) and the operations are defined by

(1) (a1,...,ax) ® (b1,...,bx) = (c1,...,cx) with ¢; being the jth-smallest dis-

tinct element of {ai,...,ax} U {b1,...bx};

(2) (a1,...,a5) © (b1,...,bk) = (di,...,dx) with d; being the jth-smallest dis-

tinct element of {a; + b, | 1 <4,k < k}.
The additive identity of R is (oo,...,00) and the multiplicative identity of R is
(0,00,...,00).

Certain variants of the Shortest Path Problem in which the length (or cost) of
an edge in a path depends on the number of edges already passed through are
considered in [Minoux, 1976] and are solved using endomorphism semirings of N-
semimodules.

(25.7) AppLIcATION. For an example of the use of semirings to solve graph-
theoretic problems associated with the design of VLSI chips, see [Iwano, 1987].
For the application of semirings in designing reconfigurable-architecture hardware
systems using dynamic computational structures which can be used to solve graph-
theoretic problems, see [Babb et al., 1998].
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(25.8) APPLICATION. A Petri net I' is a finite directed graph the vertices of
which are partitioned into two disjoint classes, the set P = P(I') of places of the
net and the set T = T(T') of transitions of the net, satisfying the condition that
every edge of the graph either connects a place to a transition or a transition to a
place. A marking on a Petri net T is a function from P(T') to N. Each transition
t € T defines two important markings on I': the marking u; which assigns to each
p € P the number of edges from p to ¢t and the marking v; which assigns to each
p € P the number of edges from ¢ to p. If f is a markingon I' and ¢ € T satisfies the
condition that f(p) > u:(p) for all p € P then the net can be fired at ¢ to obtain
a new marking f' on T' defined by f'(p) = f(p) — us(p) + vi(p) for each p € P.
This process is denoted by f[t)f'. If a marking f’ is obtained from a marking f

by the successive firing of (not necessarily distinct) transitions ¢1, ..., {; we write f
[t1,...,tx)f’. If such a succession of firings is possible, we say that f’ is reachable
from f.

Petri nets were initially developed by Carl Adam Petri in 1962 and received
considerable impetus through their use in MIT’s Project MAC; they are of great
importance in modeling the behavior of multi-node asynchronous systems, such as
large computer networks or industrial processes. See [Peterson, 1981} or [Reisig,
1985] for an introduction to the theory and application of Petri nets. For the use
of Petri nets in the theory of discrete event dynamical systems, refer to [Baccelli et

., 1992].

IfF is a Petri net satisfying P(T') = {p(1),...,p(n)} and T(T) = {t(1),...,t(m)}
then the structure of I' can be characterized by two m x n matrices, U = [u;;] and
V' = [vy], defined by u;; = uy(;)(p(i)) and vi; = vy(j)(p(7)) for all 1 <4 < n and
1 < j £ m. Any marking f on I' can be considered as an element a; = (a1, ...,a,)
of N™ defined by a; = f(p(7)). It is clear that a necessary condition for a marking f’
to be reachable from a marking f on T is that there exist a solution to the system
of linear equations ay = ay + zU.

Several variants on the theme of Petri nets have been extensively studied, one of
the most useful being timed Petri nets. For an analysis of timed Petri nets using
semirings, refer to [Cohen, Gaubert & Quadrat, 1998].

A framework for consideration of Petri nets with values in a difference-ordered
semiring was introduced in [Golan, 1997] and extensively studied in [Wu, 1998]. Let
R be such a semiring. Given a nonempty set P (not necessarily finite), the elements
of which will be called places, and a nonempty set T (also not necessarily finite)
disjoint from P, the elements of which will be called transitions, an R-net on the
pair ' = (P,T) is a pair of functions g € RP*T) and v € RT*P). A marking
with values in R is a function f € R(P). Thus, every transition ¢t € T' defines two
markings with values in R: p;:p — p(p,t) and v;: p — v(t,p). Similarly, a guard
(sometimes also called a threshold) with values in R is a function ¢ € R(T).
Thus, every place p € P defines two guards with values in R: pp:t — p(p,t) and
vp:t — v(t,p). If t € T then the source of ¢t is {p € P | pp(t) # Or} and the
target of t is {p € P | vp(t) # Ogr}. Similarly, if p € P then the inset of p is
{t € T | vi(p) # Or} and the outset of pis {t € T'| u:(p) # Or}.

If f € RP) is a marking with values in R and if ¢t € T then we say that the
net (g,v) can be fired at ¢ if and only if f > u,. In that case, there exists a
marking f € RP) satisfying f = f” + p; and so the marking f = f” + v, satisfies
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f'+ p: = f+ v;. In this case we write f [R[t) f' and say that f’ is the marking
obtained from f as a result of firing the net at . One problem we encounter when
working over an arbitrary zerosumfree semiring which is not encountered over N is
that the marking f” above, and hence the marking f’, is not necessarily unique.
Thus, in order for our notation to be well-defined we have to have a.method of
designating a canonical element of S(f) = {f' € RP) | f [R|t) f'} to select in
case this set is not a singleton. This depends on the properties of the semiring R
and is the central and most difficult problem in applying the model given here. If
R is cancellative then it is easy to see that S(f) is either empty or a singleton so
there is no problem. If R is additively-idempotent and complete then S(f) has a
unique maximal element and we can choose that to be the canonical one. (Recall
tha by Proposition 23.5, every additively-idempotent semiring can be embedded in
a complete such semiring.) Similarly, if g € R(T) is a guard with values in R and
if p € P then we say that the net (u,v) can be activated at p to obtain a new
guard ¢’ if and only if ¢ > v, and we write g [R|p) ¢’, where g’ is a guard satisfying
g’ +v, = g+ pp. Again, since S(g) = {¢’ € R | ¢ [R|p)g’'}, when nonempty, may
not be a singleton, we need a method of designating a canonical element of this set
and that method will depend on the semiring of which we are working.

If a marking f’ is obtained from a marking f with values in R by successive
firings of a sequence w = #; ...%, of (not necessarily distinct) transitions, we write
f [R|w) f'. Thus, every marking f € R(¥) defines a subset L(f) of the free monoid
T* of all finite sequences ¢, ...t, of elements of T, defined by the condition that
w € L(f) if and only if there exists a marking f' € R(F) such that f [R|w) f’. The
set L(f) is the formal language defined by f. Similarly, if a guard ¢’ is obtained
from a guard g with values in R by successive firings of a sequence y = py ...p, of
(not necessarily distinct) places, we write g [R|y) ¢’. Thus, every guard g € R(T)
defines a subset M(g) of the free monoid P* of all finite sequences p;...p, of
elements of P, defined by the condition that y € M(g) if and only if there exists
a guard ¢’ € R(T) such that g [R|y) ¢’. The set M(g) is the formal language
defined by g¢.

If we choose R = N we obtain the usual Petri nets defined above; if we choose
R =1 we obtain fuzzy Petri nets.

(25.9) AppLICATION. For an use of fixed points of affine maps in the analysis
of the semantics of programming languages and in the definition of abstract data
types, see [Manes & Arbib, 1986]. While the explanation there is often presented
in categorical language, it is clear how the same statements can often be made in
the context of semirings and semimodules over them. The use of fixed-points of
affine maps in the study of programming languages and data types harks back to
the work of Dana Scott.

(25.10) AppricaTioN. Countably complete semirings are an appropriate frame-
work for studying recursion in database systems. Indeed, the family R of all linear
relational operators on an arbitrary database is such a semiring. The effect of sev-
eral mutual recursion operators on a database can then be evaluated as a fixed
point of a suitable affine map on a matrix semiring over R. See [Ioannidis & Wong,
1991] and [Du & Ishii, 1995] for further details.
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(25.11) ExaMpPLE. Finding fixed points of an affine map is a special case of
solving the general affine equation problem: given a left R-semimodule M and
affine functions Aqm, Ao n: M — M, find K = {m' € M | Agm(m’) = Ay n(m)}.
If R is the schedule algebra (RU {—o00}, maz,+) and M = R, the solution to this
problem is the following:

(1) If both b < a and n < m or if both a < b and m < n, then
K = {maz{m,n} ~ maz{a,b}};

(2) If (1) does not hold and if neither @ = b nor m = n, then K = g;
(3) If a = b and m # n, then

K ={z € R|z > maz{m,m'} — a};
(4) If a # b and m = n, then
K={z€ R|z <b—maz{a,a'}};

(5) If a = b and m = n, then K = R.

See [Baccelli et al., 1992] for details. Refer to the same source for consideration of
the affine equation problem also for the semiring S defined in Example 8.3t.

(25.12) ProPOSITION. Let R be a semiring and let M be a left R-semimodule.
For a,b € R and m € M we then have:

(1) Ifd € L(a,1) then dm € L(a, m);

(2) Ifd € L(a,a) then (1 4+ d)m € L(a,m);

(3) If m' € L(a,m) and if m" € L(a,0pr) then m' +m" € L(a, m);

(4) Ifc € L(a,1) and d € L(be, 1) then cd € L(a+ b, 1);

(5) L(a,m) C L(a"*, 3", a’m) for all n > 0.

ProoF. (1) - (3): These are immediate consequences of the distributive laws in
R.

(4) This follows since (a + b)ed+ 1 = acd + bed + 1 = acd + d = (ac+ 1)d = cd.

(5) If m’ € L(a, m) then, by repeated substitution, we have m’ = am’ + m =
a’m' +am+m=.... O

(25.13) PrROPOSITION. Let R be a semiring and let M be an additively idempo-
tent left R-semimodule. If a € R and m € M then L(a, m) is closed under addition
Moreover, L(a,m) C L(a+ 1,m) for alla € R and allm € M.

Proor. If m/,m"” € L(a, m) then m'+m" = am’+m+am”+m = a(m'+m")+m
so m' + m” € L(a,m). The second part is surely true if £L(a, m) = @. Otherwise,
if m" € L(a,m) then (a+1)m' + m = am’ + m + m = m' + m’ = m’ and so
m' € La+1,m). O

(25.14) ProPOSITION. Let R be a semiring and let «: M — N be an R-homo-

morphism of left R-semimodules. Let a € R and m € M. If m' € L(a,m) then
m'a € L(a, ma).

Proor. This is immediate since we have m’ = am’ 4+ m and so m'a = a(m’a)+
ma. O
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An element a of a semiring R is right quasiregular if and only if £L(a, a) # @, 1t
is left quasiregular if and only if R(a, a) # @, and it is quasiregular if and only
if T(a,a) # @. If a is a quasiregular element of R then an element of 7 (a,a) is a
quasi-inverse of a. A subsemiring R is rationally closed if and only if it contains
the quasi-inverses of each of its quasiregular elements. If {S; | i € Q} is a family
of rationally-closed subsemirings of a semiring R then N;cqS; is also rationally
closed. Thus each subsemiring R’ of R is contained in a minimal rationally-closed
subsemiring, called the rational closure of R’ in R.

(25.15) EXAMPLE. If a is an element of an additively-idempotent semiring R
then 1+ a+ - -+ a® = (1 + a)”. Moreover, a” = a"*! if and only if (1+ a)” =
(1 + a)**1. If there indeed exists a positive integer n for which this is true, then a
is quasiregular and a* = (1 + a)".

(25.16) ExaMPLE. If A is a nonempty set and R is a semiring then we had
called an element f of R{(A)) quasiregular if f(O) = 0. If f is such an element
then ¢ = lim,_ E:zl f* exists, where the limit is taken with respect to the
topology defined in Chapter 2, and is the unique member of 7 (f, f). Thus it is also
quasiregular in the sense defined here.

The rational closure of R(A) in R{{A)) is called the semiring of rational series
in A over R. A basic result in algebraic automata theory, known as Kleene’s
Theorem, states that these are precisely the formal power series which are the
behaviors of finite R{A)-automata (in the sense of [Kuich & Salomaa, 1986]). For a
generalization of this theorem to finite automata having more than one initial state
see [Kuich, 1987]: if A’ is a subset of a complete semiring with necessary summation
which contains 0 and 1 then the rational closure of the subsemiring of R generated
by A’ consists of the behaviors of finite automata the transition matrices of which
have entries in A’. A consequence of this result, known as the Schiitzenberger
Representation Theorem, is that an element f of R{{A)} is rational if and only if, for
some n > 1, there exist a morphism of semigroups u: A* — M,(R), a 1 x n vector
U, and an n x 1 vector V such that, for each w € A*, we have f(w) = Up(w)V.
For a detailed study of this semiring and its application to formal language theory,
see [Berstel & Reutenauer 1988], [Choffrut, 1992], [Salomaa & Soittola, 1978] and
[Kuich & Salomaa, 1986].

One should note that dealing with rational series can be very difficult, even if R
is very nice. Indeed, if R = Z it is undecidable as to whether a given rational series
in R((4)

(1) has a zero coefficient;

(2) has infinitely-many zero coefficients;

(3) has a positive coefficient;

(4) has infinitely-many positive coefficients;

(5) has its coefficients ultimately nonnegative;

(6) has two equal coefficients.

See Proposition 9.15 of [Kuich & Salomaa, 1986] for a proof of this, based on the
undecidability of Hilbert’s Tenth Problem. It is, however, decidable as to whether
a given rational series is equal to 0 or equal to a polynomial, and whether two given
rational series are equal.
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If the semiring R is finite and commutative then we have another means of
characterizing the rational series in A over R. If f € R{(A)) then we define the
Hankel matrix of f to be the function H(f) € R4 4" defined by H(f): (w, w') —
f(ww'). Then f is a rational series if and only if the number of distinct columns
in the H(f) is finite. If R is a field then f is rational if and only if the rank of the
matrix H(f) is finite.

Because of the importance of quasi-inverses in the solution of various problems
in applied mathematics and computer science, many algorithms have been con-
structed to compute the quasi-inverse of a quasiregular element in various semir-
ings, especially in semirings of matrices over simpler semirings. Refer, for example,
to [Gondran & Minoux, 1984a, 1984b].

(25.17) PROPOSITION. Let R be a semiring and let M be a left R-semimodule.
Then the following conditions on an element a of R are equivalent:

(1) a is right quasiregular;

(2) L(a,m) # @ for allm € M,

(3) L(a,]) # 2.

ProOF. (1) = (3): If r € L(a, a) then one easily sees that r + 1 € L(a, 1).
(3) = (2): f m € M and r € L(a, 1) then rm € L(a, m).
(2) = (1): This is immediate. O

(25.18) PrROPOSITION. Let v: R — S be a morphism of semirings. If a is a
[right, left] quasiregular element of R then y(a) is a [right, left] quasiregular element
of S.

Proor. If a is a right quasiregular element of R then there exists an element
r of R satisfying r = ar + a and so ¥(r) = ¥(a)y(r) + v(a). Thus 7(a) is a right
quasiregular element of S. The proof for left quasiregular elements is similar. 0O

(25.19) CorOLLARY. If y:R — S is a morphism of semirings and S’ is a
rationally-closed subsemiring of S then R' = v~ !(S') is a rationally-closed sub-
semiring of R.

ProofF. This is an immediate consequence of Proposition 25.18. O

If R is a semiring then a left R-semimodule M is totally [uniquely] solvable
if and only if £(a, m) is nonempty [resp. is a singleton] for each a in R and each
m in M. It is clear that a necessary and sufficient condition for M to be totally
solvable is that every element of M be contained in a totally solvable submodule
of M. If M is a totally solvable left R-semimodule and if a: M — N is a surjective
R-homomorphism of left R-semimodules then, by Proposition 25.14, we see that N
is also totally solvable.

A semiring R is right totally [uniquely] solvable if it is totally uniquely
solvable as a left R-semimodule. That is to say, R is right totally solvable if and
only if it satisfies the equivalent conditions of Proposition 25.17. Similarly, R is left
totally [uniquely] solvable if and only if R(a, b) is nonempty [resp. is a singleton]
for all @ and b in R. A semiring R is totally [uniquely] solvable if and only if
7 (a,b) is nonempty [resp. is a singleton] for all a,b € R. By Proposition 25.12(1)
we see that if R is right totally solvable then every left R-semimodule is totally
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solvable. A Lehmann semiring is a semiring R satisfying the condition that
T (a,1) # @ for every element a of R. This condition says that for every element a
of R there exists an element a* of R such that a* = aa* + 1 = a*a + 1. Note that,
as an immediate consequence of this definition, we see that aa* = aa*a + a = a*a
for each element a of R and that 0* = 1. A Lehmann semiring is'a Conway

semiring if we can choose the elements a* such that, for all @ and b in R we have
(ab)* =1+ a(ba)*b and (e + b)* = (a*b)*a™.

(25.20) ExaMPLE. From [Conway, 1971] and [Krob, 1992] we know that there
exist additively-idempotent semirings Ry and R;, each equipped with an endofunc-
tion a — a*, such that

(1) (a+b)* = (a*b)*a” and ¢~ = (a™)* (27 » a’) forall a,b € Roandalln > 1,

but there exist elements a’, b’ € Ry for which (a’b')* # 1+ d'(b'a’)* V.
(2) (ab)* = 1+ a(ba)*b and a* = (a®)* (zz - a) for all a,b € R, and all
n > 1, but there exist elements a’, b’ € Ry for which (a’ +¥')* # (a’"b')*a’".
Moreover, for each prime p there exists a Conway semiring R, such that a* =
(a?)* <Zf=_ol ai) for all prime integers ¢ # p but there exist elements a’, b’ € R,

such that o™ # (a’?)* (Ez 0 a i)

For the use of such *-operators in process algebras, see [Bergstra & Ponse, 1995].

(25.21) ExaMPLE. Clearly every totally solvable semiring R is a Lehmann
semiring. If every element of R is stable then R is a Conway semiring [Backhouse
& Carré, 1975].

(25.22) ExaMPLE. In Example 1.10 we noted that if (M, %) is a monoid then
R = (sub(M),+,-) is a semiring under the operations A+ B = AU B and AB =
{a*xb|a€ A bec B}. For each element A of R, let A* be the smallest submonoid
of M containing A. Then A* € T(A, 1g) and so R is a Lehmann semiring.

(25.23) ExaMPLE. As already noted, the semiring N of nonnegative integers is
neither right totally solvable nor left totally solvable.

(25.24) ExaMPLE. A field F' is not right totally solvable since £(1,1) =

(25.25) EXAMPLE. [Lehmann, 1977] If R is an entire zerosumfree semiring and
oo is an element not in R then, R{oo} is totally solvable and so is a Lehmann
semiring. Indeed, if a and b are elements of R{co} then, by definition, co € T (a, b).
For any element a of R there may be several ways of closing the element a*. For
example, let R = (R*{co}, +, ). Then:

(1) We can take 0* =1 and a* = oo for all 0 # a € R; or
(2) We can take 1" =co and a* = (1 —a)"! for 1 # a € R.
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(25.26) ExaMPLE. If R is a simple semiring then R is totally solvable and
hence a Lehmann semiring. Indeed, if a,b € R then, by Proposition 4.3, we have
b € T(a,b). In particular, the boolean semiring B is a Lehmann semiring. Since B
is complete by Example 22.1, we see that if A is a nonempty set then the semiring
of formal power series B({(A)) is also complete by Example 22.9 and so, by (2), it
is also a Lehmann semiring in which, for each f € B{(A)) we define f* by f*(w) =
Y50 fM(w) for each w € A*, where the the infinite sum in B is defined as in
Example 22.1.

(25.27) ExamMPLE. [Lehmann, 1977] Let R = R U {~00, 00} and extend the
natural order and addition on R to R by setting

(1) —co<r<ooforallreRR,

(2) —o+7r=—ooforallr € R,

(3) r+o00=o0 forall r € R, and

(4) —oo 4 00 = co.
Then (R, min, +) is a semiring. If we define the operator * on R by a* = 0 for all
a > 0 while a* = —oo for all @ < 0, then it is in fact a Lehmann semiring.

(25.28) ExaMPLE. If R is an additively-idempotent semiring and if a — a* and
@ — a® are functions from R to R satisfying the condition that a*,a® € 7 (a, 1) for
all @ € R then, by Proposition 25.13, the function a — a* + a® also satisfies this
condition.

(25.29) EXAMPLE. Let (sub(A*),+, ) be the semiring of all formal languages on
a nonempty set A, as defined in Example 1.11, and for each language L in sub(A*)
let I* = {0} U[UR,]?]. Then L* € T(L,A") and so sub(A*) is a Lehmann
semiring. Similarly, if S is the semiring sub(A*) U {—oo} defined in Example 3.21,
then S is a Lehmann semiring. An explicit algorithm for the computation of L™ on
the Instruction Systolic Array (ISA), together bounds on the implementation time
for computation, is given in [Lang, 1987].

(25.30) AppricaTION. The semiring S = (RA*A @, -) defined in Proposition
24.39 is a Lehmann semiring where, for each s € S we define s* € S by

s*(a,a’) = Vpx15™(a,a’)

for all a,a’ € A. Basing himself on the work of Goguen [1967, 1969], Wechler
[1986b] uses this semiring to construct a proof system for the partial correctness
of nondeterministic computer programs. To do this, he notes that the left S-
semimodule R is difference-ordered by the componentwise order induced from the
difference order on R and satisfies the condition that if f,g € R4 and s € S satisfy
f > s"gforalln €Pthen f > s*g. The elements of S are just R-valued relations
on the set A which can be considered as nondeterministic “programs” on A. The
elements of R4 can be considered as “assertions” pertaining to these programs.
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(25.31) ExamMPLE. [Kuich & Salomaa, 1986] In Application 3.19 we defined the
behavior ||.A|| of an R{{A))-automaton A = (S, M, s, P) and noted that this behav-
lor may not always exist. If M is totally uniquely solvablein R’ = Mg ,(R{{A))) and
T(M,1%) = {M*} then [|A|| always exists and equals eg M* P, where eq € (R{{A)))°
is defined by ep(so) = 1 and eg(t) = 0 for ¢ # sq.

(25.32) PROPOSITION. Every countably-complete semiring is left and right to-
tally solvable.

PROOF. Let R be a countably complete semiring and let a € R. Set a* =
Sooa’. Then aa* +1 = a* = a*a+1and so a* € T(a,1). If b € R then
a*b € L(a,b) and ba* € R(a,b). Thus R is left and right totally solvable. O

Every countably-complete semiring R is a Lehmann semiring by Proposition
25.32. In this case, we have a* = Z;’io at. If R is a countably-complete semiring
then, as a direct consequence of Proposition 4.1, we see that for all elements a and
bin R we have (a + b)* = Y52 E;‘;o al1bli] and Z;io alilpl’] = (a*b)*a* and so
(a+b)* = (a*b)*a* for all a,b € R. See [Kuich, 1987] and [Hebisch, 1990] for details.
Thus, for example, if D is a nonempty set and if R is the semiring of relations on
D as defined in Example 22.8, then for each » € R, the element r* = E?io rtis

just the transitive and reflexive closure of r.

(25.33) CoROLLARY. Any additively-idempotent semiring can be embedded in
a semiring which is both left and right totally solvable.

Proor. This is a direct consequence of Proposition 25.32 and Proposition
23.5. O

A Kleene semiring is a subsemiring S of a countably-complete semiring R
satisfying the condition that if a is in S then a* = Y o a’ is also in S. Such
semirings are Lehmann semirings since we clearly have a* € T(a, 1) for each a € S
and in fact they are Conway semirings [Conway, 1971]. The consideration of such
operations has its roots in the work of Schroder [1895] and of Dedekind. However,
unlike Kozen [1990], we will not assume that S is necessarily additively idempotent.

(25.34) PROPOSITION. A semiring R is a Lehmann semiring if and only if every
element of R is quasiregular.

PROOF. Assume that R is a Lehmann semiring. Let a € R and let b = aa* =
a*a. Then b = ab+ a = ba + a and so a is quasiregular. The converse follows from
Proposition 25.17. O

(25.35) PROPOSITION. Let v: R — S be a surjective morphism of semirings. If
R is a Lehmann semiring then so is S.

PROOF. Let s be an element of S and let a be an element of R satisfying y(a) = s.
If s* = y(a*), where a* € T(a,1g), then s* = y(aa* + 1gr) = y(a)y(a*) + 15 =
ss* 4+ 1g and similarly s* = s*s + 1s. Thus s* € T(s,15). O

(25.36) ProPOSITION. If R is a right totally solvable semiring then so is M, (R)
for each n > 1.
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Proor. By Proposition 25.17, it suffices to show that if A = [a;;] is an element
of My,(R) then £(A, A) is nonempty. Indeed, let us define matrices Ag, ..., A, in
My (R) inductively as follows:

(1) Ao = 4

(2) Ap = [ak;ij], where k55 = Qk—1:ij +ak—1;ikbk—1ak—1;kj; for b5_1 an element

of L(ak—1kk,1).
We claim that A, € £(4, A). Clearly this holds if and only if, for all 1 < 4,j < n,
we have an.;; = a;; + 22:1 @inln . To prove this, we will prove, by induction on
k, that
(*) @kij = aij + hey Ginaisn;

for all 1 < 7,5 < n. If k¥ = 0 this is trivial, since the sum over an empty set of
elements of R is 0. Assume, therefore, that k > 0 and that (*) has been established
for k — 1. Then

k k
a;; + E AipQk;hj = Qij + E @in [@k—1;hj + Qk—1;hkbk— 10K 1:k;]
h-1 h=1

h=1
+ [@ikak—1,k; + Qik@k—1:kkbk—10k—1:k;]
Mk—1 1 k-t }

=a;; + E aipGr_1;n5 | + E AihGk—1;hkDk—1Qk—1:k;
Lh=1 ] Lh=1

rk—1
= a;; + E aip (@15 +ak—-1;hkbk—1ak—1;k]’)]

+ [airbr—1ak—1;k5]

k-1 1 T k-1
= |a; + E ainak_1;05 | + |air + E ainGg—1;hk | Dk—10k—1;k5.
h=1 i L h=1

By the induction hypothesis, this equals ax—1.;j + @r—1.ikbe—1ax—11;, which is just
@k.ij, as desired. 0O

(25.37) CorROLLARY. The following conditions on a semiring R are equivalent:

(1) R is right totally solvable;
(2) My (R) is right totally solvable for alln > 1;
(3) There exists a positive integer k such that My (R) is right totally solvable.

ProoF. By Proposition 25.36 we see that (1) implies (2), and clearly (2) implies
(3). Now assume (3). Let a be an element of R and let A = [a;;] be the element
of My(R) defined by a1, = a and a;; = 0 if (¢,7) # (1,1). By (3), there exists a
matrix B = [b;;] € L(A, 1). Then, in particular,

k
bin=1+ Zambm =1+aby;
h=1

and so byy € L(a,1). By Proposition 25.17, this suffices to prove (1). O
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(25.38) CoROLLARY. If R is a Lehmann semiring so is the semiring M, (R) of
for each positive integer n.

ProoF. Let R be a Lehmann semiring. An easy adaptation of the proof of
Proposition 25.36 shows that if A € M,(R) then there exists an element A* €
T(A,A). If I is the multiplicative identity of M, (R), we then see that A+ I €
T(A, D). O

Several algorithms for the computation of A* for a square matrix A over a
Lehmann semiring R, including parallel computation models, are given in [Abdali,
1994] and [Abdali & Saunders, 1985].

(25.39) ProprosITION. The following conditions on a semiring R are equiva-
lent:

(1) R is a Lehmann semiring;
(2) Mp(R) is a Lehmann semiring for all n > 1;
(3) There exists a positive integer k such that My(R) is a Lehmann semiring.

ProoOF. The proof is the same as the proof of Corollary 25.37. O

(25.40) CoROLLARY. Let R be a semiring and let A be a countably-infinite set.
If S =My ,.(R) is a Lehmann semiring then so is R.

ProoF. Assume S is a Lehmann semiring and let a € R. Let B = [b;;] be
the element of S defined by 5,1 = a and b;; = 0 for (¢,j) # (1,1). Then there
exists a matrix B* = [¢;;] in S satisfying BB* + I = B* = B*B + I, where |
is the multiplicative identity of S. Multiplying out, we see that this means that
¢11 € T(a,1). Thus R is a Lehmann semiring. O

(25.41) ProPoSITION. If R is a simple semiring and A € M,(R) for some
n > 1, then we can select A* = I+ A+ ---+ A" where I is the multiplicative
identity of M, (R).

Proor. This is an immediate consequence of the construction in Proposition
25.36, beginning with the choice of a* = 1 foralla € R. O

Let R be a semiring and let A be a set which is either finite or countably infinite.
Set S = M4(R) if A is finite or S = My ,.(R) if A is countably infinite. If S is
a Lehmann semiring then, by Corollary 25.39 and Corollary 25.40, we see that
Ma/(R) is a Lehmann semiring for each subset A’ of A. Let M € S and assume

that M can be written in block form as [g g

Then, by assumption, there exists a matrix B* € 7(B, I), where I is the identity

matrix of the appropriate size. Set U = E + DB*C. Again, there exists a matrix

F

U* € T(U,I). A straightforward calculation then shows that M™* = [H Ii} where

F=B*+B*CU*DB*, G = B*CU*, H =U*DB*, and K = U*. If S is a Conway
semiring, we can also take F = (B+CED)*, K = (E+ DB*C)*, G = B*CK, and
H = E*DF. See [Conway, 1971] for details. Indeed, a straightforward computation
shows that if M™* is always given by these conditions then R must be a Conway
semiring.

] , where B and E are square matrices.
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(25.42) ProprosITION. Let R be a Conway semiring satisfying the condition
that the semiring S = M, r.(R) is also a Conway semiring. Then any polynomial
equation of the form X =Y ,a; X' (a; € R) has a solution in R.

PROOF. Let M = [m;;] € S be the matrix defined as follows:

(1) myj; = aj for 1 < j <nand my; =0 for j > n;

(2) ma1 = ap and my; =0 for ¢ > 2;

(3) mi; = My—15-1 for 7 > 1 and j>1.

B C
DM
column matrix. By hypothesis, there exists a matrix M* = [v;;] in S satisfying

M* = MM* 4+ 1 = M*M + I, where I is the multiplicative identity of S. By

the above remark, we know that M* = [II; g} where F' = (B+ CM*D)*, K =

(M + DB*C)*,G=B*CK, and H = M*DF'. In our particular case, we obtain:
(*) v = [al + Z?z_ll ai+1vilao]

and

Then we can write M = [ }, where B = [a;], C is a row matrix, and D is a

(**) Vi1 = Vj—1,1G0V11 for all : < n.
By (*), we have
(***) v =1+ [al + Z?;ll ai+1vi100] v11.

By (**), we see that v;;a0 = (v11a0)* for all 1 < i < n. Multiplying (***) on the

right by ag and substituting these values for the v;;, we obtain
n

vi16o = ag + a1(vilag) + Y an(vi1ac)”

h=1

and so we see that v11ag is a solution of the given polynomial equation. O

Given a semiring R and an indeterminate ¢, any polynomial f = Zaiti € R[t]
defines a polynomial function f: R — R given r — Y a;rt. This function is not,
in general, monic.

Proposition 25.42 shows that if R is a Conway semiring then any polynomial
function in R has a fixed point. Baccelli et al. [1992] point out that the function
f - f is closely related to the Fenchel transform in convexity theory [Fenchel,
1949]. They also study polynomial functions over the schedule algebra, and their
applications, in detail.

(25.43) PrOPOSITION. Every entire zerosumfree semiring can be embedded in
a totally solvable semiring.

Proor. This is a direct consequence of Example 25.25. O

If U and V are nonempty subsets of a semiring R we set L(U, V) = U{L(a,b) |
a € U,b e V}. Similarly, we define R(U,V) and T (U, V).

(25.44) PropPosSITION. If H is a right ideal of a semiring R then {a € R |
L(a,H) # @} is either R or a right ideal of R.

Proor. If r,7' € L(a, H) then there exist elements b and b’ in H such that
r=ar+band r’ = ar’+b'. Therefore r+r' = a(r+r')+(b+¥)sor+r' € L(a, H).
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If »” € R then rr” = a(rr”) + br"” so rv’ € L(a, H). Hence, if L(a, H) is not all of
R, it must be a right ideal of R. O

We now turn our attention to partially-ordered semirings. In this situation, we
can not only consider the solution sets £(a, b) and R(a,b) but also see if they have
minimal elements.

(25.45) PROPOSITION. Let a and b be elements of a difference-ordered semiring
R and let r € L(a,b). Then:
(1) a®b < rforalln>0;
2) l+a+---+a™b<rforalln>0; and
(3) If a is stable with index of stability n then ¢ = (1 +a+ ---+ a™)b is the
minimal element of L(a, b).

ProoF. (1) We will proceed by induction on n. If n = 0 then r = ar + b implies
that r > b = a®. Now assume that » > 0 and that a”~!b < r. Then r = ar + b
implies that 7 > ar > a(a™~1b) = a™b.

(2) Again, we proceed by induction on n. If n = 0 the result follows from (1).
If n =1 we have (1+ a)b = b+ ab < b+ ar = r. Now suppose that n > 1 and
that ¢b < r, where c=1+a+ --+a""!. Then (14+a+---+a")b=">b+ (ac)b =
b+a(ct)<b+ar=r.

(3) If a is stable with index of stability n then surely ¢ € L£(a,b). It is the
minimal element of £(a,b) by (2). O

Recall that every additively-idempotent semiring is canonically difference or-
dered.

(25.46) PROPOSITION. Let a be an element of an additively-idempotent semir-
ing R.
(1) Ifa™ = a™*! for some nonnegative integer n then b=1+a+---+a" is the
minimal element of L(a, 1).
(2) We have a <1 if and only if 1 is an element of L(a,1). Moreover, in this
case 1 Is the minimal element of L(a,1).

ProoF. (1) This is an immediate consequence of Proposition 25.45(3).

(2) If a < 1 then, by Example 20.26, 1 = a+ 1 =al +1 and so 1 € L(a,1).
Moreover, if r € L(a,1) then » = ar + 1 so 1 < r. Thus 1 is the minimal element
of £(a,1). Conversely, if 1 is an element of £(a, 1) then, in particular, 1 = 1+ a so
a<l. 0O

Recall that simple semirings are additively idempotent.

(25.47) ProPOSITION. If a and b are elements of a simple semiring R then b is
the unique minimal element of L(a, b).

PRroOOF. Since R is simple we have 1 = a+1 and so b = (a + 1)b = ab + b,
proving that b € L(a,b). If r € L(a,b) then r = ar + b so b < r. Thus b is the
unique minimal element of £(a,b). O
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(25.48) ProOPOSITION. Ifa and b are elements of a lattice-ordered semiring R
then db = b for alld € L(a,1).

PRroOF. By Proposition 25.12 we know that db € £(a, b) and so b < db by Propo-
sition 25.47 since, by Proposition 21.15, R is simple. Since R is lattice ordered, we
have db < b by definition, and thus we have equality. O

In Chapter 18 we noted that extremal semirings are also additively idempotent.

(25.49) PrOPOSITION. Let R be an extremal semiring and let a be an element
of R satisfying the condition that L(a,0) = {0}. Then L(a,1) = {1} whenever
a <1, and L(a,1) = @ otherwise.

ProoF. Assume that a < 1. Then 1 = 1+ a and so 1 € £L(a,1). Conversely,
if r € L(a,1) then » = 14+ ar so 1 < r. By Proposition 25.46(2), we have r < 1
and so r = 1. Thus £(a,1) = {1}. Now assume that a £ 1. If » € £(a,1) then
r = ar + 1. Since R is extremal, this means that either r = lorr=ar. If r =1
then a < 1 by Proposition 25.46(2), counter to our assumption. Therefore r = ar
and so r € L(a,0). Thus, by hypothesis, » = 0 and so 0 = a0 + 1 = 1, which is
impossible. Thus we conclude that if a £ 1 then £(a,1)=@. O

In QLO-semirings the result is even simpler.

(25.50) PROPOSITION. Ifa and b are elements of a QLO-semiring R then L(a, b)
has a unique maximal element and a unique minimal element.

Proor. By Proposition 25.47 we know, since QLO-semirings are simple, that
L(a,b) is nonempty and has a unique minimal element b. If ¢ = VL(a,b) then
ac+b=V{ar|r e L(a,b)+b} =V{ar+b|r e L(a,b) = ¢} and so c is the unique
maximal element of £(a,b). O

(25.51) ExaMpLE. [Park, 1981) If S is the semiring sub(A*) U {—oo} defined
in Example 3.21, we can define L* = {00} U [U2,L}] for each —c0 # L € S. For
each such L, set L* = A* if L = {0} and

Lw:{WlelszL}U[L*ﬂA*]

otherwise. For each —o0o # L € S, set L® = L*UL*. Then foreach —co # L, L' € S
one can check that L* L’ is the minimal element of £(L, L") and L°L’ is the maximal
element of £{L,L’). Note that if L € S then ﬂiZOLiA“ C L%, but we do not
necessarily have equality.

Note that it is also possible to consider fixed points of nonlinear maps from a
semiring to itself, though this study is much less developed. For an example of such
a problem over the schedule algebra which arises from optimization theory, see [K.
Zimmermann, 1982]. Similarly, certain such problems over semirings of the form
M, (R({A))) arise from the study of context-free languages. These are considered
in detail in [Kuich & Salomaa, 1986]; see also [Manes & Arbib, 1986].

Another example is found in [Gondran, 1979]; there one considers a difference-
ordered semiring R and an element r of R for which there exists a natural number
p satisfying 1 +r+---+ 7 = 14+ r+ -4+ rP*. For each k > 0, let ¢, =
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(2k)!/(k+ 1)!k € N be the kth Catalan number and let t¢(r) = Ef:o cirt. Then
tp(r) =tp+1(r) = ... and ¢,(r) is the unique minimal fixed point of the function ¢
from R to itself defined by ¢: z + rz? + 1.

A different approach to such problems is described in [Wechler, 1984]. An equa-
tion of the form x = a + bz? can be transformed into a system of countably-many
linear equations in countably-many unknowns: z,41 = az, + bz,y2. This leads
to the consideration of the linear equation X = AX + C, where X is the column
vector consisting of the variables z,,, where A = [a;;] is the matrix defined by

a forallj=i-1
a;j=4 b forallj=¢4+1,

0 otherwise

and C is the column vector having a as its top entry and 0 elsewhere. If X* €
L(A,C) then the first component of X*C is a fixed point of the map z + a + bz.

Solutions of infinite systems of linear equations over semirings are studied in
detail in [Kuich & Urbanek, 1983].

One method of guaranteeing the existence of fixed points of affine maps is in-
troducing by an iterative method of some sort. In order to do this, we have to
introduce the notion of convergence of sequences of elements of a semiring.

Let R be a semiring and define addition and multiplication on RN component-
wise. We will denote the multiplicative identity of RN by fi. Then RN is also an
(R, R)-bisemimodule. Among the maps from RN to itself which we have already
noted are the affine right shifts ¢, defined in Example 25.1: for each a € 4 and
f € RN, the function o,(f) is defined by

 (a ifi=0
loa(N)](@) = { f(i-1) ifi>0’

Let R be a semiring. A nonempty subset D of RN satisfying the conditions

(1) f1 € D;

(2) D is an (R, R)-subbisemimodule of RN ;

(3) 64(D) C D for all a € R.
is called a convergence domain. A function f € D is said to be D-convergent.
If D is a convergence domain, a homomorphism of bisemimodules limp: D — R is
a limit function provided that limp(fi) = 1 and limp (o4(f)) = limp(f) for all
a € Rand f € D. The element limp(f) of R is the D-limit of f.

(25.52) ExamMPLE. [Kuich & Salomaa, 1986] A function f € RN is eventually
constant if and only if there exist a natural number k(f) and an element a of R
such that f(i) = a for all i > k(f). Note that if f is eventually constant then
f = 050050y - Tsa)-1)(afi) and so the set E of all eventually-constant
functions is contained in every convergence domain in RY . Moreover, we have a
himit function {img defined on E by limg(f) = f(k(f)). Indeed, it is easy to see
that this is the only limit function definable on E.
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(25.53) ExaMPLE. [Kuich, 1987; Karner, 1992] If R is a complete semiring it
does not necessarily follow that there exists a convergence domain D in RN and a
limit function limp: D — R given by limp (f) = 3.,y 9(2), where g(¢) = 320, £(J)
for each ¢ > 0. To see this, consider the semiring R defined in Example 22.17
together with the second of the definitions of ) given there. Under this definition
of 37, we note that ;. fi(7) = o0, and so it can define no limit function.

Let A be a nonempty set, let R be a semiring, and let S = R{(A)). If s # ¢ are
distinct elements of S, set m(s,t) = min{jw| | w € A*and s(w) # t(w)}. Pick a
real number ¢ satisfying 0 < ¢ < 1 and define a function d: S x S — R7T by setting
d(s,s) =0 for all s € S and d(s,t) = ¢™) for s #t in S. It is straightforward to
verify that d is a complete ultrametric on S (i.e. d(s,s’) < maz{d(s,s”),d(s’,s")}
for all s,¢',s” € S) and that the functions (s,t) — s+t and (s,¢) — st from S x S
to S are continuous with respect to the topology defined by this ultrametric. This
in turn defines a limit function /im on a convergence domain D in SN as follows: if
f € SN then f € D and lim(f) = s € S if and only if for each k > 0 there exists
an m > 0 such that w € A* and |w| < k imply that f(j)(w) = s(w) for all j > m.

(25.54) PROPOSITION. Let R be a semiring and let limp be a limit function
defined on a convergence domain D in RN. Let A be a nonempty set and let E be
the set of all those functions f in R{{A)N satisfying the condition that, for each
w € A*, the function f,,:N — R given by f,:n— f(n)(w) belongs to D. Then:

(1) E is a convergence domain in R{(A)N; and
(2) The function limg: E — R{{A)) defined by [limg(f)]: w — limp(fy,) for all
w € A* is a limit function on E.

ProoF. (1) Set S = R{{A)). If f,g € E and w € A* then

(f + 9uw(n) = (f + 9)(n)(w) = f(n)(w) + g(n)(w) = fu(n) + gu(n)

and so (f + ¢)w = fw + guw. Hence f+ g€ E. If s € S then

(550 (n) = (sH)(m)(w) = S {s(w) F()(w") | w'v" = w)
- Z{s Y furn(n) | W' = w)
= [ fur | w'e” = w}] (n).

Since s(w') fur € D for all w', w” € A*, it follows that (sf), € D for each w € A*
and so sf € E. Similarly, fs € E and so F is an (S, S)-subbisemimodule of SN.
Let s € Sand f € E. If w € A* then [0 (f)]w 0) = [o5(H](0)(w) = s(w)
)
)

S)-

(
and [o5(f)w(i + 1) = [o:(H] + 1)(w) = f()(w) = fu(i). Therefore [os(f))w =
os(w)(fw) € D for all w € A*, proving that o,(f) € F. Thus E is a convergence

domain.
(2) This is a straightforward consequence of the definition. O

Every element a of a semiring R defines the power sequence p, in RN given by
pa:i+ a' and the canonical sequence g, in RY given by gq: k — Zle a’. Note
that if R is additively idempotent then g,(k) = pa41(k) for alla € R and all k£ € N.
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If there exists a convergence domain D and a limit function limp: D — R such that
ga € D then we will denote limp(g,) by at(P) or simply by at if there is no room
for confusion concerning which limit function we are using. If f; + g, € D then we
denote limp (fi + ga) by a*(P) or simply by a* if there is no room for confusion.

(25.55) PROPOSITION. Let a be an element of a semiring R and let limp be a
limit function defined on a convergence domain D in RN . Then g, is D-convergent
if and only if fi + g, Is and, in this case,

(1) a* =1+at;

(2) aa* = a*a = at;

(3) Foralln >0 we have a* = Y 7_ga/ + a**la* = Y7 @/ + a*a™*!.

ProoOF. Since f; is eventually constant we know by Example 25.52 that f; € D.
Therefore g, € D implies that fi + g, € D. Conversely, if fi + go € D then
da = alfi+gal € D.

(1) Assume that a*t exists. Then

1+ at =limp(fi1) +limp(ga) = limp(f1 + ga) = a*

so a* exists. Conversely, if a* exists then aa* = a[limp(f1 + ga)] = limp(gs) = at
so at exists.
(2) and (3) follow immediately from (1). O

(25.56) PROPOSITION. Let a and b be elements of a semiring R and let limp
be a limit function defined on a convergence domain D in RN . Then gq; is D-
convergent if and only if gy, is. Moreover, in this case, (ab)*a = a(ba)*.

Proor. To prove the first assertion, it suffices to show tha. g4 € D implies
that gy, € D. Indeed, if gop € D then h = b[f; + gas]a € D and s-: og(h) + f1 € D.
But, for each n > 0, h(n) =[S ,(ab)ila = 174 (ba)’ and so [oo(h) + f1](n) =
Z?z_ol(ba)i = gpa(n). Thus gra € D. As for the second assertion, we note that
(‘Ez)*)a = [limp (f1 +gab)]a = limp (fia)+limp(gara) = limp(af1)+limp (ages) =
a(ba)*. O

If R is a semiring and if M is a left R-semimodule then the set of all functions
from N to M is a left R-semimodule with addition and scalar multiplication defined
componentwise, denotes by MN. If f € RN and if m € M then fm is an element
of MY defined by fm:i+ f(¢)m for all ¢ € N. In particular, fim is the constant
function ¢ +— m for all ¢ € N.

If D is a convergence domain in RN and if limp: D — R is a limit function
defined on D then a left R-semimodule M is compatible with limp if and only
if, for each finite set {g;,...,gn} of elements of D and finite set {m,,...,m,, m}
of elements of M satisfying Y., gim; = fim we have S llimp(gi)]mi = m.
Clearly the left R-semimodule R is compatible with any such limit function.

(25.57) ProPOSITION. Let R be a semiring, let limp: D — R be a limit func-
tion defined on a convergence domain D in RN | and let M be a left R-semimodule
compatible with D. Let a be an element of R satisfying the conditions that
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Pa,ga € D and limp(p,) = 0. Then the equation X = aX + m' is uniquely
solvable for each element m’ of M.

PROOF. Since g, € D, we know by Proposition 25.55 and Proposition 25.12 that
a* exists and that a x m’ € L(a, m’) for each element m’ of M. All we are left to
show is uniqueness. Indeed, assume that m € L£(a,m’). By Proposition 25.12(5)
we see that m = a"t'm + Y1 a'm/ for all n > 0 and so fi = (aps)m + (ga)m’
in MN. By compatibility, we therefore have m = [limp(apa)]m + [limp(ga)]m’ =
Op +a*m’ =a*m’. O

We now turn to some results due to Karner [1992, 1994].

(25.58) EXAMPLE. Let R be a semiring and let S = R{(A)) for some nonempty
set A. It is easy to see that if s € S is quasiregular then the sequence p, € S™
converges to 0gs. Therefore, by Proposition 25.57, we see that the equation X =
sX + m’ is uniquely solvable for each quasiregular s € S and each element m’ of a
left S-semimodule M.

(25.59) PROPOSITION. For a complete semiring R the following conditions are
equivalent:

(1) If 6:N — R and if there exist a natural number ny and an element a of R

such that .
> 60) =
i=0

for all n > ng then Y 8 = q;

(2) If :N — R and if there exists an element a of R such that 6(i) € L(1,a)
for all i € N then Y. 6 € L(1,a);

(3) If 6:Q — R, where Q is countable, satisfies the concition that ), . 0(i) =
Y iea 0(2) for some finite subset A of Q and all finite subsets I' of {2 con-
taining A, then )0 =3, 0(i);

(4) Givena € R, if :Q — R, where Q is countable, satisfies the condition that
for each finite subset A of Q there is a finite subset ¥(A) of Q containing A

satisfying 3 ;cy(a) (i) = @, then 350 = a.

Proor. (1) = (4): Without loss of generality we can assume that Q@ = N.
Define a sequence {A, | n € N} of finite sets inductively, by setting Ao = ¥({0})
and Ap41 = ¥(Ap U{min(N\ A,)} for each n € N. Then clearly A, C Ap4 for all
n and UneNAn = N. Now define the function 6’:N — R inductively as follows:

= 24609 | i € Ao}
( ) 0' "+1 2{0() |1 € Anpa \ An}.
then 3, ., /(1) = X o;¢4, 0(6) =a and so, by (1), 320 =370 = a.
(4) = (3): This is immediate.
(3) = (2): Suppose 8(i) € L(1,a) for all i € N Define §":N — R by setting
¢’'(0) = a and ¢'(i 4+ 1) = 6(¢) for all i € N. Let A = {0}. Then for all finite subsets
[ of N containing A we have )3, 0'(¢) = )5, /(i) and so

a+26:20’226"(i):

iEA
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(2) = (1): Assume that 3.7, 0(:) = a for alln > ng. Define a function : N — R
by setting 8'(i) = 8(no + 1+ 1) for all i € N. Then

no+i no+i+1
a+0() = > 8 +b(no+i+ )= Y. 6()0() =a
j=0 j=0
for all 7 € N and so
Do=> 0+ 0()=) 0=a
i=0 i>no

and we are done. O

(25.60) ProPOSITION. For a complete semiring R the following conditions are
equivalent:

(1) If6:Q — R is a function and if a € R satisfies the condition that im(f) C
L(1,a) then Y0 € L(1,a);

(2) If 0: Q2 — R is a function satisfying the condition that for some fixed finite
Ao C Q and all finite Ao C A C Q we have >, ., 0(i) = a then ) 0 = a;

(3) If 0:Q — R is a function satisfying the condition that for some fixed a € R
and for all finite A C Q there is a finite subset ¥(A) of Q containing A and

satistying 3 ;e () (1) = a, then 370 = a.

ProoF. Note that R is partially-ordered by the relation a < b iff there exists a
¢ € R satisfying a + ¢ = b.

(1) = (3): Let 8:Q — R be a function and let @ be an element of R such that
the conditions in (3) are satisfied. Set I' = ¥(2) and a = 3, , #(¢). Then for each
J € Q\ A we have

a<atb()= Y < Y. d6i)=a

ieAu{j} iey(AU{j})

and so theta(:) € £(1,a) for each 7 € Q. Therefore, by (1),

Zﬂ:a+ Z 6(3) = a.

1€Q\A

(3) = (2): This is immediate.
(2) = (1): The proof is the same as the corresponding part of the proof of
Proposition 25.59. O
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INDEX OF APPLICATIONS

Semiring theory has been developed not as an exercise in generalization for gen-
eralization’s sake but because of its value as a tool in many significant applications
in mathematics, computer science, and other fields. A sample of these applications
is given in the text, though, since our primary emphasis is on the mathematics of
semirings, most are only mentioned en passant. References are provided, however,
to allow the interested reader to pursue these on his/her own.

abelian group theory ... 8,36

analysis of computer programs ... 267,295

automata theory ... 7,11,16,17,22,28, 29,38,247, 249,292, 296
behavior of industrial processes ... 17

capacity theory ... 13

cellular automata ... 32

codes ... 10

combinatorics ... 20,36,219

communicating processes ... 17

commutative ring theory ... 54,234,235,268
computer circuitry design ... 15,16,30,244
concurrent computational systems ... 12,22,39
constraint systems ... 250

control theory ... 17

data types ... 10,290

database systems ... 290

design of fuzzy controllers and microprocessors ... 41
design of VLSI chips ... 288

design theory ... 33

discrete-event dynamical systems ... 17,36,197,211, 220, 289
flowchart schemes ... 29
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formal language theory ... 10,16,24,38,40,112, 159,290,292, 295,301
foundations of analysis ... 48,96

fractals ... 14

functional analysis ... 7,56,73,236,259

fuzzy number theory ... 249

fuzzy set theory ... 20,21,267

game theory ... 13

geometry ... 15,33

graph theory ... 11,16,17,21,36,40,211, 214,219, 220,287
group theory ... 9,85

logic ... 13,20,267,268,281

Markov processes ... 28

model theory ... 24

nonabelian group theory ... 9
noncommutative ring theory ... 8, 16,235,240
number theory ... 31

numerical analysis ... 244

operational calculus ... 96

optimal control ... 16,105,158

optimization ... 7,16,107,244,269, 287,301
pattern recognition ... 13,32

probability ... 20,105

public-key cryptography ... 7

performance evaluation ... 39

Petri nets ... 39,289

probability theory ... 13,16

quantum logic ... 60

quantum mechanics ... 267

scheduling ... 17

semantics of computer programs ... 16,21,59 66,267,290
signal processing ... 20,151

statistics ... 13,247

switching theory ... 7

task resource allocation ... 39

topology ... 7,8,13,17,59,111,280
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] A

absorbing

— element ... 8,68

— quasiseries ... 179
—series ... 179

— subsemimodule ... 165
action, atomic ... 17,159
activation ... 290
additive inverse

— in a semimodule ... 150
— in a semiring ... 48
additively

— absorbing ... 95

— idempotent semimodule ... 152
— idempotent semiring ... 3

— regular element ... 143

— regular semiring ... 144
adjoint ... 22

admissible

— morphism ... 175

—set ... 247

affine

— equation problem ... 291
—map ... 285

— right shift ... 285

algebra
—, bottleneck ... 8

—, convolution ... 30

—, Heyting ... 7

—, information ... 4

—, max-plus ... 16

— of communicating processes ... 17
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— of digraphs ... 2
—, schedule ... 16
—, switching ... 7
—, symmetrized ... 97
algebraic semiring ... 269
algebraically-closed semiring ... 43
alphabet ... 10
amplification ... 151
annihilator ideal ... 67
antisimple semiring ... 5
arc ... 21
archimedian semiring ... 67
associates ... 136
atomic action ... 17,159
attached, linealy ... 191
augmentation
—ideal ... 122
— morphism ... 109,122
austere
— semiring ... 71
— semimodule ... 155
automaton ... 38
—, cellular ... 32
—, finite ... 38

m B

bag ... 20

— element ... 14

— of a language ... 10
balanced
— element of a symmetrized algebra ... 97
— function ... 188
Bandelt semiring ... 147
basic
— semiring ... 57

— subsemiring ... 57
basis — of a semimodule ... 191
—of a topology ... 8
—weak ... 191

behavior ... 38
bimultiplication ... 160
bisemimodule ... 149
bideterminant ... 214
boolean semiring ... 7
bottleneck algebra ... 8
bounded function ... 236
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Bourne
— factor semiring ... 97
—relation ... 78,164

m C

cancellable

— element of a semimodule ... 172
— element of a semiring ... 49
—, multiplicatively ... 54
cancellative —, faithfully ... 174
—, multiplicatively ... 55

— semimodule ... 172

— semiring ... 49

canonical

— morphism of semirings ... 113
— sequence ... 303

Catalan number ... 302

Cauchy

— convolution ... 31

— product ... 37
Cayley-Hamilton Theorem ... 221
cellular automaton ... 32

center ... 3

character ... 107

characteristic

— function ... 19

— of a semiring ... 106

— polynomial ... 221

Chinese Remainder Theorem ... 118
Chu space ... 22

classical semiring of fractions ... 131
classically torsionfree ... 164
clutter ... 15

CLO-semiring ... 267

closed subset ... 53

closure

—, semisubtractive ... 75

—, strong ... 75,155

—, subtractive ... 75,155

code
—, prefix ... 10

—, variable length ... 10

coideal ... 83

coimage ... 168

cokernel ... 168

column
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—rank ... 212

— semimodule ... 212
column-finite matrix ... 27
comatrix

—, negative ... 216

—, positive ... 216
comaximal ideals ... 118
common divisors ... 135

—, greatest ... 135

compact ... 257
compactly-generated semiring ... 269
complement ... 59
complemented element ... 59
complete

— browerian lattice ... 7

— -lattice-ordered semigroup ... 267
— -lattice-ordered semiring ... 267
— semimodule ... 260

— semiring ... 247

— set of orthogonal central idempotents ... 112
completion ... 120

—, I-adic ... 120
commutative

— hemiring ... 3

— semigroup ... 1
composition
— of graphs ... 33

— parallel ... 151

cone ... 68

—, convex ... 152

—, positive ... 223
congruence relation ... 95,163
—, improper ... 95

—, nontrivial ... 95

—, proper ... 95

—, torsion ... 204

—, trivial ... 95,163

—, universal ... 163

conorm, triangular ... 13
constraint ... 250

— system ... 250

convergence domain ... 302
convergent function ... 302
convex
—cone ... 152

— subset ... 230

convolution ... 29
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— algebra ... 30

—, Cauchy ... 31

—, Dirichlet ... 31

—, local ... 31

—, Wiegandt ... 34
Conway semiring ... 294
coproduct ... 157
countably complete

— semimodule ... 260
— semiring ... 247,252
cover ... 2b3

crisp function ... 19
crucial semimodule ... 166
crux ... 165

cube ... 20

cut set ... 288

] D

Dale norm ... 139
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