
Semirings and their Applications



Semirings and their
Applications

by

Jonathan S. Golan
University ofHaifa.
Haifa. Israel

Springer-Science+Business Media, B.V.



A c.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-90-481-5252-0 ISBN 978-94-015-9333-5 (eBook)
DOI 10.1007/978-94-015-9333-5

Printed on acid-free paper

This book is an updated and considerably expended
version of the book "The Theory of Semirings,
with Applications to Mathematics and Theoretical science",
published by Longinov in 1992.

All Rights Reserved
© 1999 Springer Science+Business Media Dordrecht
Originally published by Kluwer Academic Publishers in 1999.
Softcover reprint of the hardcover 1st edition 1999
No part of the material protected by this copyright notice may be reproduced or
utilized in any form or by any means, electronic or mechanical,
including photocopying, recording or by any information storage and
retrieval system, without written permission from the copyright owner.



In memory of my mother,
Prof. Naomi Golan



CONTENTS

Preface IX

1. Hemirings and semirings: definitions and examples 1
2. Sets and relations with values in a semi ring 19
3. Building new semirings from old 27
4. Some conditions on semirings . . . 43
5. Complemented elements in semirings 59
6. Ideals in semirings ... 65
7. Prime and semiprime ideals in semirings . .. 85
8. Factor semirings .. . 95
9. Morphisms of semirings 105

10. Kernels of morphisms 121
11. Semirings of fractions 129
12. Euclidean semirings 135
13. Additively-regular semirings 143
14. Semimodules over semirings 149
15. Factor semimodules .. . 163
16. Some constructions for semimodules ... 181
17. Free, proj ective, and injective semimodules 191
18. Localization of semimodules 203
19. Linear algebra over a semi ring 211
20. Partially-ordered semirings 223
21. Lattice-ordered semirings 239
22. Complete semirings .. . 247
23. Complete semimodules . .. 259
24. CLO-semirings 267
25. Fixed points of affine maps 285

References . . . 307
Index of applications 355
Index of terminology 357



PREFACE

There is no branch of mathematics, however abstract, which
may not some day be applied to phenomena of the real world.

- Nikolai Ivanovich Lobatchevsky

This book is an extensively-revis ed and expanded version of "The Theory of
Semirings, with Applications in Mathematics and Theoretical Computer
Science" [Golan, 1992], first published by Longman. When that book went out
of print, it became clear - in light of the significant advances in semi ring theory
over th e past years and its new important applications in such areas as idempotent
analysis and the theory of discrete-event dynamical systems - that a second edition
incorporating minor changes would not be sufficient and that a major revision of
the book was in order. Therefore, though the structure of the first «dit ion was
preserved , the text was extensively rewritten and substantially expanded .

In particular , references to many interesting and applications of semi ring theory,
developed in the past few years , had to be added. Unfortunately, I find that it is
best not to go into these applications in detail , for that would entail long digr essions
into various domains of pure and applied mathematics which would only detract
from the unity of the volume and increase its length considerably. However, I have
tried to provide an extensive collection of examples to arouse the reader's interest
in applications, as well as sufficient citations to allow the interested reader to locate
th em . For the reader 's convenience, an index to these citations is given at the end
of the book .

Thanks are due to the many people who, in the past six years , have offered
suggestions and criticisms of th e preceding volume. Foremost among them is Dr.
Susan LaGrassa, who was kind enough to send me a detailed list of errors - typo­
graphical and mathematical - which she found in it . I have tried to correct them
all. During the 1997/8 academic year I conducted a seminar on semirings while on
sabbatical at the University of Idaho. Many thanks are due to the participants of
that seminar, and in particular to Prof. Erol Barbut and Prof. Willy Brandal, for
their incisive comments. Prof. Dan Butnariu of th e University of Haifa was also

IX
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very inst rume ntal in introducing me to applications of semirings in the th eory of
fuzzy sets, as where depar tment al guests Prof. Ivan Chajda, Prof. E. P. Klement
and Prof. Radko Mesiar , while Dr. Larry Man evitz of the Department of Com puter
Science at th e University of Haifa was always ready to help me understand applica­
t ions in art ificial intelligence and ot her areas of comp uter science . I also owe a large
debt to my two former Ph.D . st ude nts, Dr . Wan g Huaxiong and Dr . Wu Fuming,
who list ened patiently to my various p-baked ideas as they formed and cont ributed
many origina l insights on semiring theory, which have been incorpo rated in this
edit ion.

• • • •

Semirings abound in th e math ematical world aroun d us. Indeed , th e first mathe­
mati cal structure we encounter - th e set of natural numbers - is a semiring . Other
semirings arise naturally in such diverse areas of mathematics as combinatorics,
fun ction al analysis, topology, gra ph th eory , Euclidean geomet ry, probability th e­
ory, com mut at ive and non commutative ring th eory, optimizat ion th eory , discr ete
event dyn amical systems, auto mata th eory, form al language theory and th e math­
emat ica l modeling of quantu m physics and parallel computatio n syste ms. From an
algebraic point of view, semirings provide the most natural common genera lization
of the theories of rin gs and boun ded dist ributive la t ti ces, and the techniques used
in analysing th em are taken from both areas.

Histori cally , semirings first appear implicitly in [Dedekind , 1894] and later in
[Macaul ay, 1916], [Krull , 1924], [Noether ,1927], and [Lorenzen , 1939] in connection
with the st udy of ideals of a ring. T hey also appear in [Hilbert , 1899] and [Hunt­
ington , 1902] in connection wit h the axiomat ization of the uatural numb ers and
nonn egati ve ration al numb ers. Semirin gs per se were first considered explicitly in
[Vandiver ,"1934], also in connect ion with the axiomati zation of the arit hmetic of the
natural numbers. His ap proach was lat er develope d in a series of expos ito ry art i­
cles culminating in [Vandiver & Weaver , 1956]. Over the yea rs, semirings have been
st udied by various resear chers either in their own right , in an attempt to broaden
techniques coming from semigro up theory or ring theory, or in connect ion with
applica t ions. However , despi te such categorical pronoun cement s as "... th e above
shows th at th e ring is not th e fu ndam ental syste m for associative algebra of dou­
ble com position" (italics in th e original) found in [Vandiver , 1939], semirings never
became popular and the int erest in th em among algebraist s gradually petered out ,
alt hough it never died completely. The only at tem pt to present th e algebraic th eory
of semirings as an int egral part of modern algebra seems to be in [Redei, 1967] and
[Almeida Cost a , 1974]. Nonetheless, semirings - and semimo dules over th em - have
becom e an important tool in applied mathemati cs and theoret ical computer science
and appear , under vari ous nam es, with consiste nt and increasing frequency in th e
literature of those subjects. Were th ere more com munication between theoret ica l
algebraist s and these utilizers of algebra, it is likely that the former would find in
the work of th e la tter sufficient ly many "naturally arising" problems to revive and
revitalize research in semirin g theory in its own right , while the lat ter would find
at their disposal a supp ly of th eoreti cal results which they can use.
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Since th e results on semirings are scattered through the mathematical literature
and are for most part inaccessible, they are not easily available to those who have
to use them . A further problem is that the terminology used by different authors
is not st andard many authors use the term "semiring" for wha t we call here a
"hemiring" and vice versa. Others , translating directly from the German , use the
term "halfring" . Some do not require that a semi ring have a multiplicative identity
or even an additive zero . On th e oth er hand , some insist that multiplication , as
well as addition , be commutative. In [Gondran & Minoux, 1984], the term "dioid"
(i.e., doubl e monoid) is used in place of "semiring" and th e term "semiring" is used
in a stronger sense, while [Shier, 1973] prefers th e term "binoid" for a commutative
semiring in which addition is idempotent ; others use "dioid" for that purpose.
A categorical definition of "semiring" (namely as a semiadditive category having
one object) is given in [Manes, 1976]. To add to th e confusion , some sources, e.g .
[Sturm, 1986], use the term "semiring" to mean something else entirely. The read er
must th erefore be extr emely wary.

• • • •

The notation used throughout the book will be explained as it is introduced . In
addition , we will use the following standard notation :

lffi = { O, I },
IJ!' = th e set of all positive integers,
N = th e set of all nonnegative int egers ,
Z:: = the set of all integers ,
Q = t he set of all rational numbers ,
Q+ = th e set of all nonn egative rational numbers
IT = th e unit int erval on th e real line,
IR = th e set of all real numbers,
IR + = th e set of all nonnegative real numbers ,
C = th e set of all compl ex numbers .

If n is a positive integer th en:

Sn is th e group of all permutations of {I , . . . , n},
A n is th e group of all even permutations of {I, ... , n} .

If A and B are sets th en:

sub(A) is th e family of all subsets of A,
fsub(A) is th e family of all finite subsets of A,
BA is the set of all functions from A to B.



1. HEMIRINGS AND SEMIRINGS:

DEFINITIONS AND EXAMPLES

A semigroup (M ,*) consist s of a nonempty set M on which an associative
operat ion * is defined . If M is a semigroup in which there exists an element e
satisfying m * e = m = e * m for all m EM , th en M is called a monoid having
identity element e. This element can easily seen to be unique, and is usually
denoted by 1M . Note that a semigroup (M ,*) which is not a monoid can be
canonically emb edded in a monoid M' = M U {e} where e is som e element not
in M , and where th e operation * is extended to an operation on M' by defining
e *m' = m' = m' *e for all m' EM' . An element m of M idempotent if and only
if m *m =m. A semigroup (M ,*) is commutative if and only if m *m' =m' *m
for all m,m' E M .

A monoid (M, *) is partially-ordered if and only if th ere exists a partial order
relation ~ defined on M satisfying the condition that m ~ m' implies that m em" ~

m' * mil and mil * m ~ mil * m' for all elements m , m' , and mil in M . Basic
information on partially-ordered monoids can be found in [Fuchs, 1963].

A hemiring [resp . semiring] is a nonempty set R on which operations of
addit ion and multiplication have been defined such that the following conditions
are satisfied :

(1) (R ,+) is a commutative monoid with identity element 0;
(2) (R , ·) is a semigroup [resp. monoid with identity element 1R];
(3) Multiplication distributes over addition from either side;
(4) Or = 0 = rO for all r E R .

As a rule, we will write 1 instead of 1R when th ere is no likelihood of confusion .
Note that if 1 =0 then r = r1 =rO =0 for each element r of R and so R = {O} . In
order to avoid this trivial case, we will assume that all semirings under consideration
are nontrivial, i.e. th at

(5) 1 i= o.
Note that 0 is clearly th e only element of R satisfying (4) : if z is an element of R

satisfying zr = z =r z for all r in R th en 0 =Oz = z . The corresponding condition
for addi tion, namely th at 1 satisfies th e condit ion that 1 + r = r for all r E R, will
be discussed later .

J. S. Golan, Semirings and their Applications
© Springer Science+Business Media Dordrecht 1999
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Conditions (4) and (5) insure th at the operations of addit ion and multiplication
are not th e sam e. Even given th at th ey are not , th ese conditions do not follow from
the others .

(1.1) E X A M PL E . Consider th e set I\l together with th e operation EB defined by
let ting a EB b be th e least common mul tiple of a and b, and th e usual mul tiplication
operation ' . Then conditions (1) - (3) are satisfied , while (4) and (5) are not since
1 is th e identity element with respect to both opera t ions.

Another example is the algebra of digraphs , developed in an unpu blished
paper by Anthony P. Stone. A digraph is a pair (V, E ) consisting of a finit e set V
of vertices and a subset E of V x V of edges . Let R be th e set of all digraphs and
define addition and multiplication on R by setting (V, E )+ (V ', E ' ) = (VUV' , E UE' )
and (V, E ) · (V ' , E' ) = (VUV' , EU E'U{V x V'}) . Th en conditions (1) - (3) are
satisfied , while (4) and (5) are not since (0 ,0) is th e ident ity element with respect
to both opera t ions.

If R is th e family of all subs ets of a nonempty set X , define operat ions of addition
and multiplication on R by set ting a + b = an band ab = (a U b) \ (a n b). Then
(R , + , .) satisfi es condit ions (1), (2) , (3) , and (5) (with additive identity X and
multiplicative ident ity 0) but does not satisfy (4) .

In order to const ruct efficient computer programs for recognizing semirings, it is
somet imes helpful to reduc e th e number of axioms which need to be checked to as
small a num ber as possible . Several such reductions have been obtained , of which
th e following result is typical.

(1.2) PROPOSITION. A set R containing two distinct elem ents 0 and 1 and on
which operations + and · are defin ed is a commutative sem iring if and only if the
following conditions are satisfied for all a , b, c, d, e E R :

(1) a+O=O+a=a;
(2) a1 = a;
(3) Oa = 0;
(4) [Cae + b) + c]d = db+ [aCed) + cd] .

PROOF . Surely any commutative semiring satisfi es conditions (1) - (4) . Con­
versely, assume that th ese four conditions are satisfied . If b, d E R then bd =
[(00 + b) + Old = db+ [O(Od) + Od] = db and so multiplication is commutative. If
a, i « R th en a + b = [(a1 + b)+ 0]1 = 1b+ [a(ll) + 01] = b+ a and so addition is
commutative. If a, e, dE R th en (ae)d = [(ae + 0) +Old = aO + [a( ed)+ Od] = a(ed)
and so multiplication is associat ive. If a, b, c E R then

(a + b)+ c = (b+ a) + c = [(b1 + a) + c]l = 1a+ [bell) + el] = a + (b + c)

and so addition is associative. Fin ally, if a, b,d E R then

(a + b)d = [(a1 + b) + Old = db+ [a(ld) + Od] = db+ ad = ad + bd

and so multiplication distributes over addition. Thus R is a commutative semi­
ring . 0
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In this work we will be int erested primarily in semirings and will refer to hemir­
ings only tangentially , as necessary. T his approach is justified by th e fact th at if
(R ,+ , .) is a hem iring th en we can canonically embed it in a semiring in th e follow­
ing manner : let 5 = R x N and define op erations of addit ion and multiplication on
5 by setting (r, n)+(r/ , n/) = (r+r/ , n+n/) and (r, n )·(r/ , n/) = (nr/ +n/r+rr/ , n n/)
for all (r , n) , (r/n/) E 5 . Then (5 , + , .) can be easily verified to be a sem iring with
multiplicat ive identity (0,1) , called the Dorroh extension of R by N .

A subset 5 of a semiring R is a subhemiring of R if it contains 0 and is closed
under th e operations of addi tion and multiplication in R. If it also contains 1, it is
a subsemiring. Thus , for exa mple, if R is a semiring th en

peR) = {O} U {r + 1 IrE R}

is a subsemiring of R. If R is a hem irin g and 5 is a subhemiring of R which is a
semiring having mul tiplicative identity e th en then set R x 5 , on which we define
operations of addit ion and multiplication by (r, s) + (r" , s/) = (r + r' , s + s") and
(r , s) . (r/ , s") = (rs' + sr' + rr", ss") , is a semiring with multiplicative identity (0, e),
called th e Dorroh extension of R by 5 .

The center of a hemiring R is C(R) = {r E R I rr' = r' r for all r' E R} . This
set is nonempty since it contains 0, and it is easily seen to be a sub hem irin g of R.
If R is a semiring th en 1 E C(R) and C(R) is a subsem iring of R. T he hemiring R
is commutative if and only if C(R) = R.

An eleme nt r of a hem iring R is additively idempotent if and only if r + r = r
for all r in R. The set I+(R) of all additively-idempotent elements of R is nonempty
since i't cont ains O. The hemiring R is additively idempotent if and only if
I+(R) = R. Baccelli et al. [1992] and Gunawardena [1996] use the term "dioid" as
a synonym for "additively-idempotent semiring" . Note that if R is an additively­
idempotent semi ring then {O , I} is a subsemiring of R . Moreover , a necessary and
sufficient condit ion for a semiring R to be additivel y idempotent is th at 1 + 1 = 1.
Ind eed , thi s condition is clearly necessary while, if it holds, th en for each r E R
we have r = r (1 + 1) = r + r , prov ing th at R is additively idempotent . The
computational compl exity of det ermining whether two formulae over an additively
idempotent semiring are equivalent is discuss ed in [Hunt , 1983]. For th e complexity
of relat ed problems refer also to [Bloniarz , Hunt & Rosenkrantz, 1984]. Additively­
idempotent semirings also arise naturally in th e consideration of command algebras
for computers ; refer to [Hesselink , 1990]. Additively-id empotent semirings having
three or four elements have been compl etely classified by Shubin [1992].

An element a of a hem iring R is multiplicatively idempotent if and only if
a2 = a. We will denote th e set of all multiplicatively idempotent elements of R by
JX (R). This set is nonempty since 0 E JX (R). If R is a commutative semiring th en
JX (R) is a submonoid of (R, .). The hem iring R is multiplicatively idempotent
if and only if JX(R) = R. If 0 :j:. e E JX(R) th en eRe = {ere IrE R} is a
subhemiring of R which is a semiring , though not a subsemiring of Runless e = 1.

An element a of a hem iring R is multiplicatively regular if and only if th ere
exists an element b of R satisfying aba = a . Such an element b is called a gener­
alized inverse of a . If b is a generalized inverse of a and b' = bab, th en ab'a = a
and b'ab' = b'. An element satisfying these two conditions is a Thierrin-Vagner
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inverse of a and we have thu s seen that an element of R is mul tipli catively regular
if and only if it has a Thierrin-Vagner inverse. If a is mul tiplicati vely regular th en
ab is mul tiplicatively idempotent . Conversely, every multiplicat ively-id emp otent
element of R is sur ely multiplicatively regular. A hemiring R is multiplicatively
r egular if and only if each element of R is mul ti plicatively regular .

Set feR) = f+ (R)n JX (R). Elements of feR) are idempotent. Note that if a E
f eR) then {O, a} is a semi ring contained in R, th ough it is not a subsemiring unl ess
a = 1. The hem iring R is idempotent if it is both additi vely and multi plicatively
idempotent , i.e. if and only if R = feR).

A hemirin g R is zerosumfree if and only if r + r' = 0 implies tha t r = r' = O.
This condit ion states that the monoid (R ,+ ) is as far as possible from being a
group: no nonzero eleme nt has an inverse. Not e th at a ring cannot be zerosum­
free as a semiring. Ind eed , if R is a rin g th en -1 + I = 0 in R, while both -1
an d 1 are necessarily nonzero. Not e that every additively-idempot ent hem iring is
zerosumfree. Ind eed , if R is additively idempot ent and if r + r' = 0 then

r = r + 0 = r + (r + r') = (r + r) + r' = r + r' = 0

and similarly r' = O.
If R is a zerosumfree semiring th en R' = {O} U {r E R I rb :f. 0 for all 0 :f. b E R}

is a subsemiring of R. In order for a semiring R to be zerosumfree it suffices th at
there exist one eleme nt t E R satisfying t = t + 1. Ind eed , if such an element exists
and if r + r' = 0 then

0 = (r+ r' )t = rt + r't = r(1 +t) + r' (1 +t )

= r(1 + t ) + r' (l + 1+ t ) = (r + r') + r' + (r + r')t = r'

and so r = r + r' = 0 as well.
A nonzero eleme nt a of a hem iring R is a left zero divisor if an d only if there

exists a nonzero element b of R satisfying ab = O. It is a right zero divisor if and
only if there exists a nonzero eleme nt b of R satisfying ba = O. It is a zero divisor
if and only if it is either a left and a right zero divisor . A hemi ring R having no zero
divisors is entire. In [Kun tzmann , 1972], ent ire zerosumfree semirings are called
information algebras .

An element a of a hem irin g R is infinite if and only if a + r = a for all r E R .
Such an element is necessarily unique since if a and a' are infinite elements of R then
a = a + a' = a' + a = a' . Not e th at 0 can never be infinite since 0 + 1 = 1 :f. O. A
semiring R is simple if and only if 1 is infinite, that is to say if and only if a+ 1 = 1
for all elements a of R. Equivalently, R is simple if and only if peR) = {O , I} .
Commutative sim ple semirings are studied in [Cao, 1984] and [Cao, Kim & Roush ,
1984] under th e nam e of inclines . (But note that in [Kim & Roush , 1995] the
commutativity condition has been removed.) If R is simp le th en , in parti cular ,
1 + 1 = 1 which suffices to show that R is additively idempotent. Conversely, if
R is ad dit ively idempotent then {a E R I a + 1 = I} is a subsemiring of R and so
R is simple precisely when this subsemiring is all of R. Note that if R is a simple
semiring an d if 1 :f. a E R then ab :f. 1 for all b E R . Ind eed, if ab = 1 then
a = al = a(b + 1) = ab + a = 1 + a = 1.
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The condition that 1 be infinite is th e dual of the condit ion that Or = 0 = r Ofor
all r E R, which we have assumed among th e defining axioms of a semiring . The
opposite of the notion of simplicity is that of an ant isimple semiring: a semiring R
is antisimple if and only if R = P(R) . Any ring is ant isimple as a semi ring.

The existence of simple semi rings having mor e th an one nonzero element (see
below) shows that an infinite element a of a semiring R does not necessarily satisfy
ar = a for all 0 # r E R. An infinite element a of R having th e prop erty that
ra = a = ar for all 0 # r E R is strongly infinite.

A semiring R is semitopological if and only if it has th e additional structure
of a topological space such that th e functions R x R --+ R defined by (r , r') f---> r + r'
and (r , r') f---> rr' are continuous . If th e underly ing topological space is Hausdorff,
th en th e semiring is topological. Any semiring is topological with respect to th e
discrete topology.

Rings are clearly semirings, but th ere are many other int eresting examples of
semirings . We conclude this cha pter by assembling several such examples from
various branches of mathematics and its appl ications.

(1.3) E XAM PLE. The set N of nonnegative integers with th e usual operations
of addition and multiplication of integers is a commutat ive, zerosumfree, ent ire
semiring which is not additively idempotent . T he same is true for th e set Q + of all
nonn egative rational numbers , for th e set JR + of all nonn egative real numbers , and,
in general, for S+ = S n JR +, where S is any subring of JR . Given a fixed infinite
cardinal number c, it is also true for the set of all cardinal numbers d ~ c. Th e
semiring N is also antisimple. These semirings are among th e first mathematical
structures we encounter. Clearly N is a subsemiring of Q + and Q + is a subs emiring
of JR+ . Note that {O, 1,2 ,3}U {q E Q I q 2: 4} is an example of a subsemiring of
JR + which is not of th e form S+ for some subring S of JR .

If S is one of th e semirings r:; , Q +, or JR + and if r is an element of S satisfying
r 2: 1 then R = {a E S I a > r} U {OJ is a subh emiring of S which is never a
semiring. If 2 > r 2: 1 th en {a E lR:. I a > r } U {O , I } is a subsemiring of lR:. +.

T his example can also be extended in th e following manner: following the ter­
minol ogy of [Brunfiel, 1979], we say that a commutative semiring S is partially
ordered if th ere exists a sub set P of S satisfying th e following condit ions

(1) pn(-p) = {OJ ;
(2) P + P ~ P ;
(3) p . P ~ P ;
(4) 8

2 E P for all 8 E S.

In this case, it is clear that (P,+ , .) is a commutative zerosumfree semiring . Also
refer to [Craven, 1991].

In the most general setting, Lawvere [1964] defined the notion of a natural
number object N in an arbitrary topos. On such an obj ect one can define opera­
tions of addit ion and multiplication in such a way as to turn N into a commutat ive
semiring. This construction has important applications in the generalization of the
theory of recursive functions . See [Coste-Roy, Coste & Mahe, 1980]. Natural num­
ber obj ects have since been defined in even mor e general contexts, such as that of
arbitrary cartesian categories. See [Roman, 1989].
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Let S be a sem iring containing rn; + as a subsemiring. An invar iant metric on
S is a fun ction d: S x S -+ rn; + satisfying th e followin g condit ions:

(1) d(s, s' ) =0 if and only if s = s' ;
(2) d(s , s' ) = d(s' , s ) for all s,s' E S ;
(3) d(as , s') = ad(s, s') for all s , s' E S and all a E rn; +;
(4) d(s , s" ) ::; d(s , s') + d(s' , s") for all s , s' ;s" E S ;
(5) d(s + s" , s' + s") = d(s, s' ) for all s , s' , s" E S .

Any such invari an t metr ic defines on S t he st ruct ure of a top ological semiring. See
[Bourne, 1961/2a].

This situation arises often in ana lysis. For exam ple, let X be a com pact space and
let C+(X ) be the sem iring of all cont inuous fun ctions from X to rn; + with pointwise
ad dit ion and multip licati on . If X is a Tychonoff space, this is essent ially the Stone­
Cech com pactification of X [Acharyya , Chat to padhyay & Ray, 1993]. Define th e
invariant metric d on C+(X) by set ting dU,g) = sup{lf (x ) - g(x) 1 I x EX} .
Simi larly, if W+ is the cancellative semi ring of all convergent series of the form
f (t ) = 2::=0aneint (an E rn; +) wit h th e usual ad dition and mu ltipl ication, then
we can define an invariant metric d on W + as follows: if f (t ) = 2:aneint and
g(t ) =2: bneint th en dU,g) =2: Ian - bnl·

( 1.4) EX AMPLE. Let R be a ring. Dedekind was th e first to observe th at th e set
ideal(R ) consist ing of R and all of its ideals, with th e usual operations of addit ion
and mult iplication of ideals, is an addit ively-idem potent (a nd hence zerosum free)
semiring which need not be commuta t ive or ent ire. We will la ter see that the sam e
is t rue for the family of all ideals of a semiring.

Now let R be a com mutative ring an d let A be the set of all elements of R which
are not zero divisors . Let S = A-I R be the tot a l ring of quot ients of R. A fr a c­
tion al id eal J( of R is an R-submodule of S satisfying the condit ion that aK ~ R
for some a E A . The set f raet(R ) of all fracti onal ideals of R is closed under tak­
ing intersect ions , sums, and prod ucts. Moreover , U raet(R ), + , .) is a commuta t ive
additively-idempotent (and hence zerosumfree) semi ring with ad ditive identi ty (0)
and mu ltip licative identi ty R. T he fami ly of all finit ely-generated fractional ideals
of R is a subsemiring of t his semiring .

A commutat ive integral dom ain R is a Priifer d omain if and only if every
finitely-generat ed fraction al ideal of R has a mult ip licative inverse in f r·aet(R ). This
condition is equivalent to th e condit ion th at , in ideal(R ), intersect ion dist ributes
over addition , i.e. th at (ideal(R) ,+,n) is a semiring . See T heorem 6.6 of [Larsen
& McCarthy, 1971] or [Gil mer , 1972] for a pro of of this fact . Moreover , th e set of all
finitely-generated ideals of R is a subsemiring of this sem iring . The study of rings
with the property that (ideal(R) ,+,n) is a distribu tive lattice goes back to [Blair ,
1953]. See [Tugan baev, 1998] for a comprehensive bib liogr aphy of the many works
in this area . Noetherian Priifer domain s are called D edekind d omains . These
are precisely the commutat ive integral dom ain s having the prop er ty that each ideal
can be wri t ten as a unique product of prime ideals. T he mul t ipl ica tive th eory of
ideals of a ring is certainly one of the major sources of inspirat ion and problems in
sem iring theory.
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(1.5) EXAMPLE. Anoth er majo r source of inspiration for the theory of semirin gs
is la t ti ce theory. If (R , V, /\) is a bounded distribu ti ve la t tice havin g unique min i­
mal element 0 and unique maxima l element 1, then it is a com mutat ive, idem potent
simple semiring. Ind eed , these properties uniquely characte rize bounded distribu­
t ive lat t ices: if R is a commutative, idempotent , simple semi ring then (R, + , .) is a
bounded distrib utive lat tice having unique mi nimal eleme nt 0 and unique maximal
element 1. Anoth er well-known characte rizat ion of bounded dist rib utive lat t ices
is th e following: (R, V, A) is a boun ded dist ributive lat ti ce having uni que min imal
eleme nt 0 and unique maximal element 1 if and only if it is a commutative idem­
potent semiring and a/\(aV b) =a =aV(a/\ b) for all a,b E R . Henriksen [1958/ 9]
gives another cha racterization of the bounded distribu ti ve la t t ices in the family
of semirings by showing that a commutat ive semi ring R is a bo unded dist ribut ive
lat ti ce if and only if the following conditions are satisfied for every eleme nt a of R:

(1) ( l + a)2 = I +a=> l +a = l ;
(2) There exists a natural number n(a ) > 1 su ch that an(a) = a.

Yet another such condition is given by Glazek [1968]: a semiring R is a bounded
distribut ive lattice if and only if ab+ cd = (a + c)(a + d)(b+ cd) for all a, b, c, d E R .
Th e theory of modules ha ving th e property th at th eir la t tice of submo dules, with
th e operat ions of addit ion and intersection , is sum marized in [Tu ganb aev , 1998].

Since the du al lattice of a distribu ti ve lat tice is again distribu tive, we see th at
(R, /\ , V) is also a commutat ive, simple semiring.

As a particular case, we note tha t every fram e is a sem iring . A frame (alias
complete brouwerian lattice , a lias locale , alias local lattice , alias Heyting
algebra, alias pointless topology) is a complete la t ti ce in which meets distribute
over arb it ra ry joins. T he st udy of frames is roo ted in the topological work of
Marshall Stone [1937] as extended in [Benab ou , 1959], [Ehresmann , 1957], and
[Papert , 1959, 1964] and la ter furt her extended by Dowker , Isbell , and St ra uss and
in the logical st udies of Skolem . For further details concern ing frames, see [Birkhoff,
1973], [John stone, 1982], or [Ras iowa & Sikorski, 1963].

If a an d b are elements of a fram e (L , V, /\) then the pseudocom p lem en t of
b r elative to a , denoted (a : b), is the unique largest eleme nt c of L satisfying
b 1\ c ~ a. T he pseudocompIement of an eleme nt a of L is (0 : a) . If (0 : a ) = 0,
then a is d ense in L. The dense elements of a fram e are precisely those eleme nts
which are not zero divisors.

The sim plest example of a fram e is lffi = {O , I} . Note th at th e algebraic st ruc ture
of lffi is not th e same as that of th e field 7l. / (2) since 1+1 = 1 in lffi, whereas 1+ 1 = 0
in 7l. / (2). The variety generated by th e semi rings lffi and 7l. / (2) is cha rac terized in
[Guzman , 1992]. The semiring lffi is called the boolean semiring; it has many
app lications in automata theory (see [Eilenberg , 1974]) and in switching th eory,
where it is often known as t he switching algebra. For generaliza tion of switching
theory over ot her finit e sem irings , see [Berm an & Mukaidono, 1984] and [Muzio &
Wesselkamper , 1986]. A well-known topology on lffi is the Si erpinski topology ,
the open sets of which are 0 , {I} , and lffi. Given this topology, the semiring E
is semitopological but not topological. If R is an ad ditively-idempotent hemiring,
th en it makes sense to define the Dorroh extension of R by E in exact ly the same
way that the Dorroh ext ension of R by N was previously defined.
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The lattice of all ideals of a distributive lattice is a frame; similarly, the lattice of
all closed ideals of a commutat ive C' -algebra is also well-known to be isomorphic
to th e lattice of all open sets of a locally comp act Hausdorff space and so is a frame .
Hence th ey are canonically semirings.

Another important instance of this construction is th e following : if X is any topo­
logical space th en th e family of all closed subsets of X is a bounded distributive
lattice and hence a semiring , with addit ion taken to be intersection and multipli­
cation t aken to be union . (For a considera tion of the problem of precisely which
distributive lattices are isomorphic to lattices of closed sets, refer to [Papert , 1959].)
Similarly, th e family of all open subsets of X is a semiring , with addition taken to
be intersection and multiplication taken to be union . If R is th e semiring of all
closed subsets of a topological space X th en a basis for R is a subsemiring 5 of R
having th e prop erty th at every element of R is the intersection of elements of 5 .
Any bounded distributive lattice is isomorphic to a basis of th e semiring of closed
subs ets of a comp act topological space. For a proof, see [Sancho de Salas , 1987].

Simil arly , if R is a totally-ordered set with unique minimal element 0 and unique
maximal element 1 th en (R , max , m in) is a distributive lattice and hence a semiring.
Cechlarov a and Plavka [1996] call such semirings bottleneck algebras , to empha­
size th eir connect ion with bottleneck problems in combinatorial optimization . In
particular, we have a natural semiring structure on IT . Any subset of IT containing 0
and 1 is a subsemiring of thi s semiring. Simil arly , (f:1 U {oo} , max , min) is a zero­
sumfree commutat ive simple semiring. Note that if R is a semiring of this sort and
if 5 is any subset of R containing 0 and 1 th en 5 is a subsemiring of R. Also, note
th at if R is a bounded distributive lattice and 0 # r E R then r is idempotent so
rRr = [0, r] = {r' E R I r' :S r} is a subhemiring of R which is a semi ring in its
own right , having multiplicative identity r .

If R is a bounded distributive lattice, th en the ideal topology on R turns R intc a
semi topological semiring. Since this topology need not be Hausdorff, th e semiring
is not necessarily topological. Condit ions for R to be a topological semiring arc
discussed in [Murty, 1974].

(1.6) E X A M PLE . An element a # 1M of a monoid (M, ') is absorbing if and
only if ab = a = ba for all b EM. If M has an absorbing element, it is clearly unique.
From th e definit ion of a semiring R, we note th at th e mon oid (R, .) has an absorbing
element O. Conversely, let (M,·) be a multiplicative monoid having an absorbing
element O. Define addition on M by setting a + b = 0 for all a, b E M . Then
(M ,+) is an abelian semigroup , (M , .) is a monoid , and multiplication distributes
over addit ion from either side. Let u be an element not in M and set R = M U {u} ,
and define operations on 5 as follows:

(1) If a , b E M th en a + band ab are as in M ;
(2) If a E 5 th en a + u = u + a = a and au = ua = u .

Then (5, + , .) is a semiring with addi tive identity u, which is both zerosumfree and
ent ire. See [LaGrassa, 1995] .

Thus the theory of multipli cative monoids with absorbing elements can be sub­
sumed in th e th eory of semirings. Such monoids arise in various cont exts, such as
th e modeling of knapsack problems in combinatorics, which in turn have important
applications in th e construction of public-key cyphers.
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(1.7) E XAM PLE. Let R- f il be th e set of all topologizing filters of left ideals of a
ring R (which , in a natural way, correspond to th e linear topologies on R), and let ·
denote th e Gabriel product of such filters . T hen (R- f il , n, ·) is a simple additively­
idempotent semiring which is not , in general , commut at ive. The structure of R- f il
and its use in ring th eory have been consid ered in detail in [Golan, 1987].

(1.8) EXAMPLE . There is no lack of finit e semirings. For example, for each
positive integer n consider the set X n = {-oo, 0,1 , ..., n} in which - 00 is assumed
to satisfying th e conditions that -00 :S i and - 00 + i = -00 for all i E X n .

Define operations of addition and multiplication on X n by i + h = max{ i, h} and
ih = m in{i + h ,n} . This gives X n the structure of a commutative zerosumfree
semiring , first studied in [Smith , 1966].

Another important family of finit e semirings is considered in [Alarcon & An­
derson , 1994a]. Let n > 1 be an integer and let 0 :S i :S n - 1. Set B(n , i) =
{O, 1, ... , n - I} and define an operation EB on B( n , i) as follows: if a , b E B(n, i)
th en a EB b = a + b if a + b :S n - 1 and , otherwise, a EB b is the unique element c of
B( n , i) satisfying c == a + b (mod n - i ). Define the an operation 8 on B(n , i) sim­
ilarly. Thus, B(n ,O) is a ring isomorphic to 71. / (n ) and if i > 0 th en B(n , i) \ {O} is
th e cyclic semigroup generated by 1 of period n-i and index i. Clearly lE = B(2, 1).

(1.9) EXAMPLE . In many categorical situations we have "sums" and "products"
satisfying semiring-like conditions. Rather than enter into such abstract a in detail
which we have no int ention of pursuing, we present here some special cases which
suffice to illus tr ate th e general situation.

Let A be the family of isomorphism classes of additive abelian groups and denote
by [G] the isomorphism class of a group G. Then A is a commutative semiring
under th e operations of addition and multiplicat ion defined by [G] + [Hi = [G EB H]
and [G][H] = [G 0 H] . The multiplicat ive identity of A is [71.] . This semiring is
considered in [Feigelstock , 1980]. More generally, if R is an arbit rary ring and if
R - Mod - R is th e family of isomorphism classes of (R , R)-bimodules then we
can define operations of addition and multiplication on R - Mod - R by setting
[M] + [N] = [M EB N] and [M][N] = [M 0 R N] .

Let C be th e family of isomorphism classes of countable Boolean algebras and
denote by [R] the isomorphism class of a Boolean algebra R. Then C is a com­
mutative semiring und er the operations of addition and multiplication defined by
[R] + [5] = [R EB S] and [R][5] = [R* S], where EB denotes th e direct sum of bool ean
algebras and * denotes th e free product . The additive identity of C is th e class
of one-element algebras and its multiplicative identity is th e class of two-element
algebras. This semiring is considered by Dobb ertin [1982] and R. Pierce [1983,
1989].

If D is the family of homeomorphism classes of compact zero-dimensional metric
spaces of finite typ e and if [X] denotes the homeomorphism class of a space X , th en
D is a countably-infinite commutative semiring under the operations of addition and
multiplication defined by [X] + [Y] = [X +Y] and [X][Y] = [X x Y], where X +Y is
th e disjoint union of X and Y and X x Y is the cartesian product of X and Y. The
additive identity of D is [0] and the multiplicative identity is [{x}] . This semiring
is studied in [Pierce, 1972], where its additive structure is completely described.
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Simil arly, if G is a finit e grou p th en a finit e G-set S is a finit e set together with a
left action of G on it. Th e family of all G-isomorphism classes of finit e G-sets forms
a commutative semiring A+(G) in which addition is defined by disjoint union and
multiplication by th e cartesian prod uct with diagonal action . This const ruc t ion is
given in [tom Dieck, 1979].

(1.10) E XAMPLE. If (M , *) is a semigroup , th en th e fam ily R = sub(M) of all
subsets of M is a hemiring, with operations of addition and multiplication given
by A + B = Au Band AB = {a * b I a E A , bE B} . The additive identity is 0 .
If M is a mon oid , sub(M ) is a semi ring with multiplicative identity {1M} . We will
make mu ch use of semirings of this form later.

This example is weakened in [Kuntzmann , 1972], where th e semigroup (M, *) is
replaced by a partial semigroup , i.e. a nonempty set M with an operation * defined
on subset of M x M but subjec t to th e condit ion that if a , b, and c are elements of
M for which a * (b*c) and (a *b)*c are both defined , th en th ese two elements must
be equal. Partial semirings and other partial algebras are finding more and mor e
applications in th e th eory of abs tr act data types in theoretical computer science.
Refer to [Manes & Arbib, 1986] and [Reichel, 1987].

If R is a sem iring then we can also define th e structure of a semiring on sub(R)
by setting A + B = {a + b Ia E A ;se B} and AB = {ab Ia E A ;bE B} .

(1.11) EXAMPLE. The following example presents one of the most important
applications of semiring th eory. If A is a nonempty set th en th e free monoid A * is
th e set of all finit e strings al a2 . . .an of elements of A (including th e empty string,
which is denoted by 0 ). Two strings al a2 . . .an and bl b2 ... bm are equa l in A * if
and only if n = m and a; = b, for all 1 :S i :S m. We define on A * the operation of
concatena t ion:

Th e set A* is a monoid under this operation , th e identity element of which is O.
The elements of A are oft en called symbols or le tter s and th e elements of A* are
called words on th ese symbols. If w = al a2 . . .an is a word in A * \ {O} th en th e
natural number n is th e lengt h of w and is denoted by Iwl; by convent ion, 101 = O.
Clearly Iww' l = Iwl+ Iw'l for all words w and w' in A*. For each a E A and w E A*
we denote by Iwla the number of occurrences of a in th e word w . The function p
which assigns to each wE A* th e function p(w) :A --+ N defined by p(w) :a f---> Iwla

is called the P arikh m ap ping .
Subsets of A* are (formal) languages on the a lphabet A. If B :F 0 is a

submonoid of A* and B' = B \ {O} th en C = B' \ (B') 2 is a minimal set of
generators of B , called th e base of B . A base of a free submonoid of A * is called
a (variable len gth ) code over the alphabet A. Thus , for example, a nonempty
subset C of A' \ {O} satisfying the condition that uw rf:. C for all u E C and
o :F w E A* is a code . Codes of this type are known as prefix codes . Cod es
have th eir orig in in Shannon 's early work on information transmission , though they
were given an algebraic formulation on ly much later. For an introduction to formal
language theory, see [Rozenberg & Salomaa, 1980]; for codes and th eir uses, refer
to [Berstel & Perrin , 1985], [Lallement , 1979] or [Shyr , 1979].
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If th e set A is finit e, say A = {al , " " ad , th en we have a bijective functio n
r.p: A * -. N defined by r.p(O) = 0 and r.p(a i oa j 1 • • • a ; n) = :L:~=o i h kh

.

If m is an element of a semigroup (M ,*) th en th e set of left divisors of m is
LD(m) = {m' E M I m = m' *mil for some mil E M} and th e set of right divisors
of m is RD(m) = {mil E M 1m = m' * mil for som e m' EM} . These sets may be
empty for an arbitrary semigroup M but th at cannot be th e case if M is a monoid .
Indeed , if M is a monoid th en {I, m} ~ LD(m)nRD(m) for all mE M . A monoid
(M , *) is finitary if and only if any element of M can be written as m' * mil for
only finit ely-m any choices of m' and mil in M. Note that if w E A* th en LD( w)
and RD(w) are always finit e and that , as a result , free monoids are finit ary . More
generally, we can consider monoids of th e form M = Ai x ... x A~ , where the Ai
are nonempty sets and multiplication on M is defined componentwise:

(WI , . . . , wn)· (Yl , .. . , Yn) = (WIYl , .. . , wnYn) .

Such monoids are also finit ary.
It is possible to extend th e definition of A* to include words of infinite length .

Let A00 consist of A * together with all countably-infinite sequences of elements of
A . Define th e operation · on Aoo by setting ww' to be the concatena t ion of w and
w' if w E A* and ww' = w if w is a countably -infin ite sequence of elements of A .
Then (A oo , ') is again a monoid th e identity element of which is O. Subsets of Aoo
are oo-lan gu ages on A . These const ruct ions were first defined in [Park , 1981) and
are important in th e modeling of concurrent computationa l syst ems .

Let A be a nonempty set . As in Example 1.10, we can define operations of
addit ion and multiplication on sub(A* ) as follows: L + L' = L U L' , while LL' =
{ww' I w EL and w' E L'} . Then (sub(A*) , + , .) is an addit ively-idempotent entire
semiring in which th e additive identity is 0 and the multiplicative identity is {O} .
This semiring originated in Kleene 's algebra ic formulation of th e th eory of machines
[Kleene, 1956], and is at th e heart of algebraic automata theory. Refer to [Conway,
1971), [Gecseg & Peak , 1972], [Lallement , 1979), and [Saiomaa & Soittola, 1978]. It
is easy to verify th at th e set of all elements of sub(A*) which are not prefix codes
is a subsemiring of this semiring. Th e smallest subsem iring of sub(A*) containing
all singletons and closed und er intersections is called th e semiring of all starfree
lan gu ages on A .

Other variants on th e above semiring are possibl e. Let A be a finite set and
define an operation * on A * as follows: if u = al a2 . . . an and v = b1b2 . . .bm are
elements of A* then u * v = a1a2 . . .anb2 . .. bm if an =b1 and u * v =0 oth erwise.
If U and V are nonempty subsets of A* set U * V = {u * v I u E U and v E V} .
If U = 0 or V = 0 set U * V = 0 . This is called t he La t in product of U and
V . Then we can define a semi ring structure on sub(A* ) by taking addition to be
union as before and mu ltip lication to be the Latin product . This semiring is of
important use in enumera t ion problems in graph th eory ; see [Gondran & Minoux ,
1984a]. In another variant , we define th e fusion product on sub(A*) by set ting
U * V = {ux v Iux E U;xv E V} . See [Ying, 1991] for det ails .

Another product which can be defined on sub(A*) is th e shuffle product 0 . If
u, v E A* and a, i e A, we inductively define

1 0 u =u 01={u}

(au 0 bv) = a(u 0 bv) + b(au 0 v)
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and then , for L , L' ~ A* , we set

L 0 L' = U{u 0 v Iu E L;VEL'}.

It is easy to check that (sub(A*) , U, 0 ) is a semiring , which has important applica­
ti ons in models of concur rent com putat ion . See [Bloom, Sabadini & Walters , 1996]
or [Golan , Mateescu & Vaida, 1996].

(1.12) EXAMPLE . If R is a nonempty set then a fun ction ® from R x R to
sub(R) can be exte nded to an op eration on sub(R) by set ti ng A ® B = U{a ® b I
a E A , s« B} . In imitat ion of th e definition of a hyp erring - as given , for exam ple ,
in [Ciampi & Rota, 1987] - we can define a hypersemiring to be a nonempty set
R tog ether with functions + and · from R x R to sub(R ) satisfying t he following
conditions :

(1) Addition is associ ative and commutative;
(2) Multiplication is associat ive and distributes over addition from either side;
(3) There exists an eleme nt 0 of R su ch that , for all t: E R we have 0 + r = {1'}

and 0 . r = {O} = r . O.
(4) T here exists an eleme nt 1 of R such that , for all r E R we have 1. l' = {1'} =

r . 1.
(5) 1 oF o.

Note that if R is a hypersemiring then sub(R ) is a sem iring with resp ect to the
op erations of addition and multiplication extended as above. The additive identity
of sub(R) is {OJ and the multiplicative identity of sub(R) is {I} . A related notion
is also discussed in [Nakano, 1967] ; refer also to [Mockor , 1977].

As an exam ple of such a construc tion , let G be a lattice-ordered group and let z
be an element not in G. Set R = G U {z} and .exte nd th e op eration of G to R by
setting rz = zr = z for all r E R . Also assume that 1'1\ z = t: and 1'V Z = z for all
r E R . Define fun ctions + and . from R x R to sub(R) as follows:

(1) If s.s' E G , set 9 + g' = {gil E Gig 1\ s' = gil 1\ g' = 9 1\ gil} and extend
this to a fun ction from R x R to sub(R ) by set ting z E r + 1" if and only if
r = 1" for all 1', 1" E R ;

(2) If 1' , 1" E R then 1' · 1" = {1'1"} .

Then (R ,+ , .) is a hyp ersemiring ; for a proof, see Example 3.4 of [Mockor , 1983].

(1.13) EXAMPLE . The additive structure of a semiring does not necessari ly de­
termine its multiplicative structure. Thus, for exam ple, if (R ,+ , .) is any noncom­
mutative semiring then we can define another semiring (R, +,0), having the same
additive structure, called the opposite semiring of (R ,+, .),by setting a 0 b= b·a
for all a and b in R . A more graphic set of exam ples is the following . A triangular
norm (t-norm) on IT is defined to be an op eration n on IT satisfying the follow ing
conditions:

(1) (IT , n) is a com m utat ive monoid with identity elem ent 1;
(2) a ~ b in IT implies that an c ~ bn c for all c E IT .

From these condit ions it follows that 0 n a = 0 for all a E IT . Triangular norms
were first introduced by Meng er [1942] and have proven useful in the theory of
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probabilist ic metric spaces and in multi valued logic. Measures based on tri angular
norms are used in mathem ati cal statist ics [Dvoretzky, Wald & Wolfowitz , 1952]
and [Schweizer & Sklar , 1961], cap acity theory [Frank , 1979], probability theory
[Schmidt , 1982], game th eory [Aum ann & Shapl ey, 1979] and [Butnariu & Kle­
ment , 1993], and pattern recogni tion [Sugeno , 1979]. For th e use of tri angular
norms in defining propositional fuzzy logics , refer to [Butnariu et al., 1995]. It is
st raightfor ward to see that if n is a tri angular norm on IT th en (IT , m ax , n) is a semi­
ring . But th ere are infinitely-many tr iangular norms definable on IT ! For example,
for each s E ~+ U { (X)} we can define th e fundamental triangular norm n. on
IT as follows:

(1) a nob = m in{a , b};
(2) a nl b = ab;
(3) anoob=max{O ,a+b-l} ;
(4) an. b = log.{[( s - 1) + (sa - 1)(sb - 1)]/( s - In for all s E ~+ \ {O, 1}.

Thus we have an infinite family of mul tiplication operations which turn th e com­
mutative monoid (IT , max) into a commutative semiring. Other infinite families of
triangular norms on IT can also be found in [Schweizer & Sklar, 1963] and [Weber ,
1983]. If R. = (IT ,max ,n.) for each s E R+ U { (X)} then JX(R. ) = {O , I} for all
s # 0, while JX (Ro) = RD. For various ways of lookin g at triangular norms, refer
to [Mesiar & Pap , 1998].

Dually, a triangular conorm (t -co n or m ) on IT is an operat ion U on IT satisfying
the following condit ions:

(1) (IT , U) is a com mutative mon oid with identity element 0;
(2) a ~ b in IT implies th at a U c ~ b U c for all c E IT .

From th ese condit ions, it follows th at 1 U a = 1 for all a E IT and so (IT, min , U) is
a semiring with additive identity 1 and multiplicative identity O. Every triangular
norm n defines a corr esponding tri angular conorm U by a Ub = 1 - [(1- a) n (1- b)]
and every triangular conorrn on IT is definabl e in thi s manner. Thus we also have
an infini te family of multiplication operations which turn the commutative monoid
(IT , min ) into a commutative semiring .

If s E ~+ U { (X)} and IT is topol ogized with its usual topo logy, then (IT , m ax , n.)
and (IT , m in , U.) are both top ological semirings. Ind eed , if * is a cont inuous fun ction
from IT x IT to IT such th at (IT , *) is a monoid with identity element 1 such that a * 0 =
o= 0 * a for all a E IT th en (IT , max , *) must be a com mut at ive top ological semiring.
Similarly, if (II , *) is a monoid with identity element 0 such that a * 1 = 1 = 1 * a
for all a E IT th en (IT , min , *) must be a commutat ive topological serniring . Refer to
[Frank , 1979]. For further examples of t-n orms and t-conorrns and th eir computer­
genera ted pictorial representations , refer to [Mizum ot o, 1989]. For representation of
t-norms as well as simila r operations which turn (~+U{oo} , max) into a topological
semiring , see [Ling, 1966].

(1. 14) E X AM PLE. [Bourne, 1951; Heath erly, 1974) If (M , +) is a commutat ive
monoid with identity element 0 then the set End(M) of all endomorphisms of
M is a semiring under the operat ions of pointwise addit ion and composition of
functions. Thus, for example, if M = (~U {oo} , min) then End( M) is th e set of
all non decreasing fun ctions on M. This semiring is of use in certain typ es of path
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problems in graph theory, see [Gondran & Minoux, 1984a] . If M is idempotent
th en , for each m E M , the function am : M -+ M defined by am : x ~ m for all
x E M is a member of End(M) and {am 1m E M} is a subhemiring of End(M)
which is not a subsemiring.

We note that E ndo(M ) = {a E End(M) I 0'(0) = O} is a subsemiring of
End(M). If B: M -+ Endo(M) is a fun ction satisfying

(1) B(m + m') = B(m) + B(m');
(2) B(m)(m') = B(m) 0 B(m'); and
(3) B(O) :m ~ O.

for all m and m' in M then B defines a multiplication operation on M by setting
m . m' = B(m)(m') such that (M, +, .) is a semiring. Indeed , all possible semiring
structures on (M, +) arise in this manner.

(1.15) EXAMPLE. Let R be a semiring, let 0 f:. b E R , and let D be a finite
subset of R containing O. Then R has base b and set of digits D if every r E R
has a unique representation in the form do + d1b + ...+ dnbn , where the di belong
to D. For example, for R = l'J t ake 2 :S b E l'J and D = {O,... , b - I} . For th e use
of such semirings in generating fractals, refer to [Allouche et al. , 1995] .

(1.16) EXAMPLE . If R is an infinite commutative integral domain and if f(X , Y)
and g(X, Y) are polynomials over R, we can define operations EB and (:) on R by
set t ing a EB b = f(a, b) and a (:) b = g(a, b). Necessary and sufficient. conditions
for (R, EB , (:) to be a hemiring or a semiring in this situation have been studied in
[Petrich, 1965].

(1.17) EXAMPLE . In Example 1.13 we saw that the additive structure of a semi­
ring does not necessarily determine its multiplicative structure. The multiplicative
structure of a semiring does not determine th e additive structure either. For in­
stance, on the multiplicative monoid (JI~+ , .) we can define two semiring structures
by taking addition to be ordinary addition of numbers or t aking addition to be
maximum. Pearson [1966, 1968a] has classified all operations EB on subintervals of
lRU {<X>} which , tog ether with ordinary multiplication , turn them into topological
semirings.

Let R = l'Jx l'Jx l'J. Define addition on R componentwise and define multiplication
on R by setting

(a , a' , a")(b ,e, b") = (a"b + ab", a"b' + a'b" + ab+ ab' + a'b + a'b" , a"b") .

T hen R is an ent ire semiring. Another semiring structure on R is obtained by
defining multiplication componentwise. We have already seen that (l'J, +,.) has a
semiring structure. If h, k E l'J, let h U k be th e greatest common divisor of hand
k in l'J. Then it is straightforward to verify th at (l'J, U, .) is also a semiring. More
generally, a standard thread is a topological semigroup on a closed subinterval
I = [a , b] of R , tog ether with an operation * defined on I such that (I, *) is a monoid
with identity element b and the element a satisfies a * x = x * a = a for all x E I .
The problem of finding all possible operations + on a standard thread over which
* distributes is solved in [Mak & Sigmon, 1988). In particular, this solution yields
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all semiring st ruc t ures on I with given multiplication *. Refer also to [Cao, Kim
& Roush , 1984). This situation can also occur for finit e semirings. If R = {O, u , I}
is ord ered by °< u < 1 th en (R , ma x, m in) is a semiring. However , R can be
given another semiring structure (R, EEl, m in) , where a EEl b is defined to be equ al to
max {a , b} unless a = b = 1, while 1 EEl 1 = u . This semiring has applications in the
design of computer circuitry; see [Hu, 1975].

(1.18) EXAMPLE . On a ring R , define the operation 0 by a 0 b = a + b - abo
This operation has been well studied and plays an important role in the definition
of the Jacobson radi cal. Let 5 be a non empty set of commuting elements of R
containing 0 and closed under both 0 and multiplication , which satisfies th e self­
distributivity condition with respect to multiplication , namely that a2bc = abc
for all a, b, c E 5. Then (5,0 , ') is a hemiring. Thus, for exam ple, we could take 5
to be the set JX (R) n C(R) of central idempotents of R. For a discussion of this
construction in a more general setting , see [Birkenmeier , 1989). Note that if 1R
belongs to 5 th en 5 is in fact a simple semiring, since a 0 1R = a for all a E 5.

(1.19) EXAMPLE. Let R be an additively-idempotent hem iring and define a new
op eration 0 on R by a 0 b = a + b+ abo Then (R ,+,0) satisfies conditions (1)-(3)
of a semiring but is not a semiring since its additive and multiplicative identities
coincide.

An interesting interpretation of this op eration also arises in th e context of the
join geometries studied in [Prenowitz & Jantosciak , 1979). Let E be a nonempty
convex subset of euclidean space and let R = 8ub(E) . For a,bEE, let ab be th e
element of R defined as follows :

(1) aa = {a};
(2) If a :f. b th en ab is th e open line segment conn ecting a and b.

As in Example 1.10, extend the definition of product to an operation on R by
setting AB = U{ab I a E A, b E B for all A , B E R} . Not e that AB = 0 if
and only if A = 0 or B = 0. It is straight forward to verify th at (R , U , ·) is
a commutative, additively-idempotent ent ire hem iring with additive identity 0 .
Moreover , A E JX(R) if and only if A is a convex subs et of E . If a and b are
distinct elements of E th en a,b t/:. abo The closed line segm ent connecting a and b
is pre cisely a 0 b = {a} U {b} U abo

We note that the hemiring R can be embedded in a semiring as follows : let z
be a point not in E and let 5 = 8ub(E U {z}) . Extend th e definition of product by
setting az = za = a for all a E E U {z} and , as before, set

AB = U{ab Ia E A , b E B for all A , B E 5} .

Then (5,u, .) is a semiring with multiplicative identity {z} . Refer also to [Lyndon ,
1961).

(1.20) EXAMPLE. [Martelli , 1974, 1976) Let X be a set and let P = 8ub(X ). A
subset U of P is a clutter if and only if A :f. B E U implies th at A r.z B. Any finite
set U contains a clutter U# obtained by deleting from U all sup ersets of sets in U .
On th e family R of all finit e clutters of elem ents of P we can define addition and
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multiplication by setting U +V = ({AUB I A E U, BE V})# and U ·V = (UUV)# .
Under th ese operations, R is a commutat ive additively-idernp otent semiring with
additive identity {0} and mul tipli cative identity 0 .

(1.21) EXAMPLE . A prenucleus on a frame (L , V, 1\) is a function z: L ---> L
satisfying the following condit ions:

(1) c :S z(c) for all e E L;
(2) If c :S c' in L th en z(c) :S z(c' );
(3) z(c 1\ c' ) = z(c) 1\ z(c' ) for all c, c' E L.

Let PN(L) be th e set of all prenuclei on L and define th e opera tion 1\ on PN(L)
componentwise: (z 1\ z' ):c f-+ z(c) 1\ z' (c) for all c E L. Then PN(L) , together
with addit ion given by 1\ and multiplication given by comp ositi on of functions, is
a zerosumfree simple semiring which has imp ortant applicati ons in th e analysis of
frames. For structural considera t ion of PN(L) , where L = R - tors is th e frame
of all (hereditary) torsion theories on a module category R - mod, see [Golan &
Simmons , 1988].

(1.22) EXAMPLE . Let R = IR U {oo}. Then (R ,min ,+) is an additively­
idempotent commutative semiring in which addition is th e opera t ion of taking min ­
imum and multiplication is ordinary addition . As we shall see lat er , this semiring is
imp ortant in solving th e shortes t-pat h problem in optimization . If 5 = IR+ U {oo}
th en (5, min , +) is a simple subsemiring of (R , min , +) with infinite element O. For
uses of thi s semiring in optimizat ion th eory , see [Gondran & Minoux , 1984a] ; for its
uses in analysis, refer to [Maslov & Sambourskil, 1992] and [Kolokol'tsov & Maslov,
1997]. It can also replace th e semiring (IR+ ,+,.) to obtain a new typ e of probability
th eory, first studied by Maslov [1987] and later by Akian [1995a , 1995b] and her
collaborators [Akian , Quadrat & Viot , 1998). This semiring has also found ap pli­
cat ions in multicriteria opt imization, opt imal control , and the theory of sem antic
dom ains [Siinderhauf, 1997]. Indeed , computation in th is semiring is so impor tan t
that Lam and Tong [1996] have prop osed a hardware impl ementation in analog
processing circuits .

Th e semiring 5 has a subsemiring (N U {oo}, min , +) , known as th e tropical
semiring, which has important applications in th e th eory of formal languages and
automata th eory , including th e capture of the nondeterministic complexity of a
finit e automaton. Refer to [Mascle, 1986], [Simon, 1988], and [P in, 1998]. The one­
point compactification of N U {oo}, endowed with th e discrete topology, is the set
N U {w, oo}. This set can be totally-ordered by setting i < w < 00 for all i E Nand
has th e topological structure defined by taking as open sets all subsets of N U {oo}
and all sets of th e form ([N U{oo}] \ A) U{w} , where A is a finite subset of N U{oo}.
This set to o can be turned into a semiring with operations EB and 0 defined by:

(1) a EBb=min{a ,b};
(2) a 0 b = a + b if a, bE l':l and ma x{a , b} oth erwise.

See [Leung , 1988] and [Simon , 1994] for details and applications ; for app lications
to synchronized element ary net systems , see [Andre, 1989].

In a mann er similar to the above, we see that (IR U {- oo}, max , +) is an additi­
vely-idemp otent commut at ive semiring. This semiring is called th e schedule alge­
bra or, somet imes, the max-plus algebra. Cuninghame-G reen [1979] illus trates
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how it can be used in the ana lysis of th e behavior of indu str ial processes. Also refer
to [Cheng , 19S7], [Cru on & Herve, 1965], [Cuningham e-Gr een , 1962, 1976, 1991]
and [Cuninghame-Green & Borawit z, 19S4]. Much of th is work is based on ideas
presented informally in [Giffier , 1963, 1965]. A mor e formal present ation of Giffier 's
schedul e algebr a is given in [Wongseelashote, 1976]. For th e use of this semi ring in
finding critical paths in graphs , refer to [Carr e, 1979]. For its use in discrete-event
dynamical syst ems refer to [Baccelli et aI., 1992]' [Gaubert , 1996a], [Gaub ert &
Max Plus, 1997], [Gunawardana , 1994], [Olsder , 1991, 1992]. For applications to
control th eory, see [Mairesse, 19S5] and for applicat ions to automata th eory, see
[Krob, 1995]. Also refer to [Max-Plus Working Group , 1995].

Among th e subsemirings of th e schedule algebra which we will discuss later are
(:2:U{-oo} ,max ,+) and the antisimplesemiring (f'lU{- oo},max ,+). Another
important subsemiring of this semiring is (l~+ U{-oo}, max , +) . This semiring has
important applications in th e categorical approach to th e th eory of metric spaces,
which was first develop ed in [Lawvere , 1973]. In fact , we can restrict ourself to
(F U {-oo} , max , +) , where F is any submonoid of (R , +).

(1.23) EXAMPLE . If (R , + , .) is a semiring and X is a set together with a bi­
jective function 8: X -+ R then the semiring st ru cture on R induces a semiring
structure (X , EEl, 0 ) on X with the operations defined by x EEl y = 8- 1(8(x) + 8(y»
and x 0y = 8- 1(8(x) ·8(y» . Such constructions can often lead to int eresting exam­
ples such as th e following one, mentioned in [Mullin , 1975]: Let R be th e semiring
of all functions from f'l to its elf with th e operations of componentwise addit ion and
multiplication . Define a funct ion 8 from ~+ to R which sends each nonn egative
real number into its representation as a continued fra ction . Then 8(r)( i) = 0 for
only finitely-many i E f'l if and only if r is irrational. Since the family of all fER
catisfying the property that f( i) = 0 for only finit ely-many i E f'l is closed und er
taking componentwise sums and products, we see th at we have an indu,~ed semiring
structure on {O} U [~+ \ <Q +].

(1.24) EXAMPLE . Finally, we mention another example arising from th eoreti­
cal computer science. Bergstra and Klop [19S3, 19S4, 19S6, 19S9] have constructed
an algebra of communicating processes (ACP) to formalize th e actions in a
distributive computation environment . Such an algebra consists of a finite set R of
atomic actions , among which is a distinguished act ion 8 "deadlock" ), on which we
have operations + ("choice") and I ( "communication merge") satisfying th e condi­
tions that (R ,+,I) is a commutative additively-idempotent hemiring with additive
identity 8. In addition , th ere is another operation · ( "sequential composition") de­
fined on R such that (R , .) is a semigroup satisfying a . 8 = 8 for all a E R and such
that · distributes over + from the right but not necessarily from the left . Refer also
to [Baeten, Bergstra & Klop , 19S5]. For oth er related algebras of communicating
processes which form semirings, see [Cherkasova , 19S5] and [Hennessy, 19S5] .

(1.25) EXAMPLE . If (R, +,.) is a semiring th en one can define operations EEl and
o on sub(R ) by setting A EElB = {a+b Ia E A , i « B} and A 0B = {ab Ia E A, bE
B} . Th en (sub(R) , EEl , 0 ) need not be a semiring . To see this , consider th e following
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exam ple, du e to [Litvinov, Maslov & Sobol evskii , 1998] : let R = (ffi. x ffi. ) U {-oo}
and define operations of R as follows :

(1) (a ,b)+(a' ,b') = (max{a,a'} ,max{b,b'}) for all a,a' ,b,b' E ffi.;
(2) (a, b)(a', b') = (a + a' , b+ b') for a ll a,a' , b, b' E ffi.;
(3) (-00) + t: = 1'+ (-00) = r for all r E R;
(4) (-00)1' = -00 = 1'(-00) for a ll r E R.

Then (R, + , .) is a semiring but (sub(R), EEl, 0 ) is not since, if r = {(O, 1) , (1, On ,
1" = {(I , on,and 1''' = {(O, In,then r 0 (1" EEl 1''') #- (1' 0 1") EEl (1' 0 1''' ).



2. SETS AND RELATIONS WITH

VALUES IN A SEMIRING

The direct product R = xjEoRj of a family of semirings {Rj liE n} has the
structure of a semiring with th e operations of addition and multiplication defined
componentwise. This semiring is additively- [resp . multiplicatively-] idempotent
[resp . zerosumfree, simple] if each of th e R, is additively- [resp. multiplicatively-]
idempotent [resp. zerosumfree, simple]. It is not ent ire if n has order greater th an
1.

I[ {Rj liE n} is a set of information algebras (i.e. ent ire zerosumfree semirings)
then the pseudodirect product R' =[XljEO R; has the und erlying set

{O} U xj Eo (Rj \ {OR,})'

Op erations between nonzero elements defined componentwise, and these operations
are extended to all of R' by setting 0 + r' = r' + 0 = r' and Or' = r'O = 0 for all
r' E R'. This is again an information algebra. I[ each of th e R; is additively- [resp .
multiplicatively-] idempotent th en so is [XljEO R j • Similarly, it is simple if each of
th e R; is.

In particular , we note that if A is a nonempty set and R is a semiring then RA

is a semiring, som etimes called the semiring of R-valued subsets of A. This name
derives from the fact th at each subset B of A defines a characteristic function
CB E ~A given by

{
I if a E B

CB :a f-+ o otherwise

Thus ~A can be canonically identified with th e semi ring sub(A ) of all subsets of
A . I[ f E R A th en th e support of f is supp(J) = {a E A I f(a) "# O} . I[

im (J ) ~ {O, I} then f is exact (or crisp). The notion of sets with values in a
semiring was considered in detail in [Eilenberg , 1974].

I[ S; is a sub semiring of H; for each i E n th en XjEOSj is a subsemiring of
xjEoRj . In particular, if S is a subsemiring of a ring R and if A is a nonempty set
then SA is a subsemiring of R A . Thus, if R is an additively-idempotent semiring
and A is a nonempty set then the set of all exact functions in RA is a subsemiring
of R A .
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If A is an infinite set and R is a semiring then {f E RA I f has finite support}
is a subhemiring of R A which is not a subsemiring, since it does not contain the
multiplicative identity. If R is zerosumfree and ent ire th en

{O} U {f E R I A \ supp(f) is finit e}

is a subsemiring of RA .

(2.1) ApPLI CATION . It is som etimes very important to allow an element of a
set to appear in that set "more than once" . For example, this happens when we are
counting th e zeroes of a function or th e eigenvalues of a linear transformation. This
has led to the theory of multisets , which were first formally studied by Knuth [1992]
for use in computer science and have since been used extensively in many cont ext s.
Thus, given a nonempty set A , a multisub set of A is defined by a multiplicity
function in N A , where N is th e set of all nonn egative integers . The theory of
multisets has been formalized in [Blizard , 1989] . For a formalization of linear logic
in terms of multisets , refer to [Troelstra, 1992] . Loeb [1992], concerned with various
combinatorial problems, extended the notion of a multiset to that of a hybrid set,
or "set with a negative number of elements" by consid ering multiplicity functions
belonging to £:A .

Another extension of the notion of a multiset involves looking at multiplicity
functi ons in RA , where R = N U {- oo, oo}. Elements of RA ar e sometimes called
bags on A. (On th e other hand , th e term "bag" is often used as a synonym for
"mult iset" , so one has to be careful.) See [Andre, 1989] for an application of thi s
construction to signal pro cessing .

(2.2) ApPLICATION . For any nonempty set A, we have the semiring II A of all
fuzzy subsets of A, which has been extensively studied by Zad eh , beginning with
[Zadeh , 1965], and his disciples. Literally thousands of papers have been written
on fuzzy set th eory. See [Kaufmann , 1975] or [Dubois & Prade, 1980] for details.
In [Gierz et aI., 1980], which is based on a mor e geom etric poin t of view, fuzzy
subsets are called cubes . Thus, for exa mple, fuzzy subsets of~+ can be considered
as coinciding with nonnegative probability distribu tion fun ctions. See [Klement,
1982] for details of thi s approach. The semiring II A of all fuzzy subsets of a set
A is in fact a frame [De Luca & Termini , 1972] in which meets and joins are
defined componentwise: if U ~ II A and a E A th en v U:a t-+ sup{f(a) I fE U}
and AU:a t-+ inf{f(a) I fEU} . These are not th e only operations which can
be defined on II A . Various other operations and th eir properties are discussed in
detail in [Mizumoto & Tanaka , 1981]. Many of th ese are defined componentwise
by various tri angular norms and conorms on II. If f and g are element s of IIA th en
(g : J) is the function defined by

(g : J) :a t-+ { 1
g(a)

if f(a) ~ g(a)

otherwise

If g = CB is an exact subset of A th en (g : J) =CD, where D = B U [A \ supp(f)]
and this is an exact subset of A.
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(2.3) EXAMPLE . For nonempty sets A and B , we have the semiring sub(B )A of
all multifunctions from A to B . In [Manes & Arbib , 1986], multifunctions are th e
bas is for th e tr eatment of th e semantics of computer programs. If R is th e schedule
algebra and A = R2 , th en a semiring of interest in analysis is the subsemiring of
RA consist ing of all functions f :A --+ R satisfying th e condition that supp(j) is
an open connected subset (= domain) of A on which f is subharmonic. Another
subsemiring of this semiring is obtained by subst itut ing "upper semicontinuous"
for "subharmonic" .

(2.4) EXAMPLE . If X is a topological space, then the family (i~+)X of all non­
negative real-valued functions on X is a commutative semiring und er the usual
pointwise operations. The family of all continuous nonnegative real-valued func­
tions on X is a subsemiring of this semiring.

This notion can be generalized. Let A be a nonempty set and let A be a nonempty
family of nonempty subsets of A satisfying th e condition that if B, B' E A then
B n B' E A . If R is a semiring th en R B n RB' = 0 for all B # B' in A . Set
R A = U{R B I B E A} . Thus, for each f E R A there exists a unique B E A such
that f E R B . This subset B of A is called the domain of f and will be denoted by
dom(j) . We now define operations of addition and multiplication on R A as follows:

(1) Iff ,g E R A th en dom(j+g) =dom(j)ndom(g) and (j+g)(a) = f(a)+g(a)
for all a E dom(j + g) .

(2) If f , g E R A th en dom(jg) = dom(j) n dom(g) and (jg)(a) = f(a)g(a) for
all a E dom(j + g) .

(2.5) PROPOSITION. Let A be a non empty set and let A be a nonempty family
ofnonempty subsets ofA satisfying the condition that if B, B' E A then BnB' EA.
If R is a semiring then R A is also a semiring.

PROOF . It is st raightforward to check all of th e conditions in the definition of
a semiring. Notice that th e additive identity of RA is the function a 1-+ 0 having
domain A and th e multiplicative identity in RA is the function a 1-+ 1 having domain
A . 0

Thus, in particular, we see that if A is a nonempty set th en R A = R{A} .

If A and Bare nonempty sets then IlAxB is called the semiring of all R-valued
relations between A and B . The use of thes e concepts to define the notion of
an R-valued language th en follows the lines given in [Kim , Mizumoto, Toyoda
& Tanaka, 1975] and [Wechler, 1975]. Fuzzy relations, namely relations with
values in IT , are considered in [Dubois & Prade, 1980], [Fang, 1993], [Kawahara &
Furusawa, 1999], [Murali , 1989], and [Ovchinnikov , 1981, 1993]. If A is a nonempty
set then an R-valued relation on A is an element of RAxA. .

(2.6) EXAMPLE . If V is a nonempty set then an element g of JEv x V is called
a (directed) graph on V . The elements of V are called the vertices (or nodes)
of g and the elements (v, v' ) of V x V satisfying g(v, v') # 0 are called th e arcs of
the graph . If V is finit e then the number of elements of V is the order of V. This
noti on can be generalized : if V is a nonempty set and R is an arbitrary semiring
th en an element g of RV x V is an R-valued graph on V . The arcs of g are those
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elements (v, v') of V x V satisfying g(v, v') # 0. In this case, g(v, v') is the weight
of the arc in R . Graphs with values in I are called fuzzy graphs . A path of
length n in an R-valued graph 9 E RV x v is a finite ordered subset (V1' V2, . .. , vn )

of vertices of 9 such that (Vi, vi+d is an arc of 9 for all 1 :::; i < n . It is often
convenient to extend the definition of 9 and consider it as a function from the set
of all paths of 9 to R by setting

n-1

g(V1, . . . , vn ) = II g(Vi, vi+d ·
i=l

The problem of finding efficient algorithms for computing this value, or often the
value L:g(p), where the sum ranges over all paths p of given length n from a fixed
vertex v to a fixed vertex v', is often of great importance, as we shall see. Refer
to [Fletcher, 1980] for an example of such an algorithm. Also consult [Gondran &
Minoux, 1984a] for further details .

Another way of looking at things is to consider lffiv x v to be the set of non­
deterministic programs on the set V of states. Here it is understood that if
f E lffivxV then f(v ,v') = 1 if the program f may transform v into v' . See [Main
& Benson, 1985].

(2.7) EXAMPLE. If R is a semiring and if A and Bare nonempty sets then an
R-valued relation h E R A x B is sometimes called a Chu space. Such spaces have
been studied intensively by Pratt [1986, 1993, 1994, 1995a, 1995b, 1996, 1997] and
his students , with an eye on applications in computer science . In this approach, A
is the set of events (or values , locations , variables , points) and B is the set of
states ("possible worlds"). The value f(a, b) represents the extent (or complexity)
of the event a happening at state b. In particular, if R = lffi then f(a, b) = 1 if
event a has happened at state band f( a, b) = °if it has not. This interpretation
has been used in [V. Gupta, 1994] and [Pratt , 1995b] to build models of concurrent
systems.

The Chu space approach is basically categorical , and so it leads to the idea of a
transform between R-valued relations. Let f E R A x B and 9 E RA'xB' be R-valued
relations . A transform (u, v) :f --+ 9 consists of a pair of functions u:A --+ A'
and v:B' --+ B satisfying the condition that f(a , v(b')) = g(u(a), b) for all a E A
and b' E B' . Note that if (u, v):f --+ 9 and (u' , v') :9 --+ h are transforms then
(u' u, vv') : f --+ h is also a transform. If there exists a transform (u, v) : f --+ 9 then
we say that f is a left adjoint of 9 and 9 is a right adjoint of f. In the model
of concurrent systems proposed in [V. Gupta, 1994], a transform (u, v) : f --+ 9

determines a simulation of 9 by f.
An R-valued relation h on a nonempty set A is transitive if and only if, whenever

a,a' , a" E A there exists an element r of R such that h(a, a')h(a' ,a") + r = h(a, a") .
If in fact h(a, a')h( a', a") + h(a, a") = h(a, a") then h is strongly transitive. It
is reflexive if and only if h(a, a) = 1 for each a E A and it is symmetric if and
only if h(a, a') = h(a' ,a) for all a,a' E A . A [strongly] transitive, reflexive, and
symmetric R-valued relation h on A is a [strong] R-valued equivalence relation
on A. For example, if R is an arbitrary semiring and A is a nonempty set,then any
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9 E RA defines a IB-equivalence relation ""'g on A by set t ing a ""'g a' if and only if
g(a) = g(a') .

(2.8) EXAMPLE . If R = (II, V,1\) th en the function h E RN x N defined by

ifm = n

if m + n is even

otherwise

is an R-v alu ed equivalence relation on N.

(2.9) E X A M PL E . If R = (II, max , ,) and if A is a non empty set th en any fun ction
f E R A defines an R-valued equivalence relation u« R Ax A by

{

min{J(a),j (b)}

h: (a,b)~ ~ax{J(a),j(b)}
if f(a) =F f(b)

otherwise

Indeed , if R = (IT , max ,n), where n is a continuous triangular norm , then the family
of all R-valued equiva lence rela tions on a nonempty set A has been characterized
by Valverde [1985J . For further results , refer to [Jacas and Valverd e, 1996J .

Let R be a semiring and let A be a nonempty set . If I, 9 E R Ax A and if
fg E RA X A is the fun ction defined by fg :(a , a') ~ f(a , a')g(a , a') th en fg is surely
symmetric and reflexive whenever both f and 9 ar e . Moreover , if both f and 9 ar e
transitive and th e image of at least one of th em is contained in the center of R then
it is st raight forward to verify that fg is tr ansitive as well. Thus we see that if r and
9 ar e R-valued equivalence relations on A , the image of one of which is in th e center
of R, then fg is also an R-valu ed equivalence relation on A . In particular, if R is
com mutati ve then the set of all R-v alu ed equivalence relations on any nonempty
set A is closed under taking products.

(2.10) PROPOSITIO N. Let R be a simple semiring and let h E RA xA be a
strong R-valued equivalence relation on a non empty set A . Th en the reletion >- on
A defined by a ""' a' if and only if h(a , a' ) = 1 is an equivalence relation .

PROOF . It is easy to see that >- is symmetric and reflexive. If a ""' a' and a' ""' a"
th en 1 = h(a, a')h(a, a") so h(a, a") = h(a, a") +h(a, a')h(a', a") = h(a, a") +1 = 1.
Thus a ""' a" . 0

(2.11) EXAMPLE . Let R = (IR+U {oo},min ,+) and let A be a nonempty set .
Then an (extended) pseudometric on A is just an R-valued equivalence relation
on A. Such a function is an (extended) metric if and only if the relation r- on
A which it defines is trivial. Thus, for example, if A is the set of all cont inuous
fun ctions from IT to IR th en we have an R-v alu ed equivalence relation h on A defined
by

h: (<p , 1/; )~11

l<p(t) - 1/;(t)ldt .

Extend ed pseudometrics with values in (N+ U {oo},1\,+) (namely (N+ U {oo})­
valu ed equivalence relations) , also play an important role in theoretical computer
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science and formal language th eory . For exa mple, if A is a nonempty set we have
th e following pseudometrics on A * with values in N+ U {(X)} are among those given
in [Choffrut & Pighizzini, 1997]: If x =Xl . . .. . Xk and y = Y1 . .. . . Yn th en

(1) The Hamming distance between x and Y is defined by

( ) {
# {i I Xi :f Yd ifk=n

dH X,Y = ..
00 oth erwise

(2) The subword distance between x and Y is defined by

ds(x , y) = Ixi + lyl- 2max{lzll z is a subword of both x and y}.

(2.12) ApPLI CATION . Let A be a nonempty set of "states" and let L be a
nonempty set which is th e "language" in which we make statements about th e
elements of A . We assume th at th ere is a distinguished subset 1= of Ax L and we
say th at a state a E A satisfies a st at ement A E L if and only if (a, A) E 1=. In this
case we write a 1= A. If L' ~ L then the set of models for L') is th e set

M od(M') = {a E A I a 1= A for all A E L'}

and if A' ~ A then th e theory of A' is the set

Th(A') = {.>. ELI a 1= A for all a E A'} .

Now assume th at L has a speci al element .L satisfying M od({.L}) = 0 and that
th ere is an operation V defined on L satisfying M od({A V A'}) = M od({A}) U
M od({N}) for all A, A' E 1. In case L = {A1 ' A2, . . . } is countable th en we have an
(l~+ U {(X)},1\ , +)-valued equivalence relation h defined on A as follows :

(1) h(a , a) = 0 for all a E A;
(2) If a :f a' in A then h(a ,a') = ~ , where n =min{k Ia 1= Ak and a' li= Ak)} .

These examples suggest that , for a general semiring R, we can treat R-valued
equivalence relations in th e same way we treat duals of pseudometrics. Thus, for
example, if R is a semiring and A is a nonempty set , we say that R-valued equiv­
alence relations h,k E RA x A are Lipschitz equ iva le n t if and only if there exists
Sl , S2, ; 1,;2 E R satisfying slh(a ,a') =;1 + k(a ,a') and s2k(a, a' ) =;2 + h(a,a ,')
for all a , a' E A. It is easily checked that thi s is in fact an equivalence relation .

(2.13) PROPOSITION. Let R be a semiring and let A be a nonempty set . If hE
R A X A is a strong R-valued equivalence relation on A then the following conditions
are equivalent for a, se A :

(1) h(a, c) = h(b, c) for all c E A;
(2) h(a , b) = 1.

PROOF . Assume (1). Then, in particul ar , h(a ,b) = h(b, b) = 1 and so we have
(2) . Conversely, assume (2) . If c E A then h(a , c) = h(a ,c) + h(a, b)h(b, c)
h(a , c) + h(b, c) and similarly h(b, c) = h(b, c) + h(a , c), proving (1) . 0
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(2.14) PROPOSITION. Let R be a semiring and let A be a nonempty set . If
u« R A x A is a strong R-valued equivalence relation on A then:

(1) h(a , c)h(b,c) = 0 for all c E A if and only if h(a ,b) = 0;
(2) h(a , c) =h(b, c) for all c E A if and only if h(a , b) = 1.

PROOF. (1) Assume that h(a , c)h(b,c) = 0 for all c E A. Then

h(a , b) = 1 . h(a , b) = h(a , a)h(a , b) = h(a , a)h(b, a) =O.

Conversely, assume h(a , b) = O. Then for all c E A we have

h(a , c)h(b , c) = h(a, c)h( c, b)+ h(a , b) = h(a , b) =O.

(2) Assume h(a, c) = h(b, c) for all c E A . Then , in particular, 1 = h(a , a) =
h(b, a) = h(a , b). Conversely, assume that h(a , b) = 1. Then for any c E A we
have h(a ,c) = h(a , c) + h(a ,b)h(b, c) = h(a , c) + h(b, c) and similarly h(b, c) =
h(b, c) + h(a , c), prov ing that h(a , b) = h(b, c). 0

In particular , if hE R A X A is an R-valued equivalence relation on a nonempty set
A th en , for each a E A, then equivalence class of a with respect to that relation
is th e R-valued subset ha of A defined by b« : a' 1-+ h(a, a'). Propositon 2.14 then
says that , in th e given situation ,

(1) hahb is the O-map if and only if h(a , b) = 0; and
(2) ha =hb if and only if h(a, b) =1.

The set of all equivalence classes of A with respect to an R-valued equivalence
relation h is th e R-valued partition Ph of A defined by h. Note that if we have
a canonical surj ection from A to Ph given by a 1-+ ha .



3. BUILDING NEW

SEMIRINGS FROM OLD

We now consider a material from th e pr evious chapter from a different angle.
Let R be a semiring and let A be a non empty set which is eit her finit e or countably­
infinite. Then the set RAxA of fun ctions from A x A to R is denoted by MA(R) ,
and such fun ct ions are called (A x A)-matrices on R. If A is a finite set of ord er n
we wri te M n(R) instead of MA(R) ; if A is countably-infinite we some t imes write
M w(R) instead of M A(R ). If A is a finit e or countably-infinite set we will oft en
denote m atrices in th e usu al matrix notation rather th an in functional notation .
In parti cular , we will sometimes employ "block notation" for such matrices . We
have already noted that addition of such matrices, defined componentwise, turns
MA(R) into a commutative addit ive monoid, the ident ity element of which is th e
function whi ch takes every element of A x A to O.

A matrix f E MA(R) is row finit e [resp . column finite] if and only if for
each i E A [resp . j E A] all but fini tely-many valu es of f( i , j) ar e equal to O. If
I,» E MA(R) such that eit her / is row-finite or 9 is column finite then we can
define the product fg by setting fg :(i ,j) ....... L kE A f (i , k)g(k ,j) for all i, j E A.
It is easy to verify that the set M A,r(R ) of all row-fini te matrices in MA(R),
the set M A,c(R) of all column-finite matrices in M A(R ), and the set MA ,rc(R )
of all row-finite and column-finite matrices in M A(R ) are all semirings und er the
given ope rations of addition and multiplication. (T he multiplicative identi ty is th e
fun ction f defined by f (i , i) = 1 for all i E A and f( i , j) = 0 for i =F j in A .) If A
has order great er than 1, these semirings are not entire. If A is finit e th en , needless
to say , MA ,r(R) = M A,c(R) = MA ,rc(R) = M A(R). If S is a subsemiring of a
semiring R and A is a nonempty set t hen M A,r(S ), M A,c(S), and MA ,rc(S) are
subsemirings of M A,r(R) , M A,c(R ), and M A,rc(R) respectively.

If R is a sem iring and A is a nonem pty set t hen the followin g are subsemirings
of M A,rc(R ):

(1) {J E M A,rc(R ) I f(i , j ) = 0 for i =F j} ;
(2) {J E M A,rc(R) I f (i ,j) = 0 for i > j };
(3) {J E M A,rc(R) Ii«.» =0 unl ess i = j or i = I} .

Thus we see that , if A is a finite set , th e eleme nts of RAxA can be considered in
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two different ways: as element of th e semiring of R-valued graphs on A or as ele­
ments of the semiring of (A x A)-matrices on R. These two semirings have th e same
addition but different multiplications. In th e lit erature the distinction between th e
two is often marked by speaking of finit e graphs and of their corresponding transi­
tion matrices . Matrix powers have a very natural graph-theoret ic interpretation .
Indeed, if 9 E RAxA and ifi,j E A th en , for each k > 0, the power gk in MA(R) is
just L:{g(p) Ip a path of length k from i to j}. In addition to th e above, th ere are
ot her multiplication operations on RAxA which, togeth er with the componentwise
addition , turn it into a hemiring which is not necessarily a semiring. Thus , for ex­
ample, for each 1 E RAXA, let th e trace of 1 be given by tr(J ) = L:aEA I(a , a) and
define th e operation * on RAxA by I *g :(i ,j) '--+t r(J)g( i ,j). Then (RAXA,+ ,*) is
a hemiring. For a general mechanism to const ruct such hemirings, refer to [Birken­
meier & Heatherly, 19S7].

Note th at if n > 1 is an int eger , then Mn (R) is not simple for any semiring
R . For th e prop erties of semirings of matrices of th e form M n(R) , where R is a
bounded distributive lattice, see [Give'on , 1964]; for semirings of matrices of th e
form Mn(R) where R ranges over v.arious other types of ordered algebraic struc­
tures, see [Blyth , 1964]. Semirings of matrices of th e form Mn(lffi) and th eir many
applications are discussed in detail in [Kim , 19S2] ; th e structure of IX (M n(lffi)) is
completely described in [Chaudhuri & Mukh erjea , 19S0]. Semirings of matrices of
the form M n(lI ) and th eir applications are discussed in [Kim & Roush , 19S0]; in
par ti cular , for a multiplicatively-regular element A of M n(II ), one finds there algo­
rithms to find a generalized inverse and a Thierrm-Vagner inverse of A . Semirin gs
of matrices over the semiring (~+ , ma x,·) are considered in [Vorobjev, 1963]. Ma­
tri ces over the semiring (~+ , +,.) have played an important part in linear algebra
since th e work of Frob enius, and have important applicat ions in such areas as th e
study of Markov chains. For an introduction to th e research in thi s area , refer to
[Gantmacher , 1959] or [Mine , 19S5].

Semigroups of matrices over semirings are int erestin g in their own right ; see
[Straubing, 19S3b] for example. In addit ion, th ey can be used with advantage as
a basis for algorit hms to compute genera l finite semigroups. Refer to [Froidure &
Pin , 1995]. Semirings of matri ces over th e the semiring (~U {oo}, min , +) and th eir
applicat ions in operations research are discussed in [Pandi t , 1961] and [Gaubert ,
1996b].

(3.1) EXAMPLE. In [1996b], Gaubert solves th e Burnside problem in this con­
text by showing that a finitely-generated torsion semigroup in Mn(R) is finit e,
where R is th e schedul e algebra (~ U {-oo}, max , +) . Moreover , it is decidable
whether a finitely-generated semigroup of M n(R) is torsion. If one wants to ex­
tend thi s result to additi vely-idempotent semirings which are not semifields , th e
matter becomes mor e difficult. However , it is shown th ere that if R is a commuta­
tive additively-idemp otent semiring and if, for each r E R, th e set

A(r) = {r' E R I r =a' + r' for some a' E R}

is finit e, th en every finit ely-generated torsion semigroup in M n (R) is finit e.

As we will see later , matrices over a semiring have imp ortant applications in th e
theory of finit e automata . These applications give rise to certain problems which
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can be formulated in M n(R) for an arbitrary semiring R. Some such problems are
considered in [Simon, 1988]; among them

(1) The Finite Section Problem: Let U be a nonempty finite subset of
M n(R) and let G be the subsemigroup of(Mn(R) , ·) generated by U . Given
1 :S h,k :S n, is the set {r E R I r = ahd for some matrix [aij] E G finite ?

(2) The Finite Closure Problem: If U is a nonempty finite subset of Mn(R),
is th e subgroup of (Mn(R) , ·) generated by U finite ?

It is clear that if we can decide (1) th en we can decide (2) , but th e converse is not
true in general. The decidability of th ese problems for th e case of R = N is shown
in [Mand el & Simon , 1977]. For the case of R = (N U{oo}, min, +) , it is considered
in [Hashiguchi, 1982] and [Simon , 1988].

Since matrices over semirings have important applications, as we will see, th e
speed of computat ion of matrix multiplication is often very important . For the
case of multiplication of finite matrices th e ent ries of which come from a finite
semiring R, this problem has been studied in [Rosenkrantz & Hunt , 1988], where it
is shown that such matrix multiplication is linear-time redu cible to int eger matrix
multiplication . Thus, any fast algor ithm for int eger matrix multiplication can be
converted into a fast algorithm for multiplication of matrices over a finite semiring
R . This is true both for computation on one-processor machines and for parallel
computation . Refer also to [Mehlhorn , 1984].

-(3.2 ) ApPLICATION . A matrix iteration theory is an algebraic theory the
objects of which are natural numbers and the morphisms k ~ n in which are k x n

matrices over some fixed semiring R. Such theories are studied in detail in [Bloom &
Esik , 1993]. Such th eories have important applications in th e analysis of flowchart
schemes and automata. Refer also to [Ying, 1991].

Let (M, *) be a monoid with identity e and let R be a semiring. The family R[M]
of all functions f E RM having finite support is a semiring under th e operations of
addit ion + and multiplication (*) defined as follows:

(1) (f + g)(m) = f(m) + g(m) for all m E M ;
(2) (f(*)g)(m) = L:{f(m')g(m") I (m' ,m") E supp(f)x supp(g) and m'*m" =

m} .

The additive identity of R[M] is the function which takes every element of M to
OR. The multiplicative identity of R[M] is the function which takes e to lR and
all other elements of M M to OR. The operation (*) is called *-convolution. If R
and M are commutative, th en surely the semiring R[M] is commutative. Note too
that if R is additively idempotent , so is R[M] .

(3.3) EXAMPLE . Let M = {I, m} be a group of order 2 and let R be a semir­
ing . Then we can identify R[M] with th e semiring R x R on which addition and
multiplication are defined by

(a, b) + (e,d) = (a + e, b+ d)

and

(a, e)(*)(e, d) = (ae + bd,ad + be).
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If x = (a , b) E R[M], set e x = (b, a) . Then we note that for each x, y E R[M] we
have

(1) e (ex) = x;
(2) e (x + y) = (ex) + (ey) ;
(3) e (x(* )y) = (ex)(* )y.

(3.4) ApPLICATION . For th e application of semirings of the form B[A* ], whe re
A is any alphabet , to the design of arithmetic circuits , see, for example, [Allend er
et aI., 1996].

We can extend the above notion of convo lution as follows: if (M ,*) is a monoid
then a family C of subsets of M is favorable if and only if t he following conditions
are sat isfied:

(1) C is closed under taking subsets and fini te uni ons;
(2) If m E M then {m} E C ;
(3) If A, BE C th en A *B = {m * m' I (m , m') E A x B} E C.

Moreover , if R is a semiring then a favor abl e family C of subsets of M is R-favorable
if and only if it satisfies the additional condit ion :

(5) If m E M and if A, B E C then for all fun cti ons 1 : A --+ R an d g: B --+ R,
t he sum EU(m' )g(m" ) I m' E A, mil E B and m' * mil = m} is defined in
R.

Not e that the family Co of all finite subsets of M is R-favor able for any semiring R
and, by (1) and (3), it is in fact the uniq ue minimal favor able family of su b(M). If
the mo noid M is fini t ar y then th e fami ly of all subsets of M is R-favorable for any
semi ring R.

If R is a semiring and C is an R-favorable family of subsets of a mo noid (M , *)
th en we will denote by R[C] th e family of all fun ct ions 1 E RM sat isfying th e
cond ition that supp(J) E C . Not e that condit ions (1) and (2) insure that R[C] is a
submonoid of the commutative monoid (RM , + ). Also, if 1 E RM has finite support
then 1 E R[C] for each R-favorable family C of subsets of M . In particular , for eac h
element r of R and each element m of M we have t he fun ct ion er,m : M --+ R defined
by

{
r if m' = m

er m: m' 1-+ •
, 0 otherwise

and this fun cti on belongs to R[C] for all R-favorable families Cof subsets of M . For
any R-favorable family C of subsets of M we can define the *-convolution operation
(*) by setting

1(*)g: m 1-+ 2)1(m' )g(m" ) I (m ' , mil) E supp(J) x supp(g) and m' * mil = m }.

T hen (R[C], +,(*) is a semi ring , called the convolution algebra on R defined by
M and C.

If C ~ V are R-favorable fami lies of subsets of M t hen it is clear that R[C] is a
subsemiring of R[V]. Thus , in particular , R[M ] = R[Co] is a subsemiring of R[C]
for every R-favorable fami ly C of subsets of M .



_____BUILDING NEW SEMIRINGS _ 31

Let R be a semiring, let C be an R-favorable family of subsets of a monoid (M ,*),
and let 0: M - C be a function satisfying m E Oem) for each element m of M . For
each f E R M and each m EM, let flm ,o be th e function from M to R defined by

1

' {f(m') if m' E Oem)
fmo :ml-+ .

, 0 otherwise

Functions of this type certainly belong to R[C] . Now define an operation , (*10)
on RM , called local convolution, by setting (f(*lo)g)(m) = (flm,o(*)glm,o)(m).
Then (RM , +,(*10) is a hemiring.

(3.5) EXAMPLE . In Example 1.10 we considered a monoid (M ,*) and a semiring
structure on sub(M) in which addition is union and multiplication is given by
AB = {a*b 1a E A,se B} . As already noted , we can identify sub(M) with JB)M by
assigning to each subset A of M its characteristic function CA . Then CAuB = CA +CB

and CAB = CA (*)CB . Thus semirings of the type given in Example 1.10 - and
in particular the important semirings given in Example 1.11 - are convolution
semirings whenever M is finitary.

(3.6) EXAMPLE . One of the most useful semirings in number theory is R = f::jM ,

where M is the finitary multiplicative monoid Ill' of positive integers. The convolu­
tion operation (.) on R is usually denoted by * and is often called the Dirichlet
convolution. That is to say , (f *g)(n) = I:U(n')g(n") 1n =n'n"} for each posi­
tive integer n . One checks that this operation is commutative. A function fER is
multiplicative if and only if f(nn') = f(n)f(n') for all n, n' E IlI'. The set 5 of all
multiplicative functions in R is closed under * and componentwise products and it
is easy to see componentwise multiplication distributes over Dirichlet convolution
so that (5, *, .) is a commutative semiring.

Let M' be the submonoid of Ill' consisting of 1 and all those positive integers
which can be written as a product of an even number of primes. Then R' = f::jM'

is a subsemiring of (R , +, *). Let J1 : M' - f::j be the function defined by J1(n) = 1
if n = lor n can be written as a product of distict primes and p,(n) = 0 otherwise.
The Mobius Inversion Formula states that 9 = J1 * f in R' if and only if f = t * I,
where t E R' is the function defined by ten) = 1 for all n EM' . Note that t * J1 is
the multiplicative identity of R' .

Similarly, if M is the finitary monoid (f::j , +) then the convolution (+) is the
Cauchy convolution on f::jM . For a detailed study of these and other convolutions
of importance in number theory, refer to [Sivaramakrishnan , 1989].

(3.7) EXAMPLE . If (M, *) is a finitary monoid then we have a *-convolution
operation (*) defined among the fuzzy subsets of M . A fuzzy subset f of M is a
fuzzy submonoid if and only if f(*)f :S f . Liu [1982] has justified this name by
showing that :

(1) If gl,g2,g3 are fuzzy singletons satisfying the condition that gi(Xi) = f(Xi)
whenever {xd =SUpp(gi) then (gd*)g2)Hg3 =gd*)(g2(*)g3);

(2) If e is the fuzzy singleton with supp(e) = {1M} and e(1M) = 1 then for any
fuzzy singleton 9 satisfying g(x) = f( x) whenever {x} = supp(g) we have
e(*)g = 9 = g(*)e.
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(3.8) EXAMPLE . Let (M, +) be an abelian group and let R be the idempotent
semiring (~U {oo}, min , +). Let 5 be the set of all functions in RG bounded from
below . Define addition on 5 componentwise and multiplication by convolution :

I(+)g :m t---+ inl{f(m') + gem - m') I m' EM} .

The boundedness of 1 and 9 insures that this is well defined . This semiring has
important use in convex analysis . See [Aubin , 1993].

(3.9) EXAMPLE . If A is a nonempty set and A* is the free monoid defined by A,
then we denote th e semiring R[A*] by R(A) . This semiring is called the semiring
of formal polynomials in A over R. It is additively idempotent if R is.

(3.10) EXAMPLE. [Kolokol'tsov & Maslow , 1987] Let X be a normal locally
compact topological space and let R be one the following semirings

(1) The semiring (R U { -00}, max, +) on which we have a metric d defined by
dCa, b) = lea - ebl ;

(2) The semiring (RU{ -oo,oo}, max , min) on which we have a metric d defined
by di« , b) = larctan(a) - arctan(b)l .

The subset 5 of RX consisting of all continuous functions having compact support
is a topological semiring with the topology coming from the metric d defined by
d(f ,g) =sup{d(f(x) ,g(x» I x EX} .

If, in addition, X is abelian additive topological group (for example, if X = ~n)

then 5 also has the structure of a convolution semi ring (5, +, (+) .

(3.11) ApPLICATION . Let M be the monoid (Z x Z, +) and let R be a semiring.
A (two-dimensional) cellular automaton on R is a function a from RM to itself
satisfying the condition that, for each 1 E RM

, the value of a(f)( i , j) depends only
on the values I(h, k) for i-I::; h ::; i + 1 and i - 1 ::; k ::; j + 1. In most
applications, R is taken to be f:J or Zj(k) for some positive integer k. Cellular
automata were first developed by von Neumann [1966], and later Ulam, in the
study of self-reproducing machines. The most well-known cellular automaton is
John Conway's game of "Life", popularized by the columnist Martin . Cellular
automata are now used extensively in computerized picture processing, pattern
recognition , models of the human nervous system, and in the design of multiple­
processor computers. Many operations of a cellular automaton can be regarded as
application of local convolutions 1 t---+ 1(+lo)g, where

O(i,j) = {(h , k) Ii - 1 ::; h ::; i + l ;j - 1 ::; k ::; j + I} .

See [Preston & Duff, 1984] or [Martin, Odlyzko & Wolfram, 1984] for further de­
tails . Cellular automata provide a beautiful graphic example (often illustratable in
beautiful graphics) of how repeated application of a simply-defined operation in a
relatively-simple semi ring can lead to very complex behavior.

If (M ,*) is a semigroup rather than a monoid then we can still define the notion
of a favorable family C of subsets of M and the notion of *-convolution in R[C].
However, in this case (R[C ], +, (*» turns out to be a hem iring rather than a
semiring.
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(3.12) EXAMPLE . Let V be a nonempty set and define the associative operation
* on V x V by setting (v , v') * (w, w') = (v , w') for all v, v' , w , w' E V . Let R be a
semiring and let C be an R-favorable family of subsets of the semigroup (V x V, *).
Then R[C] is a subset of the set of all R-valued graphs on V . The *-convolution
operation (*) is just the operation of composition of graphs. See [Peeva , 1983] for
details. In particular, if V is finite or countable, then this is just the operation of
matrix multiplication as defined abov e.

(3.13) EXAMPLE . Let sand m be integers greater than 1 and let A be the set of
all m-tuples (al, . . . , am), where the ai are integers satisfying 0 ~ a; ~ s-1. We can
define an operation 1\ on A as follows: (ci . .. . , am) l\ (b1, . . . ,bm) = (Cl , " "Cm ) ,

where c, equals 0 if ai -:f bi and equals their common value otherwise. Then
(A ,1\) is a semigroup . Let C = sub(A) . The hem iring (f\JC], +,(1\) has important
applications in design theory and combinatorial geometry. See [Deza & Rosenberg ,
1986], for details.

(3.14) PROPOSITION. If R is a semiring and if C is an R-favorable family of
subsets of a semigroup (M , *) then the hemiring (R[C], +,(*» is a semiring if and
only if there exists an element e of R[C] such that, for all elements m :/= n of M ,
the following conditions are satisfied:

(1) L:ml*m=m e(m /) = 1 = L:m.mll=m ;
(2) L:ml.m=n e(m /) =0 = L:m*mll=n e(m") .

PROOF . Assume that R[C] is a semi ring with multiplicative identity e. Then ,
for eac.h element m of M, we have

and similarly

Thus we have (1) . If m :/= n are elements of M then

0= el,m(n) = (eHel ,m)(n) = L e(m/)el,m(m") = L e(m/)

and similarly,

Thus we have (2) .
Now, conversely, assume that e is an element of R[C] satisfying conditions (1)

and (2) . Then for each f E R[C] and any element m of M we have

(eHf)(m) = 2: e(m/)f(m") = 2: e(m/)f(m) = f(m)
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and so e(*)f = f. Similarly, f(*)e = f . Thus R[C] is a semiring with multiplicative
identity e. D

If R[C] is not a semiring then it can always be embedded in a semiring, namely
its Dorroh extension .

Very close to the notion of a convolution is the following construction . Let A be a
partially-ordered set satisfying the condition that for each a E A the set (a] = {b E
A I b ~ a} is finite and let * be an operation defined on {(a,b) E A x A I b ~ a}.
If R is a semiring then we can define the Wiegandt convolution ® on R A by
setting

f ® g:a f-+ I: {J(b)g(a * b) I s« (an ·

(3.15) PROPOSITION. Let R be a semiring and Jet A be a partiaJJy-ordered
set satisfying the condition that (a] is finite for each a E A and endowed with an
operation * defined on {(a , b) E A x A I b ~ a} . If addition is defined on R A

componentwise then in order for (RA ,+ ,®) to be a semiring it suffices that the
foJJowing conditions are satisfied:

(1) Ifa 2 b then a 2 a *b and a * (a * b) = b;
(2) Ifa 2 b 2 c then a * c 2 b* c and (a * c) * (b* c) = a * b;
(3) Ifa > b 2 c then a * c > b * c.

PROOF. We have alr eady noted that (RA , +) is an additive monoid the identity
element of which is the function z defined by z(a) = 0 for all a E A. Moreover, if
I, g, hERA and a E A then

([j + g] ® h)(a) = I:[f(b) + g(b)]h(a * b)
b::;a

=I:f(b)h(a*b)+g(b)h(a*b)
b::;a

=I:f(b)h(a*b)+ I:g(b)h(a*b)
b::;a b::;a

=([f ® h] + [g ® h))(a)

and so [f + g] ® h = [j ® h] + [g ® h]. Similarly, f ® [g + h] = [f ® g] + [j ® h],
showing that ® distributes over addition from either side. If f E RA and a E A
then [j ®z](a) = I:{f(a)z(a*b) I b ~ a} = 0 = [z®f](a) and so f ® z = z = z ®f·

We are left to show that (RA , ®) is a monoid with identity element not equal to
z: First , we note some consequ ences of conditions (1) - (3) of the hypothesis . If b
and b' are distinct elements of (a] then a*b and a*b' must also be distinct . Indeed,
if a *b = a *b' then , by (1), we hav e b = a *(a *b) = a *(a *b') = b', We now claim
that

(4) If a 2 b > c, then a * c > a *b.

Indeed, from (2) and (1) we obtain a *b = [a * (b*c)] * [b * (b*c)] = [a * (b* c)] * c.
Moreover, a 2 a*c 2 b*c. Therefore a 2 a *(b*c) so a *c 2 [a * (b* c)] *c = a *b.
Since b f. c, we in fact have a * c > a * b, establishing (4) . By the choice of A, we
know that it has minimal elements and , indeed, for each a E A there is a minimal
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element b of A satisfying b :S a. Let A' denote th e set of all minimal eleme nts of A .
If b is an eleme nt of A then, by condition (1), we have b* b :S b and so , if b E A' ,
we conclude that b * b = b. If a E A we claim that (a] U A' = {a *a} . Indeed , we
surely have a * a E (a] . If b E (a] U A' then b = a * (a * b). By (4) we see that
a 2: a * b implies that b = a * (a * b) 2: a * a and so, by minimality, b = a * a. As
a consequ ence , we see that (a] = {c E A I a 2: c 2: a *a} . We also note that , as a
consequence of (1), a * (a *a) = a for each a E A .

If b :S a in A let [b,a] = {d E A I b :S d :S a} . Then we have a function
<p: [b , a] -+ [a * a, a * b] defined by <p: d 1-+ a * d. By what we have alr eady noted
above , this function is inj ective. Moreover , by (4), it is order-reversing. We claim
that it is also surjective. Indeed , suppose that a * a :S d' :S a * b and set d = a * d'.
Then a * d = a * (a * d')" = d'. Moreover, a 2: a * d while a * b 2: d' implies that
d = a * d' 2: a * (a * b) = b. Thus d' = <p(d), proving that <p is bijective. Another
ord er-reversing function from [b , a] to [a *a, a * b] is given by ¢ : d 1-+ d *b. Indeed ,
by (2) we have a 2: a *b 2: d *b and so d *b 2: a *a by the minimality of a *a. To
show t hat ¢ is bijective, we must show that every element d' of [a * a, a * b] can be
uniquely represented in the form d * b for some d E [b , a] . Indeed , if d' is such an
eleme nt th en th ere exists a unique eleme nt d" of [b, a] such that d' =<p(d") =aed" ,
Hence d' = a * d" = [a * (d" * b)] * [d" * (d" * b)] = [a * (d" * b)] * b = ¢ (d), where
d = a * (d" * b), and this is un iquely determined sinc e d" is. Clearly a 2: d while
b =d" * (d" *b) :S a * (d" *b) =d so d E [b , a] .

We now return to prov e the associ ativity of ®. If f, g, hERA and a E A then ,
by th e above,

[J ®(g ®h)](a) = Lf(d) [L 9(C)h((a*d)*C)] .
d5 a c5a*d

But , by the above, we not e that every such C is of the form d'*d, where d' is a unique
element of [d , a] which ranges over all of [d , a] as C ranges over [a *a, a*d] = (a *dj.
Thus we have

[J ® (g ® h)](a) = L f(d) [ L g(d' * d)h([a * dj * [d' *dD]
d5a d5 d':;S a

=L f(d) [ L g(d' *d)h(a *"
d5 a d:;Sd':;Sa

= L [L f(d)g(d' * d)] h(a * d')
d':;S a d:;Sd'

= [(I ® g) ® h](a),

proving associativity. Finally, let y E RA be th e charact erist ic function on A' . If
f ERA and a E A then [f ® y](a) =2:{f(b)y(a * b) Ib :S a} = f(a)y(a * a) = f(a)
so f ® y = a. Similarly, [y ® f](a) = y(a * a)f(a * (a * a)) = f(a) so y ® f = f.
Since f =f z, this proves that (RA , +,®) is a semiring. 0
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(3.16) EXAMPLE . If A = sub(B ) for some nonempty set B then the opera t ion
* on (C a, b) E A x A Ib ~ a} defined by a * b = a \ b satisfies conditions (1) - (3) of
Proposit ion 3.15. If A = JP> is par ti ally-ordered by th e relation b ~ a if and only if b
divides a, and if we define the operation * on {(a , b) E JP> x JP> I b ~ a} by a *b = al b
then then Wiegand t convolut ion on ~A coincides with the Diri chlet convolution
as defined in Example 3.6. For an example of a Wiegan dt convolu tion defined on
the latt ice of subg roups of a finite abelian group, see [Delsarte, 1948]. This was
app lied in [Redei , 1967] to construct gro up-t heoret ic (-functions. For exa mples of
ap plications of such convolutions to combinatorics and comp ut ing , see [Birkhoff,
1971].

Now let t be an indeterminate and consider the finitary multiplicative monoid
M = {ti liE ~}. In thi s case, for a semiring R, we follow the usual convent ion and
write R[t] instead of R[M]. T his semiring is the semiring of polynomials in the
indeterminate t over R. We will ofte n follow th e usual conventio n of denoting a
polynomial in I E R[t] by L: I( i) t i rather than as a function . If 0 ¥ I E R[t] and if
h is a maximal eleme nt of the support of I , th en h is th e d egree of I and I(h) E R
is called the leading co efficient of I . We denote the degree of I by deg(J) . If
I = 0 we set deg(J) = - 00 . Semirings of polynomi als over the sched ule algebra
and their app lications to gra ph theory and discrete-event dyn amical systems are
discussed in detail in [Baccelli et aI., 1992].

(3.17) EXAM PLE. Let R be a semiring and t an ind eterminate. If R' is an enti re
zerosumfree subsemiring of R then th e set of all polynomials in R[t] havin g leading
coefficient in R' and the set of all polynomials in R[t] having the coefficient of the
lowest nonzero term in R' are both subsemirings of R[t] .

Note that if S is an entire zerosumfree subsemiring of a semi ring R an d if t is an
indet erm inate then {pet) E R[t] I the leading coefficient of p belongs to S }U{OR} is
a subsemi ring of U[t] . Similarly, the set of all polynomials pet) E R[t] the coefficient
of the lowest nonzero te rm in which belongs to S, together with OR, is a subsem iring
of R[t].

A derivation on a sem iring R is a fun ction d:R -+ R satisfying d(r + r') =
d(r) + d(r') and d(rr' ) = d(r )r' + rd(r') for all r , r' E R. If d and d' are derivations
on a semiring R then for all r, r' E R we have

(d + d')(r + r') =d(r) + d(r') + d'(r) + d'(r') = (d + d')(r) + (d + d')(r')

and

(d + d')(r r') =d(rr') + d'(rr') =d(r)r' + rd(r' ) + d'(r)r'

= rd'( r' ) = [Cd + d')(r)] r' + r[(d + d')(r')]

and so d + d' is also a derivation on R. Since the fun ction r >-+ 0 is surely a
derivation on R, we see th at the fam ily of all derivations on R is a monoid under
the operation of componentwise addition. If R is an additively-idempotent semi ring ,
the n the identi ty map r >-+ r from R to itself is also a der ivation on R.
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(3.18) EXAMPLE . Let R be a semiring and let S be the subsemiring of M 2(R)

consisting of all matrices of the form [~ ~] . Then the function d: S -+ S defined by

[~ ~] >-+ [~~] is a derivation on S . Since R can be identified with the subsemiring

of S consisting of all matrices of the form [~~] , we see that any semiring can

be embedded in a semiring with a nontrivial derivation . For the computational
implications of this fact , see [Ball, 1986].

If R[t] is the semiring of polynomials in th e indeterminate t over th e semiring
R, and if d is a derivat ion on R, we can define a new multiplication on R[t] with
th e aid of the rule tr = rt + d(r) for all r E R and th e distributivity of regular
multiplication over addition from both sides. Thus we obtain a hemiring, which, as
we have seen , can be embedded in a semiring. This semiring, denoted by R[t; d], is
called the differential polynomial semiring defined by dover R . The necessity
for using a Dorroh extension can be avoid ed if we insist that our derivations satisfy
th e addit ional condition tha t d(l) = O.

Let A be a nonempty totally-ordered set. We can indu ce a partial order on th e
free monoid A * indu ctiv ely as follows:

(*) If w = au and w' = bv are nonempty words with u , v E A", th en w < w' if
and only if a < b in A or a = band u < v .

Note that if w < w' and if u , v are arbit rary words then uw < vw' and wv < w'v .
Also not e th at this ord er induces a total ord er on th e set of all words of a given
length .

If w = at a2 . . . an is a word in A * then there is a permutation 0' of {I , . . . , n} such
th at 0'(1) ::; 0'(2) ::; ... ::; O'(n) . Denote the word ao(1)ao(2) . . . ao(n) by woo Then
we can define a new operation 0 on A* by w8 w' = (w ·w')o . Moreover , (A*, 8 ) is a
commutative monoid , called th e symmetric free monoid on th e totally-ordered
set A. If R is a semiring then th e semiring R[(A ,8 )] is called th e semiring of
symmetric formal polynomials in A over R . It is not a subsemiring of R(A) .
For th e use of such semirings in number theory see [Cashwell & Everett , 1959].

Let A be a nonempty set and let A* be th e free monoid of A. If R is a semiring
then th e semiring of formal power series in A over R, denoted R((A)) , is defined
to be the set RA • on which addit ion is defined componentwise and multiplication
is defined by the Cauchy product (fg)(w) = L:U(w')g(w") I w'w" = w} . This
sum is finit e and so the product is well-defined . The addit ive identity of R((A)) is
the fun ction which takes every element of A* to OR . The multiplicative identity
is the fun ction 1 defined by I( w) = lR if w = 0 and I( w) = OR otherwise. An
element 1 of R((A)) is quasiregular if and only if 1(0) = O. The semiring R(A)
subsemiring of R((A)). If R is additively idempotent or zerosumfree, then so is
R((A)) for all A. If 0 :j:. B ~ A then we can consider R((B)) as a subsemiring of
R((A)) by identifying R((B)) with the family of thos e functions in R((A)) the support
of which is contained in B* .

If R is a semi topological semiring then R((A)) is also semitopological under th e
product topology induced by the topology on R. If 1 :j:. g are distinct elements of
R((A)) , set m(f,g) = min{lwll wE A* and I(w) :j:. g(w)}. Pick a real number c
satisfying 0 < c < 1 and define a function d:R((A))2 -+ lR + by setting d(f,J) = 0
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for all f E R((A)) and d(f, g) = emU,g) for f # g. It is straightforward to verify
that this is a complete ultrametric on R((A)) (i .e. d(f,g) ~ max{d(f,h),d(h,g)}
for all I .g , h E R((A))) which turns R((A)) into a topological semiring. If f E R((A))
is quasiregular , then the sequence (I, P,p ,.. .) converges to 0 in this topology.

Thus we have seen that there are in fact two ways of defining multiplication on
RA • in order to turn it into a semiring: th e Cauchy product as given above and the
pointwise product (in various contexts also called the Hadamard product which
we considered before .

Formal power series over various semirings are an important tool in several fields
of applied mathematics and computer science. For an example of their application
to formal language theory, see [Chomsky & Schiitzenberger, 1963], [Eilenberg, 1974],
[Kuich & Salomaa, 1986], [Salomaa & Soittola, 1978], [Stanat , 1972]' and [Wang,
1998].

(3.19) ApPLICATION . One of the most important applications of semirings in
theoretical computer science is to automata theory. The use of semirings to study
automata goes back to [Conway, 1971] and was given its major impetus in [Eilen­
berg, 1974] . There are several ways of defining automata over semirings, and we
will use the approach given in [Kuich & Salomaa, 1986]. Also refer to [Lallement,
1979].

Let R be a semiring and let A be a nonempty set . An R((A))-automaton
A = (5, M , So, P) consists of:

(1) A countable set 5 of states of A ;
(2) A matrix M E Ms,r(R((A))) , called the transition matrix of A ;
(3) An elem ent So of 5 called the initial state of A ;
(4) A column vector P E (R(D))S , called the final state vector of A.

In variants of this definition , th e automaton is allowed to have any of a finite
number of initial states and the transition matrix is restri cted to having entries in
some predesignated subset of R containing 0 and 1. See, for example, [Kuich, D87] .

An automaton A is finite if the set 5 is finit e. Initially, all automata studied
were finite automata . However , countably-infinite automata turn out to be useful
in certain situations , such as describing machines with pushdown stacks. As we
noted previously, th e matrix M can also be thought of as a directed graph on the
set 5 . If M[s , t] # 0 th en th ere is an arc of the graph from s to t having label
M[s ,t] E R((A)). More generally, if sand t are elements of 5 then to any path
p = (s = Sl," .s., = t) we assign the label Ilpll = M[Sl' S2] . .. .. M[Sn-1 ' Sn] . If p
is a path from s to t and q is a path from t to u then pq is a path from s to u and

Ilpqll = Ilpll ·llqll ·
If s E 5 and k E f\J let bk,s be L:{lIplll p a path from So to s of length k} . Set

b, = L:r'=o bk,s. The behavior of the automaton A is th e formal power series
IIAII E R((A)) defined by IIAII = L:{bsP(s) I s E 5} . Note that this power series
may not exist! We will come back to the existence of behaviors for automata later.
If f E R((A)) is the behavior of some R((A))-automaton A , then the power series f
is accepted by A. A language B ~ A* is recognized by an R((A))-automaton A
if and only if IIAII exists and has support B.

An extension of the above construction to formal power series over trees rather
than over words is considered in [Berstel & Reutenauer , 1982] and is utilized in
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[Wechler , 1986a] for the study of fuzzy program schemata in conn ect ion with th e
mathem atical semantics of nondeterministic programs. Automata over semirings
other th an semirings of formal power series are considered in [Mizumoto, Toyod a
& Tan aka , 1975], where several examples are given . Task resour ce modules using
automata over th e schedule algebra are describ ed in [Gaubert & Mair esse, 1998],
while repr esentation of safe timed Petri nets by aut omata over th e schedule algebra
is described in [Gaubert & Mair esse, 1999]. Such repr esentations allow th e au­
thors to obtain automata-based performan ce evaluat ions for such net s. For general
performance evalua t ion of automata over th e schedule algebra , refer to [Gaubert,
1995].

If R is an arbit rary semi ring and if -00 is an element not in R th en we can
define the structure of a semiring on th e set 5 = R U {-oo} as follows:

(1) If a, bE R th en a + band ab are the same as in R ;
(2) a + - 00 = -00 + a = a for all a E 5 ;
(3) a(-oo) = (- oo)a = -00 for all a E S .

Moreover , one immediatel y sees that this new semiring, in which - 00 is now th e
zero element , is in fact entire and zerosumfree. Note that R is not a subsemiring of
5 since th e two semirings do not have the sam e zero element . We will denote the
semiring 5 by R{ - oo}.

This same const ruc t ion can be used to construct entire zerosumfree semirings
when we are lacking is an addit ive identity. That is to say, if R is a nonempty set
on which we have operations of addition and multiplication defined so th at (R ,+)
is a commutat ive semigroup , (R , ') is a monoid , and multiplication distributes over
addition from either side, and if - 00 is an element not in R th en , (R{ -oo} , + , .)
defined as above is a zerosumfree semiring. Thus, for example, (R+ , ma x , +) is not
a semiring since 0 acts as both "addit ive" and "muh.iplicat ive" identity. However ,
as we hav e seen , (R+ U{-oo}, ma x , +) is a semiring , which is a sub semiring of th e
schedule algebra.

Similarly, let R = {r E R I r > O} and define operations EB and <::> on R by
setting a EBb =abj(a+b) and a <::>b = aboThen (R , EB , <::» lacks an addit ive identity
but (R U {-oo} , EB, <::» is an entire zerosumfree semiring .

(3.20) EXAMPLE. A partial function from a set A to a semiring R is a function
f from a subs et dom(f) of A to R . If f is such a fun ction th en we can extend f to
a function j+ from A to R {-oo} by setting j+(a ) = - 00 for all a E A \ dom(f) .
Thus th e family of all partial functions from A to R can be identified with the
sem iring R{ _ OO}A .

(3 .21) EXAMPLE . In [Park , 1981] and [Izumi , Inagaki & Hond a , 1984] th e con­
struction in Exam ple 1.11 is extended to the set (sub(A OO

) , + , .) of all formal 00­

languages on A in order to deal with automata which allow for the possibility of
concur rent int erpretation of commands. If Land L' are subsets of Aoo th en we set
L + L' to be L U L' , while LL' = {w w' I w E L n A* and w' E L'} U (L \ A*).
With respect to th ese operat ions, sub(A OO

) satisfies all of th e conditions for being
a semiring except that L . 0 is not necessarily L , as one would need, but rather
L .0 =L nA*. However , this can be embedded in a zerosumfree semiring by adding
a new addit ive identity -00 as ab ove.
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If R is an ent ire zerosumfree semiring and 00 is an eleme nt not in R , then we
can exte nd t he semiring st ruct ure on R to a semiring structure on th e set R U {(X)}
by set ti ng

(1) a + 00 =00 + a =00 + 00 =00 for all a E R ,
(2) aoo = ooa =0000 =00 for all 0 i- a E R, and
(3) 0 00 = 000 = O.

We will denote this semi ring by R{ oo}. Clearly 00 is a st rongly-in finite eleme nt
of t his semi ring. Sin ce R{oo} is again zerosumfree and ent ire , this process can be
it erated . Let Wh = [oc, I i < h} be a family of indeterminates , where h is some
ordinal. Define R{ Wd by t ra nsfinite induct ion as follows:

(1) If h is a limi t ord in al , then R{Wd = Uj<hR{Wd ;
(2) If h is not a lim it ordinal then R{ Wd = (R{ Wh- d){ OOh - d .

Let R be t he semiring (l':! { 00 } , max , min) . If (A , *) is a monoid then t he convo­
lution (*) on R A is ca lled t he multiproduct . See [Lake, 1976]; also see [Wongsee­
lashot e , 1976 , 1979] for further detail s concern ing t his semiring and for its uses in
gr aph-theoreti c problem s, including specific computat ion al algorithms. For uses of
R in the theory of formal languages , see [Mascle, 1986].

A function 8 from a semiring R to itse lf is a r eduction if and only if th e following
condi t ions are satisfied :

(1) 8(0) = 0;
(2) 8(1) = 1;
(3) 8(a + b) = 8(8(a) + b) for all a, se R;
(4) 8(ab) =8(8(a)b) =8(a8(b)) for all a, s« R.

Such a fun ction is necessarily idempoten t . Indeed , if a E R then f>2(a) = 8(8(a)) =
8(8(a) . 1) = 8(a . 1) = 8(a) . It is straightfor ward to see that if 8 is a reducti on
of a sem iring R t hen im(8) = {a E R I 8(a) = a} is a semiring with resp ect to
the operatio ns EB and 0 defined by a EB b = 8(a + b) and a 0 b = 8(ab). Note that
this is not necessarily a subsemiring of R, t hough it has th e same addit ive and
multiplicative identities. If A is an additi vely- [resp. multiplicatively-] idempotent
eleme nt of R then 8(a) is an additi vely- [resp . multiplicatively-] idempot ent eleme nt
of im (8).

A sp ecial case of this const ruc t ion was considered in [Wongseelashote, 1979] in
his analysis of various path probl em s on graphs and the const ruc t ion of semirings
suitable for solv ing t hese probl em s , beginning from th e semiring of all subsets of
th e set of vertices of a given graph . For exam ple, let R be a zerosumfree ent ire
semiring and let A be a non empty set . Define a fun cti on 8 from R A to itself by
setting 8(f ) to be the characteristic funct ion on 8upp(f ) for each f E R A . Then 8
is a reduction on RA . T his exam ple was consid ered in [Wongseelashote, 1979] for
the sp ecial case of R = l':! { 00 } .

Finally, we observe that if R is a hem iring and if 0 i- a E R then we can define a
new op eration *a on R by r *ar' = rar', T hen (R ,+,*a) is a hemiring, whi ch is not
necessarily a semiring, called the shift of R by a. We can embed it in a semirin g
by taking its Dorroh exte nsion .

Let A and B be non empty sets and let h E RA x B be an R-valued relation
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between A and B. If f E RA has finit e support , we define h[J] E RB by setting

h[f] :b >-> L f (a)h(a,b)
aEA

for all b E B and if 9 E R B has finit e support, we define h-1[g] ERA by setting

h-1[g]:a >-> L h(a , b)g(b)
bEB

4 1

for all a E A. We note im mediately that if f = f'+!" in R A then h[f] =h[f']+h [f" ]
in RB while if 9 =g' + s" in RB then h- 1[g] =h- 1[g'] + h- 1[g"] in RA .

Fun ctions h >-> h[f] can be considered as inference schemes in an uncertain
environment and as such includ e the fuzzy impli ca tion opera to rs used in designin g
fuzzy controllers and fuzzy microprocessors [Gup ta & Yam akawa, 1988]. T here are
several ways of doing th is. For example, we can consider th e following const ruct ion,
based [De Baets & Kerr e, 1993a] : an implication on a semiring R is an operation
~ on R sat isfying the boundary conditions 0 ~ 0 = 0 e- 1 = 1 c- 1 = 1 and 1 e- 0 = O.
If A and B are nonempty sets and if f a E R A an d go E R B are given R-valued
subsets of A and B respecti vely, then each implication c- on R defines an R-valued
relation fa e- go E R A x B by (fa c- go):(a, b) >-> fo(a) ~ go(b). The R-valued modus
ponens rule then becomes: if f o(a) then go(b) an d if f (a) then (fa ~ go)[J](b). T he
case of R = IT was first consid ered, in several pap ers , by Lofti Zadeh . Also refer also
to [Fuller & Zimmerm ann , 1992] and [Hellendoorn , 1990].

Let R be a semiring . Any fun ction u : A -+ B between nonempty sets defines an
R-valu ed function b« between A and Bby setting

hu(a ,b) = { 1
()

If u-1(b) is finite for b E B , then

if u(a) = b

ot herwise

hu[f] :b >-> L f (a)hu(a, b) = L f (a)
aEA u(a) = b

for each f E R A . On th e ot her hand , if 9 E R B th en

h;;l[g]:a >-> L hu(a , b)g(b) = gu(a)
bEB

for each a E A .
We note, in particular , that if the funct ion u : A -+ B is biject ive then

for all b E B for which u- 1(b) is finit e.
Let R be a semiring and let u : A -+ B be a fun ction between nonempty sets.

Then f ERA is u-s table if and only if f(al) = f(a2) whenever u(ad = u(a2)'
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(3.22) PROPOSITIO N. Let R be an addi tively-idem po ten t semiring and let A
and B be finit e sets . If u : A --+ B is a surjective m ap then there exists a bijective
correspondence between R B and the set of all u-steble elem ent s of R A .

PROO F . If g E RB th en h~l[g] E R A is easily seen to be u-st abl e and, moreover ,
we have hu[h~l[g]] = g since hu[h~l[g]](b) = L:u(a)=b gu(a) = g(b) for all b E B ,
by the u-stability of g and th e addit ive idempotence of R.

Now suppose that fJ,hERA are u-st abl e fun ctions sat isfying hu(fJ) = hu(h).
If ao E A and bo = u(ao ) E B th en , by th e additive idem potence of R , we have

fJ (ao) = L fJ(a ) =huUJ)(bo) = hu(h)(bo) =h(ao)
u (a)=bo

and so II =h . 0



4. SOME CONDITIONS ON

SEMIRINGS

We usually consider semirings on which some sort of addit iona l conditions have
been imposed . Many such condi t ions were given in Chapter 1 and examples given of
semirings which do or do not satisfy th em . We now want to consider consequences
of imposing some of th ese conditions on a semiring. In particular we will first look
at the condition of being an additively-idempotent semiring and at th e stronger
condition of being a simple semiring. Then we will consider some weaker versions
of th e condition that elements have additive or mul tiplicative inverses. Finally, we
will take up a condition which guarantees the existence of "enough" multiplicative
units .

First , however, we must state a number of standard notational conventions: if n
is a positive int eger and a is an element of a semiring R, then we denote the sum
a +...+a of n copies of a by na and th e product a . . ... a of n copies of a by an. We
set aO = 1R for each element a of R. The semiring R is algebraically closed if for
each b E R and for each positive integer n there exists an a E R satisfying an = b.
Thus, for example, th e schedule algebra (ffi. U {-oo} , max ,+) is algebraically closed .

An element a of R is nilpotent if and only if th ere exists a positive integer
n sat isfying an = O. The smallest such positive integer n is called th e index of
nilpotency of a. We will denote th e set of all nilpotent elements of R by No(R) .
Th en No(R) :f. 0 for any semi ring R , since 0 is always nilpotent . If the semiring R
is commutative th en No(R) is a submonoid of (R , +) . Indeed , if a, s e No(R ) are
nilpotent elements of R satisfying an =bk =0 th en

since aj =0 if j ?::: nand bn+m - j =0 if j :s n, we see that each summand is 0 and
so (a + b)n+k = O.

If a and b are elements of a semiring R and if nand m are nonnegative int egers
we define th e symbol a[n]b[m] inductively as follows:

(1) a[O]b[m] = bm for all m ?::: 0;
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(2) a[n]b[O] = an for all n > 0;
(3) a[n+1JMm+l] = (a[n]Mm-+l])a + (a[n+l]Mm])b .

Intuitively, a[n]Mm] is the sum of all possible products of n of the a's and m of th e
b's.

(4.1) PROPOSITION. If a and b are elements of a semiring R while n and m are
nonnegative in tegers th en :

(1) (a + b)n = L:~o a[i]b[n- i];
(2) a[n]Mm] = L:7=o(a[i]Mm- l])ban- i .

PROOF . This follows by a straightforward induction arg ume nt. 0

If A and B are non empty subset s of a sem iring R , we define the subsets A + B
and AB of R as follows :

A + B = {a + b Ia E A , se B}

and

We now begin by looking at sim ple and addi t ively-idem po te nt semi rings. Simple
semirings, as already obs erved in Ch apter 1, are addit ively idempot ent but the
converse is not true. Thus, for exam ple, the semiring (~U {oo} , m in , +) mentioned
in Example 1.22 is addit ively idempotent but not simple.

(4 .2) PROPOSITIO N. If a , b, c, and d are elemen ts of an addi ti vely -idem po ten t
sem iring R sa tis fy ing a + c = b and b+ d = a th en a = b.

PROOF . By addit ive idempotence we have a = a+a = a+b+d = a+a+ c+d =
a + c + d = b+ d + c + d = b + d + c = a + c = b. 0

We now t urn to simple semirings .

(4.3) PROPOSITIO N. Th e following conditions on a sem iring R are equivalen t :

(1) R is sim ple ;
(2) a = ab + a for all a , b E R;
(3) a = ba + a for all a , bE R;
(4) ab = ab + acb for all a , b, c E R.

PROOF. Assume (1) . If a , b E R then a = a 1 = a(1 + b) = a + ab , proving (2) .
Conversely, if (2) hol ds then 1+ b = 1+ 1b = 1 for all b E R , proving (1) . Similarly,
(1) ¢} (3) and (1) ¢} (4) . 0

The identities (2) and (3) of Proposition 4.3 are noncommutative versions of the
"a bsorpt ion laws" familiar from the axi omati c algebraic definitions of lattices. They
were st udied separate ly in [Jordan ,1949] in connect ion with the study of quantum
logic. Because of conditions (2) and (3) of Proposition 4.3, simple semirings are
sometimes refered to as distributive pseudolattices .
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(4.4) COROLLARY. For a sem iring R th e following condi tions are equivalen t :

(1) R is simple and multiplicatively idempotent;
(2) (a + b)(a + c) = a + be for all a, b, c E R;
(3) If a , bE R th en a + b = a¢:} ab =b =ba.

PROOF . (1) ¢:} (2) : Assume (1). By Proposition 4.3 we have

(a + b)(a + c) =a2 + ba + ac + be =a + ba + ac + be =a + bc.

Thus we have (2) . Conversely , assume (2) . If a E R then , by (2) ,

a2 = (a + OHa+ 0) = a + 0·0 =a

so JX(R) = R. If a,b E R th en ab + a = (a + O)(b + 1) = a + 0·1 = a and so, by
Proposition 4.3, R is simple.

(1) ¢:} (3) : Assum e (1) and let a and b be elements of R . If a+b = a th en , by (2) ,
we have ab = (b+a)(b+O) =b+aO = b. Similarly ba = (b+O)(b+a) =b+Oa =b.
Conversely, if ab = b th en , by Proposition 4.3, a + b = a + ab = a. Now assume
(3) . If b E R then Ib = b so 1 + b = 1. Therefore R is simple. In particular , it
is additively idempotent . Hence for each a E R we have a + a = a and so a2 = a.
Thus R is multiplicatively idempotent as well. 0

(4.5) COROLLARY. A commutative semiring is a bounded distributive lattice if
and only if it is a sim ple multiplicatively idempotent semiring.

PROOF. This is a dir ect consequence of Proposition 4.3 and th e remarks in
Example 1.5. 0

(4.6) COROLLARY. IfR is a sim ple semiring th en (JX(R) , +) is a submonoid of
(R , +) and JX (R) n C(R) is a bounded distributive lattice.

PROOF . If a and b belong to JX (R) then (a + b)2 = a2+ ab + ba + b2 =a + ab +
ba + b = a + b by Proposition 4.3. Therefore JX (R) is closed und er addit ion and
hence, since it contains 0,. is a submonoid of (R , +) . Furthermore, if a, b E C(R)
th en a + se C(R) .

We also note th at JX(R) n C(R) is nonempty since it cont ains both 0 and 1. If
a and b belong to ]X (R) n C(R) th en surely so does abo By th e above, a + b E
JX (R) n C(R), proving that ]X (R) n C(R) is a subsemi ring of R, which is simple
since 1 is infinit e in it . The result now follows from Coroll ary 4.5. 0

(4.7) PROPOSITION. For each elemen t a of a simple sem iring R, let S( a)
{O} U {r E R I r + a = I}. Then :

(1) S( a) is a subsem iring of R for each a E R;
(2) S(a) n S(b) = S(ab) for all a , s« R.

PROOF . (1) Since R is simple, we clearly have 1 E S(a) . Therefore we must
show that if r , r' E S(a) th en r + r' and rr' belong to S(a) . This is immediate
if one of r , r' is 0, and so we can assume th at both are nonzero . In that case,
r + a = 1 = r' + a and so (r + r') +a =(r + r') +a + a = 1+ 1 = 1, est ablishing that
r+r'ES(a) . Moreover, 1= l+a=(r+a)(r'+a)+a=rr'+ra+ar'+a2+a.
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By Proposition 4.3, this equals rr' + a, proving that rr' E 5(a) . Thus 5(a) is a
subsemiring of R .

(2) If 0 1: r E 5 (ab) then r + ab = 1 so, by Proposition 4.3, 1 = 1 + a =
r+ab+a = r + a, proving that r E 5(a) . Similarly r E 5(b) and so r E 5 (a)n 5 (b).
Conversely , assume that 01: r E 5(a) n 5(b) . Then

1 = 1 + r = (r + a)(r + b) + r =r 2 + ar + rb + ab+ r = ab + r

and so r E 5(ab). T hus 5 (ab) = 5(a) n 5 (b). 0

Note that for any sim ple semiring R we have 5 (0) = lffi and 5 (1) = R.

(4.8) PROPOSITION. Ifa and b are elem ents ofa simple semiring Rand m , n E N
then there exist elements e and d of R satis fying an = a[n]b[m] + e and b'" =
a[n]Mm] + d.

PROOF. We will first claim that for any h, kEN there exists an element e of
R su ch that an = bhanbk + e. Indeed , this is trivial if h = k = O. By Proposition
4.3 we hav e an = ban + an and so the result is t rue if h = 1 and k = O. Now
assume that there exists an eleme nt c' of R su ch that an = bhan + e' . Then
an = ban + an = b(bhan + e') + an = bh + Ian + c" , where c" = be' + an. Thus
t he result is true for all values of h when k = O. Similarly, the result is true for
all values of k when h = O. Finally, assume that both hand k ar e nonz ero. Let
d and d' be elem ents of R sat isfying bhan + d = an and anbk + d' = an . Then
an = bhanbk + d" , where d" = bhd' + d. This establishes the claim .

We nex t note th at an arbit rary summand r in a[nlMm] is of the form

where m(I)+ · · '+ m(t + l ) = m and n(I)+· · ·+ n(t ) = n. By rep eated applicat ions
of the claim , we see that t he re exist s an Eleme nt d; of R su ch that r + d; = an.
Finally, we note that a[n]Mm] + L:dr = an + ... + an = an, since sim ple semirings
are additively idempotent.

The second equality is proven similarly. 0

(4.9) PROPOSITION. Let R be a sim ple semiring for which there exists an integer
n satisfying r" = r" + 1 for all r E R . Then:

(1) r" + s" = (r + s)" for all r , s E R ;
(2) If 8 is the operation on IX (R) defined by a 8 b = (ab)n, then (IX (R) ,+,8 )

is a comm utat ive sim ple semiring.

P ROO F. (1) Let r , s E R. By expansion, we see th at there exists an eleme nt d
of R satisfying (r + s )" = rn + s" + d. On the other hand , (r + s )" = (r + s )2n- l
and t his can be expanded in t he form L: r[h] s[k] where, in each summ and , eit her
h ~ n or k ~ n . By Proposition 4 .8, there exists an eleme nt e of R sa t isfying
r" + s" + (r + s}" + e. By Prop osit ion 4.2 , this im plies that r" + s" = (r + st ,
pr oving (1) .

(2) Clea rly 0 and 1 bo th bel ong to IX (R) . By Corollary 4.6 , we see that
(IX (R) , +) is a com mutat ive monoid . Moreover , a + 1 = 1 for all a E IX (R)
since t his is true in R.
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Ifa ,b, cE JX(R) then, by (1), we have

a 8 [b + c] = (a[b + c])n = (ab + cc)" = (abt + (ac)n = a 8 b+ a 8 c,

and similarly [b + c]8 a = b8 a + c 8 a . Thus 8 distributes over + from either side .
Moreover , by the proof of Proposition 4.8, we see that there exists an element d of R
satisfying (abc)n = (ab)n+d and by Proposition 4.3 we have (abt = (abt c+ (ab)n .
Therefore there exists an element d' of R with (abc)n = (ab)n c + d' and so there
exists an element d" of R satisfying (abct = [(ab)nc]n +d". An analogous argument
shows that th ere exists an element e of R satisfying (ab)ncn = [(abc)n(abc)]n + e =
(abct + e and so (abc)n = [(ab)n]cn by Proposition 4.2. A similar argument shows
that [a(bc)n]n = (abc)n and so a 8 (b 8 c) = [a(bc)n]n = [(ab)ncn] = (a 8 b) 8 c.
Thus the operation 8 is associative. Finally, we note that (ab)2 = abab = ba+d for
some d E R and so there exists an element d' of R satisfying (ba)n = (ab)2n + d' =
(ab)n + d'. Similarly, there exists an element d" of R satisfying (ab)n = (ba)n + d"
and so, by Proposition 4.2, a 8 b = (ab)n = (bat = b 8 a . This shows that
the operation 8 is commutative and so (JX(R),+, 8) is a commutative simple
semiring. D

While every simple semiring is additively idempotent there are , as we have seen,
additively-idempotent semirings which are not simple. We do , however , have the
following result .

(4.10) PROPOSITION. Every additively-idempotent semiring has a simple sub­
semiring.

PROOF . Let R be an additively-idempotent semiring and let S = {a E R I
a + 1 = I} . Clearly 0 and 1 belong to S. If a, b E S then a + b+ 1 = a + 1 = 1 and
ab + 1 = ab + a + b + 1 = (a + l)(b + 1) = 1. Therefore S is a subsemiring of R ,
which is clearly simple. D

(4.11) COROLLARY. Every addit.ively-idempotent semiring has a subsemiring
which is a bounded distributive lattice.

PROOF. This is a direct consequence of Proposition 4.10 and Corollary 4.6. D

In Proposition 4.10 we saw that if R is an additively-idempotent semiring then
{a E R I a + 1 = I} is a subsemiring of R . The following proposition complements
this result.

(4.12) PROPOSITION. If R is an additively-idempotent semiring then S = {OJU
{a E R I a + 1.= a} is a subsemiring of R .

PROOF . Clearly 0 E S, while 1 E S since R is additively idempotent . If 0 -#
a, se S th en (a + b) + 1 = a + (b + 1) = a + b so a + bE S. Moreover , ab + 1 =
a(b+ 1)+ 1 = ab+a+ 1 = (a+ l)b+a+ 1 = ab+b+a+ 1 = (a+ l)(b+ 1) = ab
and so ab E S. This prov es that S is a subsemiring of R . D

Finally, we want to establish something about the structure of the additive
monoid of an additively-idempotent semiring by proving an analog of a well-known
result for semigroups . First we need some notation : for an element a of a semiring
R, set H(a) = {b E R I there exists an elem ent c of R such that a + b+t = a} .
Note that H(a) -# 0 for each a E R since a + 0 + 0 = a implies that 0 E H(a).
Moroever , if a E [+(R) then a E H(a) .
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(4.13) PROPOSITION. If R is a sem iring and a , a' E j+ (R) then:

(1) (H(a) ,+) is a commutative semigroup;
(2) G(a) = {a + bib E H( a)} is a subgroup of H(a) ;
(3) G(a)G(a') ~ G(aa').

PROOF . (1) If b, b' E H (a) th en th ere exist elements c and c' of R satisfying
a = a + b + c = a + b' + c' and so a = a + a = a + (b + b') + (c + c' ). Thus
b+b' E H(a) . Since addition in R is associat ive and commutative, this implies that
H( a) is a commutat ive semigroup.

(2) We not e th at a = a+O E G(a) and that , by (1) and the addit ive idempotence
of a, th e sum of elements of G( a) is again in G(a) . If a+b E G(a) th en a+ (a +b) =
(a + a) + b = a + b so a is th e additive identity of G(a). Fina lly, if a + i « G(a)
th en th ere exists an element c of R (and hence of H (a)) sat isfying a + b+ e = a
and so a = (a + b) + (a + e). Thus a + b has an inverse in G(a) .

(3) If a + b E G(a) and a' + b' E G( a' ) then there exist elements e and e' of R
such that a =a + b+ e and a' = a' + b' + e' . Therefore

aa' = (a + b+ c)(a' + b' + c' ) = aa' + ab' + ae' + ba' + bb'+ be' + ea' + eb' + ee'

=aa' + (a + b)(a' + b') + (ae' + be' + ea' + cb' + ee' ),

proving that (a + b)(a' + b') belongs to H(aa'). But aa' + (a + b)(a' + b')
(a + b)(a' + b') so it in fact belongs to G(aa'). Since G(aa' ) is closed und er taking
finit e sums, this proves (3) . 0

As a consequence of Proposition 4.13 , we see th at an additively-idempotent
semiring R is the unio n of addit ive groups which are not, however , subgroups of
(R ,+).

We now turn to th e matter of additive inverses. Let a be an element of a semiring
R. An element b of R is an additive inverse of a if and only if a + b = O. If a has
an additi ve inverse, th en such an inverse is unique for if a + b = 0 = a + b' th en
b = b+O = b+a+b' = O+b' = b', We will denote th e addi t ive inverse of an element
a , if it exists, by -a. Denot e th e set of all elements of R having addit ive inverses
by V(R) ; this set is nonempty since 0 E V(R) , with -0 = 0 and , ind eed , it is a
submonoid of (R , +) since it is closed under taking sums. Moreover, if a+b E V(R)
th en both a and b belong to V(R) . Clearly R is a ring if and only if V(R) = R
and R is zerosumfree if and only if V (R) = {O}. An infinite element of R cannot
belong to V(R) .

(4.14) EXAMPLE . [Gardner , 1993] In an elementary calculus course one studies
partial function s on m., i.e. functions f: A ---> m., where A is a nonempty subset
of m. called th e domain of f. We will denote thi s dom ain by dom(f ). Let 5 be
t he set of all such fun ctions . If I, 9 E 5 th en f + 9 is th e function having dom ain
dom(f)ndom(g) on which it is defined by the rul e x l---> f( x)+g(x) . Similarly , fg is
the function having th e sam e dom ain on which is defined by the rule x l---> f( x)g( x) .
It is easy to check th at (5,+,.) is a semiring th e addit ive ident ity in which is the
func tion x l---> 0 with dom ain m. and th e multiplicative ident ity in which is the
function x l---> I with dom ain m. . Howeover , not e tha t if f E 5 th en and if t: is the



____SOME CONDITIONS ON SEMIRINGS _ 49

fun ction from dom(J) to JR defined by x>-+ -f(x) , then r: is an addit ive inverse
of f only if dom(J) = lR . Thus V(R) = {f E 5 Idom(J) = lR }.

For a more general approach to analysis using this approach, albeit without
explicit menti on of semirings, refer to [Prezeworska-Rolewicz, 19S5, 1995].

Since not every element of a semiring has an additive inverse, we look for a
weaker condi tion . An eleme nt a of a semiring R is cancellable if and only if
a + b = a + c => b = c in R. We will denot e th e set of all can cellabl e eleme nts
of R by g+(R) . This set is nonempty since V(R) ~ g+(R) . An infinite eleme nt
of a sem iring is never cancellable. Moreover , g+ (R) is easily seen to be closed
und er addition. T hus ](+(R) is a sub monoid of th e addit ive mon oid (R, +) . If
](+(R) = R then the semiring R is cancellative. Not e that ]+(R)ng+(R) = {OJ
so th at addit ively-idem pote nt semirings have no nontrivial cancella ble elements and
are thus as far away from being can cellative as possible.

(4.15) EXAMPLE . The semiring r:l, which is not a ring , is cancellative. Thus we
may have R = g+(R) => V(R) = {OJ.

(4.16) EXAMPLE . If X is a set having more than one element th en th e semiring
(sub(X) , U, n) is not can cellative.

(4.17) EXAMPLE . Let 00 be an element not in r:l and let R = r:l{ oo}. Then
g+(R) = r:l. This example is noted in [Smith , 1966].

(4.18) EXAMPLE . A subsemiring of a cancellative semi ring is again cancellat ive.
If {R i liE n} is a family of cancellative semirings th en X iEORi is also canc ellative.
Simil arly , if R is a canc ellative semiring and A is a nonempty set th en R((A)) and
R(A) are cancellat ive.

(4.19) EXAMPLE. [H. E. Stone, 1977] IfR is a cancellative semiring th en Mn(R)
is cancellative for every positive integer n. This is an immediate consequence of
th e fact th at addition in M n (R) is defined componentwise. Similarly , if A is a
countably-infinite subset then MA ,r(R) , MA ,c(R), and MA,rc(R) are cancellative
semirings.

We now present another weak version of th e condi tion of having an additive
inverse - one which is also satisfied by infinite elements . If R is a semiring , set
W (R) = {a E R I if b E R th en th ere exists an element r of R such that a + r =
b or b + r = a}. Clearly W(R) is nonempty since V(R) ~ W(R) . Moreover , if
a E R is infinite then a E W(R) since a = b+ a for all b E R . If R = W(R) th en
the semiring R is a yoked semiring.

(4.20) EXAMPLE. r:l and Q+ are sur ely yoked semirings. Simil arly, if R is a
totally-ordered set with unique minimal element 0 and unique maximal element 1
th en (R,max , min) is a yoked semiring. Thus IT and r:l U {oo} are yoked semirings.

(4.21) PROPOSITION. If] and Hare subhem irings of a yoked sem iring R sat­
isfying the condition that ]H ~ V(R) then eitli er T' ~ V(R) or H 2 ~ V(R) .

PROOF . Assum e that ]2 q, V(R) . Then th ere exist elements a and a' of] such
th at aa' ~ V(R) . Let b, b' E H . If there exists an element r of R such th at a+ r = b
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th en a'a + a'r = a'b E IH ~ V(R) and so a'a E V(R) , which is a contradiction .
Hence, since R is a yoked semiring, th ere must exist an element r of R such that
a = b+ r . But th en bb' + rb' = ab' E I H ~ V(R) and so bb' E V (R). This proves
th at H 2 ~ V(R). 0

The zeroid of a semiring R is Z(R) = {r E R I r + a = a for some a E R} .
Thus if a E R th en b E H(a) implies that b+ c E Z(R) for some c E R. Clearly
I+(R) ~ Z(R) so Z(R) "# 0 . If Z(R) = R t hen th e semiring R is ze roic. Otherwise
it is nonzeroic. If R has an infinite eleme nt then it is surely zeroi c. A semiring R
is plain if and only if Z(R) = {O}. If R is a ring th en it is surely plain . If 5 is a
sub semiring of a semiring R th en Z(5 ) ~ Z(R). Thus , in particular , subsemirings
of plain semirings are plain . If R is cancella t ive th en it is surely plain . The following
result provides a pa rt ial converse of this fact.

(4. 22 ) PROPOS ITIO N. A yo ked semiring is cancellative if and only if it is plain .

PROOF . This is an immediate consequence of the definition . 0

As a conseque nce , we see that a sem iring R is plain precisely when (R , + ) is a
valuation monoid .

The size of the zeroid is a measure of how far , in some sense, a sem iring is from
being a ring , and it will playa very important part in our considerat ions later on .

We now turn from addit ive inverses to mu ltiplicative inverses. An eleme nt r
of a semiring R is a unit if and only if th ere exist s an element 1" of R satisfying
1'1" = 1 = 1"1' . The element 1" is called th e inverse of r in R . If su ch an inverse
1" exists for a unit 1' , it must be unique. Indeed , if 1'1" = 1'1''' = 1 = 1'''1' = 1"1'

th en 1" = 1"1 = 1"(1'1''') = (1"1')1''' = 11''' = 1''' ; we will normally denote th e
inverse of r by 1'-1 . It is st raight forward to see th at if ,. and 1" are units of R
t hen ( 1'1") -1 = 1',-11'-1 . Thus, in part icula r, ( 1'- 1) - 1 =. r . T his im plies that if
r- 1 = 1',-1 t hen r = r' , We will denot e th e set of all un its of R by U(R). This
set is nonempty since it contains 1 and is not all of R, since it does not contain O.
Moreover , No (R) ~ U(R). Ind eed , if l' E No(R) satisfies l'n = 0 for som e positive
int eger n , th en rn +1 also equals O. Therfore, replacing n by n + 1 if necessa ry, we
can assume that n is odd . In thi s case , we have

and so r E U(R).

(4. 23) EXAMPLE . Let R be a semiring and let t be an ind et erminate over R . If
th e leading coefficient of 0"# 1 E R[t ] is not a zero divisor in R, th en 1 E U(R[t]) if
and only if deg(J) = 0 and 1(0) E U(R). The proof is essentially th e same as that
for rings.

The following result is found in [LaG rassa , }995] .

(4. 24) PROPOSITION . Let t be an indet erminate over a com m utative semiring
R. Th en U(R[t]) = {p E R[t] I p(O) E U(R) andp( i) E No(R)n V(R) for alli > O} .

PROOF . Assume p E R[t] satisfies th e condit ions th at p(O) E U(R) and p(i) is
nilpot ent for all i > O. Set b =p(O )-1 and let deg(p) = n 2 o. For each 0 ::; i ::; n,
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we know that p(i) E No(R) n V(R) and so q = bp - PI E V(R[t]) , where PI E R[t]
is defined by

{
I if i = 0

Pl(i) = . .o otherwise

Also, bp( iW E No(R[t]) for all i > 0 and so , q E No(R[t]) . Since PI is the multi­
pl icative identity of R[t], this implies that PI + q = bp E U(R[t]) .

Conversely, assume that P E U(R[t]). Then deg(p) = n 2:: 0 and there is a
9 E R[t] satisfying pg = Pl . Say deg(g) = m . If Then (pg)(k) = L- i+i=kP(i)g(j)
for all k ::; m + n, and (pg)(k) = 0 if k > n + m . In particular, 1 = p(O)g(O) and so
p(O) E U(R) . If n = 0 we ar e done , and so assume that th is is not th e case . Then
we must have m i 0 as well. If 1 ::; k ::; n then 0 = PI(k) = L- i+i =kp(i)g(j) =
d + p(k)g(O) for some element d of R and so

0= p(O)O = p(O)d + p(O)p(k)g(O) = p(O)d+ p(k) ,

proving that p(k) E V(R) .
We also know that 0 = PI(n + m) = p(n)g(m) and

0= PI(n + m - 1) = p(n)g(m - 1) + p(n - I)g(m) .

Then

p(n)2g(m - 1) + p(n)g(m)p(n - 1) =p(n)[p(n)g(m - 1) + p(n - l)g(m)] =O.

Since p(n)g(m - 1) = 0 we hav e p(n) 2g(m - 1) = O. Now assume inductively
that we have shown that p(n)hg(m - (h - 1)) = 0 for all 1 ::; h ::; k. Then
PI(n - m - k) = p(n)g(m - k) + p(n - 1)g(m - k + 1) + . . .+ p(n - k)g(m) = 0 and
so p(n)k[p(n)g(m -:- k) + p(n - l)g(m - k + 1) + . .. + p(n - k)g(m)] = 0, pr oving ,
by induction, that p(n)k+lg(m_ k) =O. Thus we see that p(n) hg(m- (h -1)) =0
for aliI::; h::; m+ 1 and so , in particular , p(n) m+l [i (O) = O. But g(O) E U(R) and
so we must have p(n)m+l = O. Thus p(n) E No(R) . Similarly, g(m) E No(R).

Now suppose that we have already establisdhed that p(n - h) and g(m - h)
belong to No(R) for all 0 ::; h < k. We must show that p(n - k) is nilpotent . We
know that g(m) is nilpotent and hen ce so is p(n - k)g(m) . Therefore

PI(n-m-(k+l)) =p(n-k-l)g(m)+p(n-k)g(m-I)+ · ·+ p(n)g(m- (k+ l )) = 0

and so p(n - k)g(m - 1) = -p(n - (k + l))g(m) + [-p(n - (k - 1))g(m - 2)] +
... + [-p(n - l)g(rn - k)] + [-p(n)g(m - (k + 1))]. By the induction hypothesis ,
ea ch of the summands on the right-hand side is nilotent and so p(n - k )g(m - 1)
is nilpotent . Now suppose inductively that we have already shown that p(n ­
k)hg(m - h) is nilpotent for 1 ::; h ::; m - 1. Then 0 =PI(n - k) =p(n - k)g(O) +
p(n - (k + 1))g(l) + .. .+ p(n - (k + m))g(m) so p(n - kr-IpI(n - k) =0 Thus
p(n - k)mg(o) + . . . + p(n - k)m-Ip(n - (k + m))g(m) = O. So p(n - krg(O) =
-p(n_k)m-l p(n-(k+ 1))g(I)+ .. +[-p(n-k)m-Ip(n -(k-m))g(m)]. Since each
of the summands on the right-hand sid e of this equat ion is nilpotent , we conclude
that p(n - k)mg(O) is nilpotent . But g(O) is a unit in R and so p(n - k) is nilpotent .

Thus p(i) is nilpotent for all 1 ::; i ::; n , as desired . D
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(4.25) EXAMPLE . If 5 is the semiring in Example 4.14 th en U (5 ) consists of
all functions f E 5 satisfying th e condition that dom(j) = JR and f(r) #- 0 for all
r E JR .

The abo ve comments immediat ely show that U(R) is a submonoid of (R ,') which
is in fact a group. If U( R) = R \ {O} th en R is a division semiring. Division
semirings are sure ly enti re. A commutative divis ion semiring is a semifield . If
{Ri liE n} is a collect ion of divi sion semirings , where Inl > 1, then X i En Ri is not
a division semiring bu t txli En R, is.

Note tha t if R is a simple semiring th en U(R) = {I} . Ind eed , if a E U(R) then
th ere exists an element b of R such th at ab = 1. Hence, by Proposition 4.3 , we have
a = a + ab = a + 1 = 1.

(4.26) EXAMPLE . The semirings (Q+ ,+,'), (Q+ , max , '), (JR+ , +,'), and
(JR +, max, .) are clearly semifields. A subr ing 5 of (Q+,+,.) is a semifi eld if and only
if for each prime pEN th ere exists an int eger n(p) EN such that n(p)/p E 5 \ N.
See [H. E. Stone, 1977] for det ails . Yoked subs emifields of (JR+, +, .) are consid­
ered in [Eilhauer, 1968]. There it is shown that no two distinct yoked subfields of
(JR+ , + , .) are isomorphic . By th e Krull-Kaplansky-Jaffard-Ohrn Theorem [Gilmer ,
1972], every addit ively-idem potent semifield is naturally isomorphic to th e semifield
of finitely-generated fra ction al ideals of a Bezout domain .

(4.27) EXAMPLE. Let G be a totally-ordered multiplicative group and let R =
G U {O} . Extend the order of G to R by setting 0 ~ 9 for all 9 E G. Moreover ,
define Og = gO= 0 for all 9 E R. Then (R , max , ') is a division semiring .

(4.28) EXAMPLE. The semiring lE is an additively-idempo tent division semiring.
In fact , it is the only finite additively-idempotent division semiring. To see thi s,
assume that R is a finit e additively-idem potent division serniring and let d be the
sum of all elements of R . By const ruct ion, t : -+ d = d for all r E R and so, in
par ticular , d2 + d = d . On th e ot her hand , 1 + d = d and so d + d2 = d2 . Thus
d = d 2

. Since R is a division semiring, this implies tha t d = 1. If 0 #- r E R
then there exists an element 1" E R sat isfying rr' = 1. Since r' + 1 = 1 we have
1 = 1 + r = r( r' + 1) = r , Therefore R = {O, I} = lEo

(4.29) EXAMPLE . [Cuningham e-Gr een , 1984] The schedule algebra
R = (JR U{- oo}, EB , 0 ) is a semifield . Ind eed, if a #- - 00 then a has a multiplicative
inverse a ( - 1) = -a . If n E N th en the nth power of an element r of R is r(n) = nr.

If a and b are elements of R th en min{a , b} = a +b- max{a , b} = [a 0 b][aEB b](-1) .

If t is an indeterminate over R, th en th e elements of R[t ] are of th e form p(t) =
EBi=obi 0 t(i ) = max{ bi + it I 0 ~ i ~ n} . The algebr a of such polynomials is
considered in det ail in [Cuningham e-Green & Meijer , 1980]. In particular , th ey
note that each such polyn omi al p(t ) has a factorization in the form

where a E R and each pi(t) either equals t or is of the form t EB b, for some bi E R.
Apar t from order, this factor izat ion is unique. An algorit hm for the construct ion
of such a factorizati on is given, using the techniques of nonlinear programming.
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We also not e that (r:! U {-(X)}, EB, ®) is a subsemifield of R . If 5 = M n (R) for
som e natural number n th en A =[ajj] belongs to U(5) if and only if every row and
every column of A have precisely one element not equal to -00 .

(4.30) EXAMPLE . If 5 is a bounded distributive lattice and R = M n(5) for
some positive integer n th en the elements of U(R) are characterized in several ways
in [Skornjakov , 1986] . Thus, for example, a matrix A =[ajj] belongs to U(R) if and
only if 2:j=l ad = 1 for all 1 ~ i ~ nand ajjahj = 0 for all i # h. Moreover, this
holds if and only if A k = lR for some positive integer k . Indeed , we always have
k ~ n! . If 5 is entire then U(R) consists precisely of those matrices [ajj] satisfying
the condition that th ere exists a permutation a E Sn such that ajj = 1 if j = u( i)
and ajj = 0 otherwise. Refer also to [Reut enauer & Straubing, 1984].

(4 .31) EXAMPLE . [Kaashoek & West, 1974] Let B be a complex Banach space.
A subhemiring A of B is a semialgebra if and only if ra E A for all a E A and
all 0 ~ r E ~ . A sub algebra A # {O} of B is locally compact if and only if
An {b E B Illbll ~ I} is a compact subset of B; it is closed if and only if it is a
closed subset of B . If A is a locally compact semialgebra containing a right minimal
idempotent element e then eA e is in fact a division semiring. The zerosumfree closed
semialgebras of B which are division semirings are all of the form ~+e for some
e = e2 E B .

(4.32) EXAMPLE . Let R be the set of pairs (a,b) E ~ x ~ satisfying the condi­
tions that either a > 0 and b > 0 or a = b = O. Define operations EB and ® on R as
follows:

{

(a , b) ifb>b'

(a, b) EB (a', b') = . (a', b') if b < b'

(a + a' , b) if b = b'

and
(a, b) ® (a' , b') = (aa' , bb').

Then (R,$, ®) is a semifield with applications in th e study of biopolymers. Refer
to [Finkelstein & Roytberg, 1993] and [Akian , Bapat & Gaubert , 1998].

(4.33) PROPOSITION. A division semiritig R is cancellative if and only if
g+(R) # {O} .

PROOF . If R is cancellative then f{+(R) = R # {O} . Conversely, assume that
0# r E g+(R) and let a, b, c E R be elements of R satisfying a+b =a+c. If a =0
then surely b = c. Otherwise, we multiply both sides of the equation on the left
by ra- 1 to obtain r + ra- 1b = r + ra- 1c from which , by cancellability, we obtain
ra- 1b = ra- 1c . Multiplying both sides of this equation on the left by ar- 1 , we
obtain the desired b = c. 0

(4.34) PROPOSITION. A division semiring R is ei ther zerosumfree or is a division
ring.

PROOF . Assume R is not zerosumfree. Then there exists a nonzero element a of
R having an additive inverse -a. If 0 # c E R then c+ca- 1( -a) = ca- 1(a + -a) =
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ca- 10 = 0 and so c too has an addit ive inverse. Thus (R ,+) is a group and so R is
a ring , which must be a divisi on ring . 0

As in th e additive case, we can talk about can cellabili ty as a weak version of
having an inverse. However , since mul t ipli cati on in an arb it ra ry semiring is not
commutative, we must be careful to keep t rack of sides. T hus an eleme nt a of
a sem iring R is right multiplicatively cancellable if and only if ba = ca only
when b = c. Left multiplicatively cancellable elements are simi larly defined .
An eleme nt of R is multiplicatively cancellable if and only if it is both left
and right multiplicatively cancellable. Clearly any un it of R is multiplicativ ely
cancellab le and no multiplicatively cancella ble element of R is a zero divisor . We
will denote th e set of all mul tiplicatively cancellable elements of R by K x (R ). This
set is nonempty since 1 E U(R) ~ f{ X(R) and is not all of R since 0 tJ. f{ X(R) .
Moreover , f{ X(R) is a submonoid of (R , .). If every nonzero eleme nt of R is [left ,
right] cancellable th en we say that th e semiring R is [left , right] multiplicatively
ca n ce ll a t ive. Division semirings are sur ely multiplicatively cancella t ive.

(4.35) EXAMPLE. The semiring N is a mul tiplicatively cancella t ive semiring
which is not a divisi on semiring. Indeed , U(N) = {I}.

(4.36) E XA M PLE. If R is a noeth erian commutative integ ral domain th en th e
addit ively-idernpotent semiring ideal(R) is multiplicatively cancella t ive if and only
if R is a Priifer domain . More generally, a commut at ive integral domain R is a
Pr iifer domain if and only if every finitely-generated nonzero ideal of R is mul ti­
plicatively cancellable [Larsen & McCarthy, 1971].

(4.37) EXAMPLE . [Bar but , 1967] An eleme nt of a semi ring R which is right
mult iplicatively cancella ble issurely not a right zero divisor . T he converse is t rue for
rings bu t not necessaril y t rue for semirings. Ind eed , let R be the sem iring A12(Q+)

and let A = [~ ~ ]. Then A is not a right zero divisor since [ : ~ ] A = [ ~ ~] implies

that a + b = 0 = c+ d and so a = b = c = d = O. On the other han d , A is not right

mul tiplicatively cancellab le since [~ ~ ] A = [ ~ ~ ] A .

(4.38) EXAMPLE. [Duchamp & Thibon , 1988] Let R be a semi ring and let A be
a nonempty set on which we have defined a reflexive and symmetric relation r-« . Let
M be the quotient monoid of th e free monoid A* with respect to the congruence
generated by all pairs of th e form (ab, ba) for a '" b. Then th e semiring R[M] is
cancella t ive and left mul tiplicatively cancellative if and only if R is. Moreover , it is
ent ire if and only if R is ent ire.

(4.39) E XAMPL E . [H. E. Stone, 1977] Let R be the semiringof polynomialsover
N in non commutin g indeterminates x and y satisfying the condit ion that yx = y .
T hen R is a cancellative semi ring which is right mult iplicatively cance llative but
not left mult iplicatively cancellative.
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(4.40) PROPOSITION. If R is a right multiplicatively-cancellative semiring in
which there exists an element other than 1R having finite multiplicative multiplica­
tive order , then R is a ring.

PROOF. Assume that 1R # a E R satisfies r n = 1R for some n > 1 and let
b = 1 + a + . .. + an-l . Then ab = a + a 2 + ... + an = 1 + a + ...~-l = b = 1Rb.
Since a # 1R, this implies that b = 0 and so 1R E VCR), proving that VCR) = R
and hence R is a ring. 0

(4.41) PROPOSITION. If R is a cancellative yoked semiring then any element of
R which is not a zero divisor is multiplicatively cancellable.

PROOF. Let a be an element of R which is not a zero divisor and let band
c be elements of R satisfying ba = ca. Since R is a yoked semiring, there exists
an element d of R such that b = c + d or c = b + d. Say b = c + d. Therefore
ca + 0 = ca = ba = (c + d)a = ca + da. Since R is cancellative, this implies that
da = 0 and , since a is not a zero divisor , we must therefore have d = O. Thus b = c,
proving that a is right multiplicatively cancellat ive. A similar proof shows that a
is also left multiplicatively cancellative. 0

(4.42) PROPOSITION. Each of the following conditions on an element a of a
semiring R implies the next :

(1) a + 1 = 1;
(2) an + 1 = 1 for all n EN;
(3) an + 1 = 1 for some n EN .

Th e conditions are are equivalent ifR is additively idempotent and multiplicatively
cancellati ve.

PROOF. (1) ~ (2) : We will prove (2) by induction on n . If n = 1 the result
follows from (1). Assume now that n > 1 and that ak + 1 = 1 for all k < n . Then
1 = (a + l)(an- l -+- 1) = an + an- l + a + 1 = an + an- l + 1 = an + 1.

(2) ~ (3) : This is immediate.
(3) ~ (1) : Assume that R is additively idempotent and multiplicatively cancella­

tiv e. Ifan+1 = 1 then (a+1t = an+an- l+ . . ·+1 = an- l+· ·:+1 = (a+1)n-l .
By multiplicative cancellat ion, we th en obtain a + 1 = 1. 0

(4.43) PROPOSITION. If R is a multiplicatively-cancellative additively­
idempotent commutative semiring theh (a + b)n = an + b" for all a , b E Rand
all positive integers n .

PROOF. If a + b = 0 then a = b = 0 since additively-idempotent semirings are
zerosumfree, and in this case the result is immediate. Hence we can assume that
a + b # O. The result is clearly true for n = 1. Moreover , since R is additively­
idempotent, we have (a + b)3 = a3 + a2b + ab2 + b3 = (a2 + b2)(a + b) and so , by
multiplicative cancellativity, (a + b)2 = a 2 + b2. Now assume that n > 2 and that
the result has already been established for n - 1. Then

(a + bt+ l =(a + b)2(a + bt- l = (a + b)2(an- 1 + bn- l
)

= (a2 + ab + b2)(an- l + bn- l
) = an+1 + anb + ab" + bn+l

= (a + b)(an + bn)
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and so, by multiplicative cancellativity, (a + b)n = an + b" : 0

As a consequence of this result , we see that if R is a mul t ipli catively-canc ellative
additively-idempotent commutative semiring and if al , . . . ,ak E R then

(al + ...+ akt = a~ + ...+ ak

for each positive integer n .

(4.44) PROPOSITION. Let R be a multiplicatively-cancellative edditively­
idempotent com m utative sem iring. If a # b are elements of R then an # b" for all
posit ive int egers n .

PROO F . Assume th at an = b" ; where n > 1. Then

an =an + b" = (a + bt

= (a + b)(a + bt- l = (a + b)(an- l + bn- l)

= an + abn- l + an -lb

so, adding an-lb to both sides, we have an = an + an-lb = an-l(a + b) . Since R is
multiplicatively cancellat ive, this implies that a = a +b. A similar argument shows
that b = a + b and so a = b, which is a contradiction . 0

Thus, if R is a multipli catively-can cellative additively-idempotent commutat ive
algebraically-closed semiring then any equation of th e form x n = b has a unique
solut ion on R.

Now let us consid er a situa tion slightly more general than the one considered
in Proposition 4.42 . In studying th e Jacobson radical of a ring , it is important to
consider the quasiregular elements of the ring, nam ely those eleme nts a for which
1 + a is a unit . For a semiring R , let G(R) = {r E R I 1 + r E U(R)} . This set
is nonempty since it contains 0 and, if R is a ring , contains the Jacobson radical
of R . (The term "quasiregular", however , is used in the conte xt of semirings in a
different sense, as we shall see later.)

(4.45) E X AM PL E . Let R be a semiring and let S = Mn(R) , where n is an
int eger greater than 1. If 1 ::; i # j ::; n and if r E V(R) , let eij ;r be th e eleme nt of
S defined by

{

r if(h ,k)=(i,j)
eij ;r(h, k) = .'o otherwise

Then [Is + eij ;r][ls + eij;- r] = Is = [Is + eij ;- r][ l s + eij;r] and so eij;r E G(S) for
all 1::; i # j ::; n and r E V(R) .

(4.46) PROPOSITION. Th e set U(R) n G(R) is closed under taking inverses.

PROOF . Assume a E U(R ) n G(R) . Then a-l E U(R) . Since a E G(R) we see
that l+a E U(R ). Then a(1+a- l) = a+aa-l = l+a E U(R) so l+a- l =
(a- l )(a + 1) E U(R ). Thus a-l E G(R). 0

The semi ring R is a G el'fand semiring if and only if R = G(R) . By an easy
induction argument , we see that if R is a Gel 'fand semiring then nlR E U(R)
for each nonnegative int eger n . Gel 'fand [1941] first consid ered t his condition for
Ban ach algebras; th e generalization to semirings first app ear ed in [Slowikowsk i &
Zawadowski , 1955].
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(4.47) EXAMPLE. Simple semi rings are surely Gel 'fand rings. Thus th e semir­
ings in Example 1.5 are Gel 'fand semirings.

(4.48) EXAMPLE . The semiring r::! is a zerosumfree semi ring which is not a
Gel 'fand semiring . Ind eed , G( r::!) = {O} and U(r::!) ={1} so this example also shows
that th e set G(R) n U(R) may be empty for some semirings R .

(4.49) EXAMPLE. Let A be a nonempty set having more that one element and
let R = (~+)A . This is a semiring whi ch is not simple. On th e other hand ,
U(R ) = {J E R I f(a) > 0 for all a E A} and so R is a Gel 'fand semiring.

The semiring ~+ is, up to isomorphism, the only cancella t ive locally-compact
connected topological Gel 'fand semiring R having the property th at transl ations of
R are open mappings [Bourne, 1962].

As an immediate consequence of th e definitions one sees that th e family of
Gel 'fand sem irings is closed under taking dir ect products .

(4.50) PROPOSITIO N. A semiring R is a Gel 'fand sem iring if and only ii r + c E

U(R) for all c E U(R ) and all r E R .

PROOF . If the st ated condition holds , then R is a certainly a Gel 'fand semiring.
Conversely, let R be a Gel 'fand semiring, let r E R , and let c E U(R) . Then
d = c-1r + 1 is a unit of R and so r + c = cd E U(R ), which is what we wanted to
prov e. 0

(4.51) PROPOSITION. If R is a GeI'fand semiring for which there exist positive
integers n > m satisfy ing n1R = m1R , then R is additively idempotent.

PROOF. Set h = n - m . Without loss of generality, we can assume that h > 1
since if nlR = m1R th en (n + h)1R = mlR. If k 2: m then k1R = k1R + th1R for
each nonnegative integer t. Choose a positive integer w such that h'" > m. Then
h'" 1R = hW lR + h'" - 1h1R =Zh" 1R sin ce h'" > m . Since R is a Gel 'fand semiring,
hW lR E U(R ) and so lR = 21R . Therefore a = 2a for all a E R , proving that R is
addit ively idem potent. 0

Sinc e (h + k) lR = h 1R + k 1R and hklR = (hlR)( k 1R) for all nonnegative
integers hand k , we see that , for any semiring R , th e set B(R) = {h1R I hEr::!} is
a subsemiring of C (R ), called the basic su b sem ir in g of R . A semiring R is basic
if and only if R = B(R). Clearly r::! is bas ic. It is straightforward to check th at th e
semirings (B(n , i), !fl,0 ) defined in Example 1.8 are basi c.

By Proposition 4.51, we see that if R is a Gel 'fand semiring then either B(R) =
{O, I} or B(R) is a copy of r::!. Moreover , if R is a Gel'fand semiring th en , as we
have already noted , B(R) ~ U(R).

(4.52) PROPOSITION. Let R be a GeI'fand semiring and let h ,k ,m,n be non­
negative integers. Th en h1R(klR)-1 +m1R(n1R)-1 = (hn1R + km1R)(kn1R)-1 .

PROOF . Since R is a Gel 'fand semiring we know tha t n1R E U(R) for each
natural number n. By distributivity and th e com mutat ivity of th e elements of the
form n1R , we have [h1R(k1R)-1 +mlR(n1R)- 1](knlR) = hn1R+km1R and so th e
result follows by multiplying both sides by (kn1R)-1 . 0



5. COMPLEMENTED ELEMENTS

IN SEMIRINGS

Complemented elements play an important part in the study of lattices, and
in particular in the study of frames. Since fram es are examples of semirings, it
is worth looking at this notion in the more general context of semirings. As it
turns out , such elements play an important part in th e semiring representation of
the semantics of computer programs, as emphasized in the work of Manes and his
collaborators.

If a and b are elements of a semiring R then a is well inside b, written a <l b,
if and only if th ere exists an element c of R satisfying ac = ca = 0 and c + b = 1.
This is a generalization of a notion discussed for frames in [Johnstone, 1982]; it
formerly app eared in [Dowker & Strauss, 1974] in connect ion with the study of the
T3-separation axiom for frames . Also refer to [Golan & Simmons, 1988]. In any
semiring R we have 0 <l 0 and a <l 1 for each a E R. If R is a simple semiring then
we note immediately that 0 <l b for any element b of R . If a E C(R) th en a <l b
impli es that ra <l b for all r E R.

(5.1) PROPOSITION. If a and b are elements of a semiring R satisfy ing a <l b
then ab = a = ba. Moreover, if R is simple then this also implies that a + b = b.

PROOF . Since a <l b th ere exists an element c of R satisfying ac = ca = 0 and
c + b = 1. Hence a = a(c + b) = ac + ab = abo Similarly a = ba. Now assume that
R is simple. Then , by Proposition 4.3, we have a + b = a(c+ b)+ b =ac + ab+ b =
ab+ b = b. 0

An element a of R is complemented if and only if a <l a. That is to say, a is
complemented if and only if there exists an element c of R satisfying ac = ca = 0
and a + c = 1. This element c of R is the complement of a in R . If a has
a complement, it is unique. Ind eed, if both band c are compl ements of a th en
b = (a + c)b = ab+ cb = cb = cb+ ca = c(b+ a) = c. We denote th e complement of
a complemented element a of R by a.L . Clearly, if a is complemented so is a.L and
a.L.L =a.

Denote the set of all complemented elements of R is denoted by comp(R) . This
set is nonempty since 0 E comp(R) with O.L = 1. If comp(R) = {O, 1} then R is
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integral. If a E comp(R) \ {a, I} th en a.L E comp(R) \ {a, I} and so we see that
if R is entire then it is int egral. Thus, for exam ple, th e semiring (II, max , min) is
int egral. Note that comp(R) ~ IX (R) . Indeed, if a E comp(R ) th en a = al =
a(a + a.L) = a2 + aa.L = a2 . If a E comp(R ), set aU b = a + a.Lb. Note that
aU al. = a + a.La.L = a + a.L = 1 for all a E comp(R). Also , if a + b = 1 then
a.L = a.L(a + b) = al.a + al.b = al.b so aU b = a + al. = 1.

In passing, we note that if a E comp(R) and b E R th en al. U b = a.L + ab corre­
sponds to th e Saseki hook implication op eration in quantum logic. See [Roman
& Rumbos, 1991b] for details.

(5.2) EXAMPLE . If R = Xjeo R j is a direct product of semirings and if A is a
subset of n, then th e eleme nt eA of R defined by

{
I if i E A

eA(i) = ° otherwise

is complemented . Indeed, (eA).L = eO\A .

(5.3) EXAMPLE . If R is a semi ring and if A is a nonempty set which is either
count able or finite , then for each B ~ A the element ee of MA .rc(R) defined by

{
I if i = j E B

eB(i, j ) = ° otherwise

is complemented , with (eB)l. = eA\ B.

More generally, if °=I e E IX (R) th en e is integral if and only if th e semiring
eRe is int egral. That is to say, e is int egral if and only if th ere do not exist elements b
and c of R such that ebe and ece are nonzero and satisfy ebece = °and e = ebe+ece.
Thus, if R is entire th en every nonzero element of IX (R) is int egral.

(5.4) EXAMPLE . If T is a topology on a non empty set X th en (T , U , n) is a
multiplicatively-id empotent semiring with additive identi ty 0 and multiplicative
identity X . An element A of T is int egral if and only if it is connected .

(5.5) EXAMPLE. We have noted that comp( R) ~ IX (R) for any semiring R . If
R is a plain simple yoked semi ring th en the converse is also true. Indeed, in such
a situation let e E IX (R). Then there exists an element b of R satisfying e = 1 + b
or e + b = 1. In th e first case, the simplicity of R yields e = 1 and so e E comp(R).
In th e second case , e = e2 = e(1 + b) = e + eb. By Proposition 4.22, this implies
that eb = O. Similarly, be = 0 and so e E comp(R) with el. = b.

(5.6) PROPOSITION. If R is a zerosumfree semiring and ifa , bE comp(R) then :

(1) abal. = 0;
(2) ab and a U b belong to comp(R );
(3) ab = ba.

PROOF . (1) If a, se comp(R ) th en aba.L +abl.al. = a(b+b.L )a.L = aa.L = 0 and
so, since R is zerosumfree, we have abal. = O.
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(2) We claim that [a U b]ol = aolbol . Indeed, [a U b] + aolbol =a + aolb+ aolbol =
a + aol(b + bol) = a + aol = 1. Also , by (1) , [a U b]aolbol = [a + aolb]aolbol =
aaolbol + aolbabol = O. Sim ilarly aolbol[a U b] = 0, establishing the claim. Thus
aU b E comp(R) .

Finally, we claim that [ab]ol = aol U bol = aol + abol . Indeed , ab + (dol U bol) =
ab + aol + abol = a(b+ bol) + aol = a + aol = 1 while ab(aol Ubol) = ab(aol + abol) =
abaol + ababol =0 and similarly (aol U bol )ab =O.

(3) By (1) , abaol = 0 = aolbaolol = aolba and so ab = abl = ab(a + aol) =
aba + abaol = aba = aba + aolba = (a + aol )ba = l(ba) = ba. 0

(5.7) PROPOSITION. Th e following conditions on a zerosumfree semiring Rare
equivalen t:

(1) If a, se comp(R) then a + se comp(R) ;
(2) 1 + 1 E com p(R );
(3) comp(R) ~ I+(R) ;
(4) If a, se comp(R ) then a + b = aU b;
(5) (comp(R) , + , .) is a subsem iring of R .

PROOF. (1) ~ (2) : This is immediate.

(2) ~ (3) : If a E com p(R ) th en , by (2) and Proposition 5.6, we have a + a E
comp(R) . Set b = (a+a)ol . Then ab-s ab = (a+a)b = 0 and so , by zerosumfreeness,
ab = O. Therefore a = al = a(a+a+b) = a2+a2 = a+a, proving th at a E I+(R) .

(3) ~ (4) : If a, se comp(R) then , by Proposition 5.6, we have

a + b = (a + b)(a + aol)(b + bol)

=(a + b)(ab + aolb+ abol + aolbol)

=ab + abol + ab + aolb.

By (3) , ab E I+(R) and so a + b = ab + abol + aolb = a + aolb = aU b.

(4) ~ (1) {::} (5) : This is a direct consequence of Proposition 5.6(2). 0

(5 .8) PROPOSITION. If R is a zerosumfree semiring then (comp(R), U, ·) is an
idempotent com m utative sim ple sem iring .

PROOF. If a, b, c E comp(R) then

aU (b U c) =aU (b + bol c) = a + aol(b+ bol c)

= a + aolb+ aolbol c = a + aolb+ [a + aolb]ol c

=(a +aolb) U c = (a U b) U c.

Thus U is assoc iative. If a E comp(R) then aU 0 = a + aolO = a = 0 + la =
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0+ Ol. a = 0U a . Finally, if a , s« com p(R) then

aU b =a + al.b = a + al.ba + al.ba l.

= a + al.bal. = ba + bl.a + al.bal.

= bab + babl. + bl.ab + bl.abl. + al.ba = bab + bl.abl. + al.bal.

= bab + bl.abl. + abal. + al.bal. = bab + bl.abl. + bal.

= bab + babl. + bal. + bl.abl. = ba + bal. + bl.abl.

= b + bl.ab l. = b + bl.ab + bl.abl.

= b + bl.a = b U a.

Thus U is commut ative.
We already know that com p(R ) is closed under products and contains 1, so it is

a monoid . Finally, if a, b, c E com p(R ) th en

a(b U c) = a(b + bl. c) = ab + abl. c

= ab + ab Uac + abl.al. c = ab + abl. ac

= ab + al. ac + abl. ac = ab + (al. + abl.)ac

= ab + (ab)l. ac = ab U ac

and similarly (b U c)a = ba U ca. Thus (comp(R), U, ·) is a semiring. We ha ve
alrea dy noted that every a E com p(R ) is multiplicatively idempotent . Moreover ,
a E com p(R) implies that a U a = a + al. a = a and so com p(R ) is additively
idempotent as well. It is commutative by Proposition 5.6(3). If a E com p( R ) th en
aU 1= a + al.1 = a + al. =1 and so com p( R ) is sim ple. 0

(5 .9) C OROLLARY. If R is a zerosum free sem iring then (comp( R), U, ·) is a
boolean algebra.

PROOF. As was noted in Exam ple 1.5, a commutat ive idempot ent sim ple semir­
ing is a bounded distributive lattice having unique minimal eleme nt 0 and unique
m aximal element 1. Hence, by Pr oposition 5.8, we not e that com p(R ) is such a
lat t ice which is complem ent ed as well and so is a boolean algebra . 0

(5.10) PROPOSITION. If R is a zerosum free semiring then the relation::; on R
defined by the condition t: ::; s i f and only if there exists an element e E comp(R)
satisfying r = es is a partial order relation on R .

PROOF. Clearly r ::; l' for all r E R since r = 11' . If r ::; s and s ::; t th en th ere
exist e, f E com p(R ) with r = es and s = f t. Hence r = ef t with ef E comp(R)
by Prop osition 5.6(2) , provin g that r ::; t. Now assume that r ::; s and s ::; r .
Then there exist e, f E comp(R) such that r = es and s = [ r . This implies th a t
er = e2s =es = l' and so, by Proposition 5.6(3), r = es = ef r = f er = Ir =s. 0

For a semiring R , we define the symmetric difference of elements of comp( R)
by a f::. b = abl. + al.b. In particular , if R is a zerosumfree sem iring satisfying
the condit ion that com p(R) is a subsemiring of R (refer to P roposition 5.7) th en
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by Corollary 5.9 we see that comp(R) is a boolean algebra and this is just the
symmetric difference in the usual sense . Note that, under these circumstances, the
function 8: comp(R) x comp(R) ---> comp(R) defined by 8: (a , b) l-+ a!:::" b defines a
metric on comp(R) with values in R.

If R is an arbitrary zerosumfree semi ring then it is still clear that 8(a, b) =
8(b, a) 2: 0 for all a, b E Rand 8(a, a) = 0 for all a E R. Conversely, assume
that 8(a, b) = O. Since R is zerosumfree, this means that ablo = 0 = alob and so
a = al = a(blo + b) = ablo + ab = ab, proving that a:S b. Similarly, b :S a and so
a = b. If a, b, c E R then (a !:::,. c)(a !:::"b+b!:::" c) = (aclo +aloc)(ablo+alob+bclo +bloc).
By Proposition 5.6, this equals abloclo +abclo+alo bc+ alo bloc = a(blo + b)clo +alo (b+
blo)c = aclo +alo c = a Z» c and so 8(a,c) = a Zs. c:S a I: b+ b!:::"c = 8(a,b) +8(b,c).
Thus we see that 8 is a metric on comp(R) with values in R .

Note that if a E comp(R) the 8(a,O) = al + aloO = a. Also, 8(a ,alo) = aa +
aloalo = a + alo = 1 for all a E comp(R) .



6. IDEALS IN SEMIRINGS

Ideals playa fundamental role in ring theory and it is therefore natural to con­
sider them also in the context of semiring theory. Here their role is no less im­
portant , though we will often have to restrict our consideration to special types of
ideals . In particular, we will show that , as in the case of rings , the family of all
ideals of a semiring is, in a natural way, a semiring. Formally, the definitions in the
two situations are the same.

A left ideal I of a hemiring R is a nonempty subs et of R satisfying the following
conditions:

(1) Ifa,bEIthena+bEI;
(2) If a E I and r E R then ra E I ;
(3)' 1# R .

Note that if R is a semiring then condition (3) is equivalent to the condition that
1 rf: I . A right ideal of R is defined in the analogous manner and an ideal of
R is a subset which is both a left ideal and a right ideal of R. Note that ideals
are proper, namely R is not an ideal of itself. Also, 0 belongs to every [left , right)
ideal of R and hence {O} is an ideal of R contained in every [left, right) ideal of R .
Moreover , U(R) n 1= 0 for every [left, right) ideal of R. Any ideal of a semiring R
is a subhemiring of R which is not a subsemiring. We will denote the set consisting
of Rand all left ideals of R by lideal(R), the set consisting of R and all right ideals
of R by rideal(R) , and the set consisting of R and all ideals of R by ideal(R) .

(6.1) EXAMPLE. If R is a commutative semiring and if 1= R \ U(R) then for
r E R and a E I we surely have ra E I . Therefore I is an ideal of R if and only if it
is closed under addition . A sufficient condition for this to happen is that if a , bEl
th en a + b is either of the form ra or rb for some r E R .

If I is an ideal of R then it surely contains every other ideal of R and so is the
unique maximal ideal of R. In this case, the commutative semiring R is quasi­
local. The semirings of the form B(n , i) mentioned in Example 1.8 are quasi-local
if i = 0 and n = ph for some prime integer p and natural number h, or if i = 1 and
n - 1 = ph for some prime integer p and natural number h. Refer to (Alarcon &
Anderson , 1994a).

CONVENTION: In general, when we prove that a certain result is true for left
ideals of a hemiring, the corresponding result for right ideals and for ideals will also
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be assumed without specific mention.

A nonempty subset A of a hemiring R is semisubtractive if and only if a E
An V(R) implies that -a E An V(R); it is subtractive if and only if a E A
and a + b E A imply b E A; it is strong if and only if a + b E A implies that
a E A and b E A . Every subtractive subset of R sur ely contains O. .Also, it is
clear that every strong subset of R is subtractive and every subtractive subset of
R is semisubtractive. The subtractive ideals of a semiring will be characterized in
Chapter 9. If R is a hem iring then the ideal {OJ is always subtractive and , as we
have noted , is contained in every other subtractive ideal of R . It is strong if and
only if R is zerosumfree.

(6.2) EXAMPLE. If A is an infinite set then the family fsub(A) of all finite sub­
sets of A is a strong ideal of th e simple idempotent zerosumfree semiring
(sub(A), U, n) .

(6.3) EXAMPLE . In Chapter 2 we noted that multifunctions have important
applications in describing the semantics of computer programs. If f :A -.. sub(B)
is a multifunction from A to B then, in a natural manner , we can consider f as a
multifunction from AUB to itself by setting f( b) = 0 for all b E B . Therefore we can
usually restrict ourselves to working with multifunctions from a set to the semiring
of its subsets. Let A be a nonempty set and let R = sub(A)A be the set of all
multifunctions on A with values in the semiring of subsets of A . Define operations
+ and 0 on R as follows: if a E A and f ,9 E R th en (f + g)(a) = f(a) U g(a) and
(f 0 g)(a) = U{f(b) Is« g(a)}. It is straightforward to check that R is a semiring
with additive identity z defined by z(a) = 0 for all a E A and multiplicative
identity j defined by j(a) = {a} for all a E A . If B is a prop er subset of A then
IE = {f E R I f( a) ~ B for all a E A} is a strong right ideal of R which is not a
left ideal.

(6.4) EXAMPLE . [LaGrassa, 1995] Even in very small , "nice" semmngs, not
every ideal need be subtractive. For example, let R = {O , 1, u} be the idempotent
semiring in which 1 + u = u + 1 = u. Then {O , u} is an ideal of R which is not
subtractive .

(6 .5) EXAMPLE . If R is a ring then no ideal of R is strong. Indeed , if I is an
ideal of R then -1 + 1 E I but 1 rt I . If R is a semiring which is not a ring then
V(R) is a strong ideal of R. If {OJ is the only ideal of R, R , this implies that
either V(R) = R, in which case R is a ring , or V(R) = {O}, in which case R is
zerosumfree. Thus we have another proof of Proposition 4.34.

(6.6) EXAMPLE . The set 21':! of all nonnegative even integers is a subtractive
ideal of the semiring of all nonnegative integers. It is not strong since 3 + 5 E 21':!
while neither 3 nor 5 belong to 21':! . A complete study of the subtractive ideals of
I':! is given in [Noronha-Galvao, 1978a], where it is shown that th ese are precisely
the sets of the form kl':! for some k E I':! . Refer also to [Noronha-Galvao , 1978b].

This result was generalized in [Alarcon & Anderson , 1994a]: let R be an integral
domain with total order compatible with addition and multiplication and let R+
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be the semiring of nonnegative elements of R. Then R+a is a subtractive ideal of
R+ for all a E R+.

(6.7) EXAMPLE. [Alarcon & Anderson , 1994a] Every ideal of the basic semiring
B( n , i) is subtractive if and only if i ::; 1.

(6.8) EXAMPLE. [Iseki & Miyanaga, 1956b] If X is a Hausdorff topological space
then the set R of all continuous bounded functions from X to jR+ is a commutative
semiring, which is in fact a Gel 'fand semiring. Moreover, there exists a bijective
function <I> from ideal( R) to the family of all filters of closed subsets of X defined
as follows: if I E ideal(R) and if Y is a closed subset of X then Y E <I>(I) if and
only if for every closed subset W of X not meeting Y there exists a function f E I
such that inf{J(w) I w E W} > o.

(6.9) EXAMPLE . If R is a semiring which is not additively idempotent then
I+(R) is an ideal of R, since 1 1:. I+(R) . This ideal is not necessarily strong.
Indeed , if R = ;Z then I+(R) = {O] so -1 + 1 E I+(R) while -1,1 1:. I+(R). If
I+(R) is a strong ideal then the semiring R is archimedian. It is immediate to
see that the family of all archimedian semirings is closed under taking products.

(6.10) EXAMPLE . If A is a nonempty subset of a semiring R set (0 : A) = {1' E
R I 1'a = 0 for all a E A}. If A =F {O] then this is a left ideal of R , called the
left annihilator ideal of A . Right annihilator ideals are defined similarly. If I is
the left annihilator ideal of a nonempty subset A of R other than {o} then I is a
subtractive left ideal. Indeed, if l' and 1" are elements of R satisfying the condition
that l' and r + 1" are both elements of I then for each element a of A we have
o= (1' + 1")a = 1'a + 1" a = 1" a and so 1" E I . Similarly, right annihilator ideals are
subtractive right ideals. We note that if H is a left ideal of R then (0 : H) is an
ideal of R . If a E R, we write (0 : a) instead of (0 : {a}) . Similarly, we note that if
a =F b are elements of R then {1' E R I 1'a = 1'b} is a left ideal of R .

(6.11) PROPOSITION. [LaGrassa, 1995] The following conditions on an ideal I
of a commutative semiring R are equivalent:

(1) H + (0 : 1) = (HI: 1) for all ideals H of R;
(2) HI = K I implies that (0 : 1) + H = (0 : 1) + K for all ideals Hand K of

R .

PROOF . Assume I satisfies (1) . If (0 : 1) + H =(0 : 1) + K for ideals Hand K
of R then (0 : 1)+ H = (H I : 1) = (K I: 1) = (0 : 1) + K. Conversely, assume that
I satisfies (2) . If a E (HI : 1) then (a)I ~ H I and so [(a) +H]I = (a)I + HI =HI .
By (2) , this implies that (a) + H + (0 : 1) = H + (0 : 1) and so (a) ~ H + (0 : 1).
Therefore a E H + (0 : 1) and so (HI : 1) ~ H + (0 : 1) ~ (HI : 1), establishing
equality. 0

In greater generality, if I is a left ideal of a semiring R and A is a nonempty
subset of R , then (I : A) = {1' E R I 1'a E I for each a E A} is a left ideal of R
provided that A is not a subset of I . The right-handed version of this is defined
analogously. If A = {a} , we write (I : a) instead of (I : {a}) . It is easily seen that
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if I is a subtractive [resp. strong] left ideal of R then so is (I : A) for any nonempty
subset A of R not a subset of I . (If A ~ I then, of course, (I : A) = R.)

(6.12) EXAMPLE . Let n be a positive integer . A nonempty subset I< of ~n is
a proper cone if and only if:

(1) I< + I< ~ I< ;
(2) aI< ~ I< for all a E ~+ ;

(3) I< n (-K) = {OJ ;
(4) I< + (-I<) =~n ; and
(5) I< is closed in the usual topology on ~ n .

A linear transformation <p from ~n to itself is a positive operator on I< if and only
if I<<p ~ I< . The set of all positive operators on I< is clearly a semiring under the
usual operations of addition and composition of linear transformations. The ideals
of this semiring are studied in detail in [Tam , 1981].

(6.13) EXAMPLE . If R is a nonzeroic semiring then Z(R) is a subtractive ideal
of R . In general , it is not necessarily strong. The zeroid of th e semiring D defined
in Example 1.9 is strong. See [Pierce, 1972].

(6 .14) EXAMPLE. An element a of a semi ring R is left absorbing if and only
if ra = a for all 0 # r E R. Right absorbing elements are defined analogously.
Clearly, if a is left absorbing then {O, a} is a left ideal of R. The converse holds
when R is ent ire.

The element 1 of a semiring R is left absorbing if and only if R = lffi or R = 7l. / 27l. .
Every semi ring has at least one left absorbing element , namely o. Moreover , if a is
a strongly infinite element of R then a is also left absorbing. If a is a left absorbing
element of R then either a E I+(R) or a + a = o. Thus, when R is zerosumfree, we
conclude that every left absorbing element of R belongs to 1+(R) . The set of left
absorbing [resp. right absorbing] elements of a semi ring R is easily seen to be an
ideal of R .

If A is a nonempty subset of a semi ring R then the set RA consisting of all finite
sums L rca, with r; E Rand a; E A is either equal to R or is the smallest left ideal
of R containing A. In the latter case , it is called the left ideal of R generated by
A. If A ~ B then surely RA ~ RB . Furthermore, as an immediate consequence of
this observation and the defintions, we see that if A and Bare nonempty subsets
of R then R(A U B) = R(RA U RB) .

Similarly, AR is either equal to R or is th e smallest right ideal of R containing
A. The set (A) consisting of all finite sums of th e form L r.a. s, with ri , s, E Rand
a; E A is either equal to R or is th e smallest ideal of R containing A. If A = {a}
we write Ra [resp. aR, (a)] instead of RA [resp. AR, (A)] . A left ideal [resp. right
ideal, ideal] I of R is finitely generated if and only if there exists a finite subset
A of R such that 1= RA [resp. I = AR, I = (A)] . It is principal if and only if
there exists an element a of R such that 1= Ra [resp. 1= aR, I = (a)] .

(6.15) EXAMPLE . In general , if A is a nonempty subset of a semiring R then
UaEARa ~ RA but we do not necessarily have equality. A sufficient condition for
equality is that the set {Ra I a E R} be linearly ordered . This condition is not
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sufficient since th e semiring R = (NU{ -oo} , + , .) does not satisfy it but does satisfy
the condition that UaEARa = RA for each nonempty subset A of R . The condition
that every left ideal of R be prin cipal is also insufficient, as th e example of (2::, + , .)
shows . A necessary and sufficient condition for UaEARa = RA to hold for every
nonempty subset A of R is th at for any a , b E R we have a + b E Ra U Rb . See
[LaGrassa , 1995] for details .

A semiring R is left noetherian if and only if it satisfies the ascending chain
conditions on left ideals .

(6.16) PROPOSITION. Th e following conditions on a semiring R are equivalent:

(1) R is left noetherian;
(2) Any nonempty collection of ideals of R has a maximal element;
(3) Every ideal of R is finitely generated .

PROOF . (1) => (2) : Let C be a nonempty collection of left ideals of R and pick
It E C. If It is not prop erly contained in any element ofC , we are done. If not , th ere
exists an element I z of C properly cont aining It . If I z is not prop erly contained
in any element of C, we are done. If not , th ere exists an element 13 of C properly
containing I z. Continue in thi s manner. By (1), the process must end aft er a finite
number of steps , and so C has a maximal element .

(2) => (3) : Let I be a left ideal of R and let C be th e collection of all finitely­
generated ideals of R contained in I . This collect ion is nonempty and so, by
(2) , contains a maximal element H = R{al , " " am} . For each bEl, let H b =
R{al , . .. , am , b} . But maximality, H = Hb for all bEl and so, in particular ,
se H for all bEl. Thus H = I and so I is finitely generated .

(3) => (1): Let It ~ Iz ~ . .. be an ascending chain of left ideals of R and let
I = U1=l Ij . Then I is a left ideal of R and so, by (3), is finit ely generated , say
I = R{al , . . . , ad . This means that th ere exists an index n such th at I ~ In ~ I
and so Ij = In for all j ~ n , proving (1) . 0

Thus, we note th at if a rt U(R ) then Ra and aR are a left ideal and a right
ideal of R respectively. If a E C(R) \ U(R) th en Ra is an ideal of R . If a and
b are distinct elements of [X (R) n C(R) th en Ra ~ Rb . Indeed , if Ra = Rb
th en th ere exist elements c and d of R satisfying a = be and b = da . But th en
a = eb = ebz =ab =aZb =ada =da z =da = b.

(6.17) E X A M PL E . [Dale, 1976a] Let I be th e ideal of N[t] generated by t + 1.
Then (t + 1)3 E I . But (t + 1)3 = (t3 + 1) + 3t(t + 1), where 3t(t + 1) E I and
t3 + 1 rf:. I. Therefore I is not subtractive.

Now let I be the prin cipal ideal of 2:: [t] generated by t + 1. That is to say,
1= {J(t)(t + 1) I f(t) E 2:: [t]}. Then I contains no nonzero strong ideals . Indeed ,
assume that H ~ {O} is a strong ideal of 2:: [t] contained in I . Then there exists a
nonzero element a of 2:: and a positive integer k such that atk E H. Indeed , without
loss of generality we can assume th at k is even. Since atk E I , there must exists
a polynomial g(t) in 2:: [t]satisfying atk = g(t)(t + 1) and so, evaluating at -1 , we
obtain a =a(_1)k =g(-1)(-1 + 1) =0, which is a contradiction .

The structure of ideals in semirings of th e form R(A} , and in particular in th e
semiring N[t], is discussed in [Dale & Allen, 1976]. In particular, th ey note that if
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I is a subt ractive left ideal of a semiring R and if A is a nonempty set then I( A) is
a subt ract ive left ideal of the semiring R(A). The st ru cture of ideals in polynomi al
semirings of th e form R[t], where R is a semiring, is discussed in [Dale, 1982]. Ideals
in polynom ial semirings in several variables are discussed in [Dale, 1976b].

(6.18) E XAMPLE . Let R be a semiring and A a nonempty set . The set of all
quas iregular elements of R((A)) is clearly an ideal of R((A)), which is subtractive.
It is st rong if the semiring R is zerosumfree.

(6.19) E XAM PL E . The ideal I = N \ {I} of N is semisubtract ive but is not
subt ract ive. Indeed , 2 E I and 3 = 3 + 1 E I but 1 1:. I .

(6.20) E X A M PLE . [Hilton , 1967] Let H be a boolean algebra and let e be an
element not in H. Extend th e addit ion on H to an operat ion on R = H U {e} by
setting e + e = e + 0 = 0 + e = e and a + e = e + a = 1 for a 1:. {O , e}. Simil arly ,
extend the multiplication on H by sett ing ae = ea = a for all a E R . Then R is a
commutat ive semiring with addit ive ident ity 0 and multiplicative identity e and H
is an ideal of R. Note th at H is not subt ract ive since 1 + e and 1 both belong to
H but e1:. H .

(6 .21) EXAMPLE. If R is a simple semiring and 1 # a E R then Ia = {b E R I
b+ a = a} is an ideal of R. Indeed , this set is clearl y closed und er addit ion . If
bEla and r E R then rb + a = rb+ b+ a = (r + l)b + a = Ib + a = b+ a = a so
rb E Ia . Similarly br E Ia .

(6.22) PROPOSITION. IfR is a division sem iring and n is a posit ive integer then
S = M n(R ) has no nonzero ideals.

PROOF. For each 1 ::; i, j ::; n let e;j be the eleme nt of S defined by

( {
I if (i,j)=(m,n)

e;j m , n ) = . .o ot herwise

Th en for each f E S we have f = 'L{f(i ,j)e;j 11 :::; i ,j :::; n} in S .
Assume that I is a nonzero ideal of S and that 9 is a nonzero element of I . Then

there exist 1 :::; r , s :::; n such th at g(r , s) # O. If f is a nonzero element of S th en

In par ti cular , the multiplicative identi ty of S belongs to I , which is a cont radict ion.
Thus the semiring S can have no nonzero ideals. 0

(6.23) PROPOSITIO N. If R is a multiplicatively-cancellative semiring then
{OJU [R \ J{+(R )] E ideal(R) .

PROOF . Set A = {OJ U [R \ J{+ (R )] . If 0 # a, a' E A and a + a' E J{+(R ) then
a + b = a + c => a + a' + b = a + a' + c => b = c and so a E J{+(R ), which is a
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cont radiction. Thus, sum s of elements of A are again in A . If 0 =F a E A and if
o=F r E R sa tisfies ra E [(+(R) , th en

a + b =a + c ~ ra + rb = ra + rc ~ rb = rc ~ b =c

and so a E [(+(R), which is a cont radiction. Hence ra E A for all r E R . Similarly
ar E A for all r E R. If 1 E A th en A = R . Otherwise, A is an ideal of R . In either
case, A E ideal(R) . 0

If I is a left ideal of a semiring R then N (I) = {b E R I ab E I for all a E I} is
clearly a subsemiring of R containing I as an ideal. Indeed , if S is a subs emiring
of R containing I as an ideal then surely S ~ N (I ) so N(I) is th e largest such
subsemiring of R . The left ideal I is an ideal of R precisely when N(I) = R . For
a right ideal H of R , we define N(H) = {b E R I ba E H for all a E H} to obtain
similar prop erti es.

A semiring R having no nonzero subtractive left ideals is left austere . Right
austere rings are defined similarly.

(6.24) EXAMPLE . The semi ring defined in Example 1.6 is clearly left austere.
Indeed , let I be a left ideal of R satisfying {u} =F I . If r E R rt I and u =F a E I
then Or = 0 E I so r + a = 0 E I , showing th at I is not subtractive.

(6.25) PROPOSITIO N. If R is a left austere sem iring then :

(1) Risentire;
(2) R is ei ther zerosumfree or a ring;
(3) If R is cancellative then it is left multiplicatively cancellative as well .

PROOF . (1) Assume that R has no nonzero sub tractive left ideals and let a and b
be nonzero elements of R satisfying ab = O. Th en 0 =F a E (0 : b) and so (0 : b) = R
since oth erwise (0 : b) would be a nonzero subtractive left ideal of R. But thi s is
impossible since 1 rt (0 : b). Thus R must be enti re .

(3) If R is not zerosumfree then V(R) =F {O} . Since V(R) is clearly a subtractive
left ideal of R , this means that V(R) = R and so R is a ring .

(4) Assum e that R is cancellative. Then for a, b E R we see that I = {r E R I
ra = rb} is a subtractive left ideal of R or equals R itself. Indeed, if I =F {O} we
must have I = R and so 1 E I . This means th at a = b, proving that R is left
multiplicatively cancella tive. 0

(6.26) COROLLARY. An austere commuativesemiring which is not zerosumfree
is a field .

PROOF . If R is an austere commuative semiring which is not zerosumfree th en,
by Proposition 6.25, R is an integral dom ain. If 0 =F a E R then Ra is a subtractive
ideal of R not equal to {O} and so is all of R . Therefore th ere exists an element b
of R satisfying ba = 1, proving that R is a field. 0

(6.27) PROPOSITION. Let R be a hemiring and let S = R x N be the Dorroh
ex tension of R by N . Th en a non empty proper subset I of R is a (left , right] ideal
of R if and only if H = {(a , 0) I a E I} is a (left , right] ideal of S . Moreover, I is
subtractive if and only if H is too .

PROOF. Assume that I is a left ideal of R . Then H is clearly closed und er
taking sums and Is =(0,1) rt H . If (a, n) E Sand (b, 0) E H th en (a, n) . (b, 0) =
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(nb + ab, D) E H and so H is a left ideal of S . Conversely, if H is a left ideal of S
and a,b E [then (a + b,D) = (a,D) + (b,D) E H and so a + s « L, If r E R th en
(ra , D) = (r , D)· (a, D) E H and so ra E I , Thus [ is a left ideal of R. The proof for
right ideals and ideals is similar.

Now assume that [ is a subt ractive left ideal of R. If (a,D) E Hand (b, n) E S
is an element satisfying the condition that (a, D) + (b, n) E H then we must have
n = D and a + bEl. Since [ is a sub tractive left ideal , this implies that b E L,
Thus H is a subtractive left ideal. The converse is immediate. 0

(6 .28) EX AMPLE. [Barbut , 1967] Let S = [~+ x {D}] U [{D} x ~+] and define
opera t ions Ef) and 0 on S as follows:

(1) (a,D) Ef) (a' ,D) = (a+a' ,D);
(2) (D, b) Ef) (D , b') = (D , b+ b');
(3) (a, D) Ef) (D, b) = (D , a + b) = (D ,b) Ef) (a , D);
(4) (a,D)0(a',O) = (aa',D) ;
(5) (D,b)0(D,b') = (O,bb');
(6) (a ,D)0(D ,b) =(0 ,ab) ;
(7) (0,b) 0(a ,D) = (ba,O).

Then (S, Ef) ,0) is a hemiring havin g Dorroh ext ension R = S x N . Moreover ,
[ = {D} x ~+ is a left ideal of S and so, by Proposition 6.27, H = [ x {OJ is a
nonzero left ideal of R. If H' is a nonzero left ideal of R contained in H and if
(0, b, 0) E H' for some nonzero element b of ~+ th en (b, 0, 0) Ef) (0, b, 0) = (0, 2b, 0) =
(2,O,0) 0(0 ,b,D) E H' and so (b,O,O) does not belong to H' . Thus H contains no
nonzero subtrac t ive left ideals of R.

We now note a genera lization of Exa mple 1.4.

(6.29) P ROP OSIT ION . For a semiring R , the sets lideal(R) and rideal(R) are
zerosum free hemirings under the operations of addition and multiplication of non­
empty subsets of R , having infinite element R. Moreover, ideal(R) is a zerosumfree
simple semiring. If R is comm uta tive then these are commutative semirings which
coincide.

PROOF . This is a direct consequence of th e definitions; the only reason that
lideal(R) and rideal(R) are not semirings is that R is not a two-sided multiplicative
identity in th em . 0

In part icular, we note th at , since th e semiring ideal(R) is simple, we have
U(ideal(R )) = {R} .

(6.30) EXAMPLE . The st ructure of ideal(N ) has been extensively studied in
[Allen & Dale, 1975]. If 1 < n E N then {k E N I k 2: n} U {OJ is an ideal of N and
the fam ily of all such ideals is closed und er taking unions and int ersections. All
elements of ideal(N) are not necessarily prin cipal , bu t for each [ E ideal(N) th ere
exists a finite subset A of N such th at [ U A is a prin cipal ideal of N or equals all
ofN .
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(6.31) EXAMPLE . If R = Mn(~+) for some integer n 2: 1, th en {OR} is th e
only ideal of R . If 5 is a locally-compact zerosumfree subsemiring of a complex
Ban ach space with {Os} as its only ideal , th en 5 must be isomorphic to Mn(~+)

for some n 2: 1. See Theorem 3.1 of [Kaashoek & West , 1974].

(6.32) PROPOSITION. If R is a commutative semiring then the set 5 of all
elem ents I of ideal(R ) satisfying the condi tion that a E I implies a <l b for som e
bEl is a subsem iring of ideal(R).

PROOF . In Chapter 4 we have alr eady not ed that 0 <l 0 and a <l 1 for each
a E R . Therefore {O} and R belong to 5 . Assume that I and H ar e elements of 5
and let a E I and a' E H . Then th ere exist elements se t and b' E H sa tisfying
a <l b and a' <] b'. This means that th ere are elements c and c' of R sat isfying
ac = a' c' = 0 while b + c = b' + c' = 1. Therefore , if d = bb' + be' + cb' E I + H we
have d + cc' = 1 while (a + a') cc' =0, proving that a + a' <l d. Thus 1+ H E 5 .

Similarly, if I and H are elements of 5 and a E I H then a E I n H and so th ere
exist eleme nts bEl and b' E H such th at a <] b and a <] b'. In particular , th ere
exist elements c and c' of R satisfying ac = ac' = 0 and b + c = b' + c' = 1. Then
bb' E I and if d = be' + cb' + cc' we have bb' + d = 1 while ad = 0, proving that
a <l bb'. Therefore IH E 5, proving th at 5 is a subsemiring of ideal(R). 0

(6 .33) PROPOSITION . If I and H are [left, right] ideals of a semiring R then
I + H is the unique minimal member of th e family of all {left , right] ideals of R
con taining both I and H and I n H is the unique m aximal member of the family
of all {left , right] ideals of R contained in both I and H.

PROOF . Clearly 1+ H contains both I and H. Conversely, if K is an ideal of
R containing both I and H th en K contains all elements of R of the form a + b,
where a E I and b E H , and hence K cont ains 1+ H . The proof of th e second par'
IS similar . 0

If I and H are ideals of a semiring R th en surely I H ~ In H but , in general,
we do not have equality. If R is a commutative semiring and I , H are ideals of R
satisfying I +H = R then InH = (I +H)(InH) ~ IH ~ InH and so IH = InH .
In general , (id eal(R) ,+,n) is not a semiring, even if R is commutat ive. If it is a
semiring, then it must be simple. Therefore, we have the following result .

(6.34) PROPOSITION. The following conditions on a commutative semiring are
equivalen t:

(1) (ideal(R ), +,n) is a semiring;
(2) (id eal(R) ,n,+) is a semiring.

PROOF . This is a direct consequence of Corollary 4.4. 0

If R is a multiplicatively-regular semiring and if I and H are ideals of R with
a E I n H then there exists an element b of R satisfying a = aba = a(ba) E I and
so for multiplicatively-regular semirings we have I H = I n H for all ideals I and
H . Indeed, more generally, we have th e following .

(6.35) PROPOSITION. The following conditions on a semiring R are equivalent:

(1) R is multiplicatively regular;
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(2) HI = H n I for all left ideals I and right ideals H of R ;
(3) In H = {a E H I ba E I for all b E H} for all left ideals I and right ideals

H ofR;
(4) ideal(R ) is multiplicatively idempotent;
(5) H n tc ~ H tc for all ideals H and right ideals tc of R ;
(6) If f{ is a right ideal of R contained in an ideal H of R then K ~ H K ,

PROOF. (1) ¢:> (2): Assume (1) . Let H be a right ideal of R and let I be a left
ideal of R . Then surely H I ~ H n I . Conversely, let a E H n I . Then th ere exists
an element b of R satisfying aba = a. Since ab E H , we have aba E HI , proving
th at H n I ~ HI . Thus we have equality. Conversely, assume (2) and let a E R .
Then a E aR n Ra = (aR)(Ra) and so there exists an element b of R such that
a = aba. Thus R is multiplicatively regular .

(2) ¢:> (3): Assume (2) and let I and H be ideals of R . Then G = {a E H Iba E
I for all s e H} is an ideal of R and so , by (2) , G n H = HG ~ H n I. The reverse
inclusion is trivial and so we have equality. Conversely, assume (3). If I and H
are ideals of R then , by (3) , H I ~ H n I ~ {a E H I ba E H I for all b E H} =
HInI = HI .

(2) ¢:> (4) : Clearly (2) implies (4) . Conversely, if (4) holds th en for all ideals H
and I of R we have H I ~ (H n 1)2 = H n I ~ 1I I and so we have (2) .

(2) ~ (5) : If H is an ideal of Rand K is a right ideal of R then , by (2) ,
H n f{ ~ {a E H I ab E H tc for all b E H} = H f{ n H = H f{ .

(5) ~ (6) ~ (4) : This is immediate. 0

Proposition 6.33 can be extended to infinite sums. If {h IkE n} is a set of
[left , right] ideals of a semiring R th en we define E kEll h to be the union of all
possible sums EkEA h , where A is a finite subset of n. This is again a [left, right]
ideal of R, which is th e unique minimal [left, right] ideal of R containing all of th e
h . Simil arly, nkEllh is the unique maximal [left, right] ideal of R contained in
each of the h . We thus see that lideal(R), rid eal(R) , and ideal(R) are complete
lattices. These lattices need not be modular , as th e following example shows .

(6.36) EXAMPLE. The lattice ideal(N) has a sub lattice consisting of the follow-
ing ideals:

(1) t, = 2N \ {2};
(2) 12 =2N;
(3) h=N\{1 ,2,5} ;
(4) [4 =N\ {1,2} ;
(5) h = N\ {I} .

Moreover , t, ~ t, ~ h and II ~ 13 ~ 14 ~ h and so this sublattice, and hence th e
lattice ideal(N) is not modular .

From Example 6.36, we see that the ideal lattice of a semiring need not be
modular , even if the semiring is commutative. This is th e major difference between
the ideal lattice of a semiring and that of a ring. On the other , ideal( lffi) is trivially
modular , even though lffi is a semiring which is not a ring.

(6.37) EXAMPLE . [Alar con & Anderson , 1994a] For i S 5, the lattice
ideal(B(N, i)) is distributive, but for i ~ 6 it is not even modular .
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(6.38) PROPOSITION. If R is a semiring then a sufficient condition for the lattice
/idea/(R) [resp . ridea/(R), idea/(R)] to be modular is that each of its members be
subtractive.

PROOF . Assume that every element of /idea/(R) is subtractive and let H, I, J{

be left ideals of R satisfying In H = In J{ while I + H = I + J{ and H ~ J{ . We
must show that H = J{ . Indeed , if a E J{ we can writ e a = b + c, where bEl and
c E H . Since c E J{ we see, by subtractiveness, that se t n J{ = In H . Therefore
a E H , establishing the desired equality. 0

(6.39) EXAMPLE . [Padmanabhan & Subramanian , 1968] The condition given
in Proposition 6.38 is not necessary. To see this , consider the idempotent semi ring
R = {O, 1, a} in which l+a =a+ 1 =a. Then idea/(R) has only two elements other
than R itself: {O} and {O, a} and thus is modular. However, one sees immediately
that the ideal {O, a} is not subtractive.

(6.40) EXAMPLE. [Alarcon & Anderson, 1994b] If R is a semi ring and t is an
indeterminate over R, then the lattice /ideal(R[t]) is modular if and only if each of
its members is subtractive, and that is true if and only if R is in fact a ring .

Note that if {h IkE O} is a set of semisubtractive [left, right] ideals of R then
nkEOh is also semisubtractive. Similarly, if each h is subtractive then nkEOh is
subtractive and if each h is strong then nkEOh is strong. Thus any subset of a
semiring is contained in a semisubtractive [resp. subtractive, strong] closure ,
namely the intersection of R and all semisubtractive [resp. subtractive, strong]
ideals containing it . Hence R is left austere when it is the subtractive closure of
each of its nonzero left ideals .

(6.41) EXAMPLE . It is easily verified that the subtractive closu res of the ideals
1= 2I':!\ {2} and H = 2I':!\ {2,4} of I':! are both equal to 2I':! .

(6.42) EXAMPLE. Subtractive closures of ideals in semirings of the form R[t],
where R is a commutative semiring, are studied in detail in [Dale, 1977a]. Thus, for
example, if k and n are integers greater than 1 and H is the ideal of I':![t] generated
by k and i" + k then H is not subtractive since t" ~ H. Its subtractive closure is
the ideal generated by k and i":

Now assume that 1 < k < n in I':! and that n is not a multiple of k. The ideal I
in I':![t] generated by k , n , and t + n is not subtractive since t ~ I . Its subtractive
closure is the ideal generated by t and the greatest common divisor of k and n in
I':! .

Sums of subtractive ideals need not be subtractive. Indeed , 2I':! and 3I':! are
subtractive ideals of I':! but 2I':! + 3I':! = I':! \ {I} is not subtractive, as noted in
Example 6.19. On the other hand, if {h IkE O} is a set of semisubtractive [left,
right] ideals of R and if a E (LkEO Ik) n VCR) then there exists a finite subset A
of 0 and elements bk E h for each k E A such that a = LkEA bi : If h E A then
h + (-a + Lk# bk) = °so bh E t, n VCR). Since each t, is semisubtractive, this
implies that -a = LkEA -bk E LkEA h . Thus LkEO t, is semisubtractive.
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(6.43) EXAMPLE . [Dulin & Mosher , 1972] Define operations EB and 0 on N as
follows:

(1) a EB b = max {a , b} if a ~ 6 or b ~ 6 and a + b otherwise;
(2) a 0 b = min{a , b} if a ~ 6 or b ~ 6 and ab otherwise.

Then (N , EB , 0 ) is a comm utative hemiring having sub tr active ideals I =
{O , 1,2 ,3 ,4 ,5 , 6}U{2t +41 tE N} and H = {O, 1,2 ,3 ,4 ,5 , 6}U{3t +91 tE N} . The
ideal I H is not subtracti ve since 96 and 120 = 96 + 24 belong to I H but 24 ~ I H .
Therefore, by Propositi on 6.27, we see that if R is the Dorroh extension of thi s
hemiring , th en I' = I x {O} and H' = H x {O} are subt ract ive ideals of R but
I' H' = I H x {O} is an ideal of R which is not subtractive. Similarly, I' + H' is not
a subt ractive ideal of R .

(6.44) PROPOSITION. An id eal I of a semiring R is complemented in idea/(R)
if and only if I = (a) for some 1 i= a E com p(R ) n C(R) .

PROOF. Assume that I = (a) for some 1 i= a E comp(R) n C(R) and let H =
(al.) . Since 1 = a + al. , we have 1+ H = R . If bEl n H then b = l::Ciadi for
some elements c, and d, of R . But since b E H , we have b = bal. = l:: ciadial. =
l:: ciaa l. di = O. Therefore 1+ H = {O} and so I E comp(idea/(R)) .

Conversely, assume that IE com p(i dea/(R » and let H be an ideal of R satisfying
1+ H = Rand IH = HI = {O} . Then there exist elements a of I and b of H
satisfying a + b = 1. Moreover , ab = ba = 0 since ab E I Hand ba E HI. Therefore
a E com p( R ) and b = al. . If r E R th en ra E I so bra E In H = {O} . Thus
r a = Ira = bra + ara = ara . Simil arly , ar = ara and so a E C (R ). If rEI th en
rb E In H = {O} and so r = r1 = ra + rb = ra . Thus r E (a ) and so I = (a ). 0

(6.45) PROPOSITION. If R is a sem iring and n is a posit ive integer th en th ere
ex is ts an inclusion-preserving bij ection between the set of ail id eals of R and th e
se t of all ideals of /vt n(R). Moreover , an ideal of R is sub trad ive if and only if th e
corresponding ideal of M n (R ) is sub tract i ve .

PROOF . We will denote the multiplicative identity of M n(R) by E . For each
1 ~ h , k ~ n , we will denote by Ehk the matrix [aij] in M n(R) defined by aij = 1
when (i , j) = (h , k) and aij = 0 otherwise. If I is an ideal of R , set W(I) =
([aij] E M n(R) I aij E I for all I ~ i ,j ~ n}. It is st raightforward to verify that
W(I) is an ideal of Mn(R) . Moreover , I ~ t' implies that W(I) ~ W(I/) so W is
inclusion-preserving. If I{ is an ideal of Mn(R), set <I>(I{) = {a E R 1 aE E I<} .
Then <I>(I) = I for each ideal I of R. Moreover , if I< is an ideal of Mn(R) and if
A = [aij ] E I{ th en for each 1 ~ i ,j ~ n we have aijE = l::~=1 EkiAEjk E I{ and
so W<I>(J{) = I<. Thus W is a bijection .

Now assume that I is a subt ract ive ideal of R and let [aij ] and [bij] be elements of
M n(R) such that [aij] and [aij] + [bij] are element s of W(I). Then aij and aij + bij
belong to I for all l ~ i , j ~ n and so bij E I for all such i and j . Hence [b ij] E We!) ,
proving th at W(I) is subt ractive. Conversely, assume that W(I) is subtractive and
let a and b be elements of R satisfying the condi tion th at a and a + b belong to
I . Then aE and (a + b)E = aE + bE belong to W(I) and so bE belongs to W(I) ,
proving th at b C] , Hence I is subtractive. 0
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(6.46) PROPOSITION. If R is a Gel 'fand semiring th en J(+(R) is a strong ideal
of R .

PROOF . We have alr eady not ed that J(+( R) is always closed under addition .
Let k E J(+(R) and let r E R . If kr + a = kr + b th en k(1 + r) + a = k(1 + r) + b
so k + a(1 + r)-l = k + b(1 + r )- l and so a(1 + r)-l = b(1 + r)- l , whence a = b.
Thus kr E J(+(R) . A similar argument shows that rk E J(+(R) , proving that
J(+(R) is an ideal of R . Now assume that r + r' E J(+(R) . If r + a = r + b then
r + r' + a = r + r' + b and so a = b. Thus r E J(+(R) . Simil arly r' E J(+(R) ,
proving that J(+ (R) is strong. 0

(6.47) EXAMPLE . If R is not a Gel 'fand semiring then J(+(R) need not even
be an ideal of R. For example, if R = l':l{oo} then , as noted in Exa mple 4.15,
J(+ (R) = l':l and this is not an ideal of R .

An element a of a semiring R is small in R if and only if a + b rf. U(R) for all
bE R\U(R) . Note t hat if R is simple th en U(R) = {1} and so this definition reduces
to th e usual definition in th e case of bounded distributive lattices. If a E U(R) then
a is never small sin ce a + 0 E U(R) . On th e other hand , 0 is always sm all . More
generally, if s e R th en an element a of R is d-small in R if and only if a+b E U(R)
implies that d + b E U(R). Thus a is small in R if and only if it is O-small in R.
Clearly d is d-small in R for each d E R.

(6.48) PROPOSITION . If R is a Gel 'fand sem iring th en th e set I of all small
elements of R is an ideal of R . If R is a sim ple semiring and 1 idE R th en th e
set Id of all d-small elements of R is a strong ideal of R .

PROOF . If R is a Gel'fand semiring then clearly In U(R) = 0 and so I i R .
Suppose that a, a' E I and that b is an element of R satisfying a + a' + se U(R) .
By the smallness of a , we have a' + b E U(R) and th en , by the sm allness of a',
we have b E U(R) . Thus a + a' E I . Now assume that a E I and that rand b
are elements of R satisfying th e condit ion that ra + b = c E U(R). Since R is a
Gel'fand semiring, we know by Proposition 4.50 that a + 1 and r + c belong to
U(R) . Therefore (r+c)a+b = c(a + 1) E U(R) and so a+ (r+c)-lc(a+ 1) E U(R) .
Since a is sm all , this implies that (r+ c)-lb is in U(R) and so b E U(R). Therefore
ra E I . A similar argument shows that ar E I and so I is an ideal of R .

Now assume that R is simple. In this case, as we observed previously, U(R) =
{1}. If a , a' E Id and a + a' + b = 1 then d + a' + b = 1 and so d + d + b = 1. Since
simple sernirings are additively idempotent, this implies that d + b = 1. If a E Id
and c E R satisfy ca + b = 1 then a + b = (c + 1)a + b = ca + a + b = a + 1 = 1
and so d + b = 1. Thus ca E Id . Similarly, ac E Id . Since 1 i d we see that 1 rf. Id '
so Id is an ideal of R . Finally, we not e th at if a + a' E Id and a + b = 1 then
a + a' + b = 1 + a' = 1 so d + b = 1. Thus a E Id • Similarly, a' E Id , showing that
I d is strong. 0

(6.49) COROLLARY. If I is an ideal of a sim ple semiring R th en l' =UdElId is
an ideal of R which is I-small in the sem iring idea/( R ).

PROOF . Note first that I' i R since 1 rf. Id for each dEl . Suppose that a, a' E l'
and that d and d' are elements of I satisfying a E Id and a' E I~ . If a + a' + b = 1
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then d-s-a'+b = 1 and so d+d' +b = 1, proving that a+a' E Id+d l <;;; 1' . Moreover ,
if r E R th en ra and ar both belong to Id and hence to I' . Thus I' is an ideal of
R . Now suppose that H is an ideal of R satisfying I' + H = R . Then th ere exist
elements a of I' and b of H satisfying a + b = 1. Since a E Id for some dEl we
have d + b = 1, proving that 1+ H = R . Thus I' is I-small in ideal(R ). 0

A [left, right] ideal I of a semiring R defines an equivalence relation =1 on R ,
called th e Bourne relation , given by r =1 r' if and only if th ere exist elements a
and a' of I satisfying r + a = r' + a' . Note that if r =1 r' and S =1 s' in R th en
r + s =1 r' + S'. If I is an ideal , th en this also implies r s =1 r' S'. We denot e th e
set of all equivalen ce classes of elements of R under this relation by R/I and will
denote th e equivalence class of an element r of R by r / I . Note that if I <;;; Hare
[left, right] ideals of R th en r =1 r' surely implies that r =H r' for all elements r
and r' of R . If I is additively idempotent then r =1 r' if and only if th ere exists an
element bEl such th at r + b = r' + b.Indeed, if r =1 r' th en th ere exist elements
a and a' of I satisfying r + a = r' + a' and so r + (a + a') = (r' + a') + a' = r' +a' =
r + a = r + a + a = r' + (a + a') .

Similarly, I defines an equivalence relation [=]1 on R , called th e lizuka relation,
given by r [=h r' if and only if there exist elements a and a' of I and an element
s of R satisfying r + a + s = r' + a' + s. Note that if r[=]1r' and s[=hs' in R
then r + s[=]1r' + s' and , if I is an ideal , rS[=]1r'S'. Also note that if r =1 r' th en
surely r[=]1r' . We denote th e set of all equivalence classes of elements of R under
this relation by R[j]I and will denote the equivalence class of an element r of R by
r[j]I . Again , if I <;;; H are [left, right] ideals of R then r[=hr' surely implies that
r[=]Hr' for all elements r and r' of R .

If rand r' are elements of a semiring R and if I is an ideal of R th en , as noted ,
r =1 r' impli es that r[=]1r' . The converse does not necessarily hold . If R is a yoked
semiriug, it is easy to see that the converse holds for those ideals I cont aining Z( R) .

(6.50) PROPOSITION. If I is a left ideal of a semiring R then 0/1 is the sub­
tractive closure of I in R .

PROOF . If r , r' E 0/1 th en there exist elements a, a', b, b' of I satisfying r + a =
O+b and r' +a' = O+b'. Therefore (r+r')+(a+a') = O+(b+b') so r+r' EO/I .
If r" E R then r't r + ra = 0+ r'ib so r"r E 0/1. Similarly, rr" E 0/1. Thus 0/ I = R
or 0/1 is an ideal of R , which clearly contains I.

If rand r + r' belong to 0/1 th en th ere exist elements a, a' ,b, b' of I such that
r+a = O+b and (r+r')+a' = O+b' so O+(b' +a) = (r+r')+a+a' = r' +b+a' ,
which proves th at r' E 0/1. Therefore th e left ideal 0/1 is subtractive.

Finally, let H be a subtractive ideal of R containing I . If r E 0/1 th en th ere
exist elements a and b of I (and hence of H) such that r + a = 0 + b E H and so
r E H . Thus 0/1<;;; H . 0

Thus we see, in particular , that an ideal I of a semiring R is subtractive if and
only if I = 0/1. We can define operations $ on th e set 5 of all subtractive ideals
on R by setting 1$ H =O/(I + H) and 18 H =0/1H , and it is easily verified that
(5, $, 8 ) is itself a semiring.

(6.51) COROLLARY. A sem iring R is left austere ifand only iffor each 0 =J. r E R
there exist a, se R satisfying ar + 1 = br,
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PROOF. Assume that R is left auste re and let 0 # r E R . Then 0/ Rr = R and
so , by definition , th e given elements a and b exist . Conversely, assume the st ated
condition holds . If I is a nonzero sub tractive left ideal of R and 0 # rEI th en th ere
exist elements a and b of R satisfying ar+ 1 = br E I and so, by subtractiveness, we
have 1 E I . Thus I = R, which is a cont radict ion, proving th at R is left austere . 0

(6.52) PROPOSITION. If I and H are left ideals of a sem iring R then we have
0/R(I U H) =0/R(0/ I U 0/ H) .

PROOF . Since I ~ 0/1 and H ~ O/H we have R(IUH) ~ R(O/IUO/H) and
so 0/R(I U H) ~ 0/R(O/ I U 0/H) . To show th e reverse containment it suffices, by
Proposition 6.50, to show that th e subtractive left ideal 0/R(I U H) of R contains
R(O/ I U 0/H). Inde ed , if a E 0/1 th en a belongs to every subt ract ive left ideal of
R containing I and hence , in particular , to 0/ R(I U H) Thus 0/ I ~ 0/R(I U H).
Similarly 0/H ~ 0/R(I U H) and so, since 0/R(I U H) is a left ideal of R, we have
0/R(I U H) ~ 0/R(I U H) , as desired . 0

(6.53) PROPOSITION. A cancellative austere yoked semiring R is a division
sermrrng.

PROOF . Let r be a nonzero element of R . By Corollary 6.51, th ere exist elements
a and b of R satisfying ar + 1 = br. Since R is a yoked semiring, th ere exists an
element c of R satisfying a = b + c or a + c = b. If a = b + c th en ar = br + cr =
ar + 1 + cr so 0 = 1 + cr since R is cancellative. T hus 1 E V(R) , proving that R
is in fact a ring. Since every left ideal of a ring is subtractive, we conclude th at
R has no nonzero left ideals and this suffices to show that R is a divisi on ring . If
a + c = b th en ar + cr = br = ar + 1 and so cr = 1. Then c # 0 and so a sim ilar
argume nt shows that either R is a ring (in which case we ar e done) or th ere exists
an element c' of R satisfying c'c = 1. But th en c' = c'(cr) = (c'c)r = 7' , proving
that r E U(R) with c = r- 1 . Thus every nonzero element of R is a ur.i r, proving
that R is a division semiring. 0

(6.54) PROPOSITIO N. If I is a left ideal of a semiring R then the relat ions =1
and =0/1 coincide. Similarly, the relations [=)1 and [=)0/1 coincide.

PROOF. Let rand r' be elements of R . Since I ~ 0/1 , we not e th at r =1 r'
implies that r =0/1 r' . Conversely, assum e that r =0/1 r' , Then th ere exist elements
band b' of 0/I satisfying r + b = r' + b'. Moreover , since b and b' belong to 0/1 ,
th ere exist elements a and a' of I satisfying b + a and b' + a' both belong to I .
Hence b+a +'a' and b' + a +a' belong to I and r+ (b+ a + a') = r' + (b' + a + a') ,
proving th at r =1 r' .

The second part is proven similarly. 0

(6.55) PROPOSITION. Let R be a plain yoked sem iring with descending chain
condition on subtractive left ideals and having no nonzero nilpotent elements . TIJen
every subtracti ve left ideal of R is of the form Re for som e e E IX (R) .

PROOF . By Proposition 4.22, we not e that R is cancellat ive. Let I be a sub­
tractive left ideal of R . If I = {O} th en I = RO and we are done. Hence' we can
assume th at I # {O} . By th e descending chain condition , I contains a minimal
nonzero subtractive left ideal H . If 0 # c E H th en c2 # 0 and so H c is a nonzero
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left ideal of R, the subt ract ive closur e of which is H . Hence e E 0/H e and so
there exist elements h , h' E H satisfying he = e + h' e. Since R is a yoked semiring,
there exists an element r of R sa t isfying r + h = h' or r + hI = h . Since H is
subt ractive, we in fact have r E H. If r + h' = h th en e + h'c = he = rc + h' c and
so e = rc. If r + h = h' then r e + e + h' c = re + he = h'c so re + e = O. Hence
e = e + r(e +re) = e + re + r2e = r2e. In eit her case, there exists a nonzero element
e of H sa t isfying e =ee.

Since R is a yoked semiring , there exists an element d of R satisfying d + e2 = e
or e2 = d + e and, again , we must have d E H. By Example 6.10, th e left ideal
(0 : e) of R is subt ract ive and hence so is H n (0 : e). Since e2 =j:. 0, we see th at
H n (0 : e) CHand so, by the minimali ty of H , we have H n (0 : e) = {OJ. If
d+ e2 = e th en de-s- ec = de+ e2e = ee so de = 0 and hence d E Hn(O : e), implying
th at d = O. Similarly, if e2 = d + e th en d = O. Thus e = e2 E IX (R) n H , and so
IX (R) n H =j:. {OJ.

We now claim that there exists an element f of InIX (R) sati sfying th e condition
In (0 : f) = {OJ. Indeed , for each e E In IX(R) let Me = In (0 : e). This is a
subtractive left ideal of R and so, by th e descending chain condit ion, we can pick
an element f of I n IX(R) such that Mf is minimal. Suppose that Mf =j:. {OJ.
Th en , by the above, Mf contains an idempotent element g. Moreover , gf = 0 since
9 E M]: Since R is a yoked semiring, th ere exists an element H of R satisfying
h + fg = 9 + f or fg = h + 9 + f. Again , since I is sub tractive we must in fact
have h E I . In th e first case, we have hf + fgf = gf + I ' , which implies th at
hf = I? = f. Moreover , hg + f g2 = g2 + fg so hg = g. Simil arly gh = g. Thus
h2 + fg = h2 + hfg = hg + hf = 9 + f = h + fg and so h2 = h . Furtherm ore,
u, ~ M f. But thi s inclusion is proper since 9 E Mf \ Mh , cont radict ing th e
minimality of M] , Hence we must have fg = h + 9 + f . Set k = hfJ + 9 + f. Then
k2 = hfghfg + hfg +hfgf + ghfg + 9 +gf + fhfg + fg + f · We bow that gf = 0
and so 0 = gfg = gh + g2 + gf = gh + g, while fg = Ps = fh ' ! fg + f implies
that fh + f = O. This, in turn , implies that 0 = ghf + gf = ghf. T hus k 2 = k and
so k E IX (R) n I . If r E M k we have r k = 0 and hence

rg + rf = rh f hg + rhfg + rg + r f = rh f hg

so rf = rgf + rp = rhfhgf = O. Thus r E Mf and hence M k ~ Mf where,
again, this containment is prop er . Thus we have a cont radict ion in this situation
too, implying th at Mf ={OJ and establishing th e claim.

If a E I th en there exists an element b of I satisfying b + a =af or a = b+ af.
If b + a = af then af = ap = bf + af so bf = 0 and hence b EMf, yielding
b = O. The other case yields th e same result . Thus a = af for all a E I . Since
Rf ~ I = I f ~ Rf, we then have I = Rf, as desired . D

A [left , right] ideal of a semiring R is maximal if and only if it is not properly
contained in any oth er [left , righ t] ideal of R.

(6.56) EXAMPLE . [Slowikowski & Zawad owski , 1955] Let X be a bicompact
Hausdorff topological space and let R be the commutat ivesemiring of all cont inuous
functions from X to th e semiring lR +. Then for each x EX , the set U E R I f( x ) =
O} is a maximal ideal of R and all maximal ideals of R are of t his form.
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(6.57) EXAMPLE. [Sancho de Salas, 1987] The set R of complements of
bounded open sets in ~n is a basis for th e usual topology on ~n and so, as we
saw in Example 1.5, (R ,n,U) is a semiring. This semiring has a unique maximal
ideal R \ U(R) .

(6.58) EXAMPLE. [Alar con & Anderson , 1994a] If t is an ind eterminate th en
the commutative cancella tive semiring lffi+ [t] has a unique maximal ideal consisting
of all polynomials of degree not equal to O.

(6.59) PROPOSITION. Every {left , right] ideal of a sem iring R is contain ed in a
maximal (left , right] ideal of R .

PROOF. Let I be a [left , right] ideal of R . If I is maximal we are done . If not ,
there is a nonempty set C of [left, right] ideals of R properly containing I. If C'
is a linearly-ordered subset of C then UC' is again a [left, right] ideal of R and so
belongs to C. By Zorn 's Lemma, we th en see that C has a maximal element . 0

(6.60) EXAMPLE . The set N \ {I} is a maximal ideal of the semiring N which
contains all ideals of N . Not e that th is ideal is not principal. Simil arly, if A is the
commutative semiring defined in Example 1.9 then A \ {[:l]} is a maximal ideal of
A which contains all ideals of A. See [Feigelstock , 1980] for details.

As an immediate consequence of Proposition 6.59 we see that an element a of a
semiring R belongs to every maximal ideal of R if and only if (a) is a small element
of the semiring ideal(R) . Indeed , if a belongs to every maximal ideal of R and I is
an arbitrary ideal of R th en, by Proposition 6.59, I is cont ain ed in a maximal ideal
H of R and so (a) + I ~ HeR. Conversely , if (a) is a small element of ideal(R)
and H is a maximal ideal of R th en (a) + H:f.: R so (a) + H= H , whence a E H.

(6 .61) PROPOSITION. For an elem ent a of a semiring R t1E~ following conditions
are equivalent :

(1) a E U(R) ;
(2) a belongs to no maximal one-sided ideal of R .

PROOF. Assume th at a E U(R) and that H is a maximal left ideal of R . If
a E H th en 1 = a- 1a E H , which is a contradiction . Thus a tt H . Simil arly ,
a rt. H for any maximal right ideal H of R. Conversely, assume that a belongs to
no maximal one-sided ideal of R . By Proposition 6.59, this implies th at Ra is not
a left ideal of R and so Ra = R . Simil arly aR = R . Thus th ere exist elements b
and c of R satisfying ba = 1 = ac. But th en b = bl = b(ac) = (ba)c = lc = c so
a E U(R) and b = a- 1 • 0

(6.62) PROPOSITION. The following conditions on a semiring R are equivalent :

(1) R is a Gel'fand sem iring;
(2) Every maximal one-sided ideal of R is strong.

PROOF . (I):::} (2) : Suppose th at I is a maximal left ideal of R and th at rand r'
are elements of R sat isfying r + r' E I and r tt I . Then H = {a + br Ia E I, s e R}
is a subset of R closed under addition and under multiplication from the left by
arbitrary elements of R. By th e maximality of I , we see th at H is not an ideal of R
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and so we must have H = R . Therefore, in par ti cular , th ere exist elements a of I
and b of R sa t isfying a + br = 1. Therefore 1+ br' = a +br+ br' = a + b(r + r') E I ,
cont radict ing the fact that , by (1) , 1 + br' E U(R ). Thus we see that r + r' E I
implies that rand r' both belong to I. The prooffor maximal righ t ideals is similar.

(2) => (1): By (2) we see th at if r E R then 1 + r tJ. I for any maximal left ideal
or maximal right ideal of R . By Proposition 6.61 , we conclude that 1 + r E U(R)
for each element t: of R. 0

(6.63) PROPOSITION. Let R be a Gel 'fand ring .

(1) An elemen t a of R is sm all if and only if it belongs to every maximal one­
sided ideal of R;

(2) If R is simple and 1 "# d E R then an element a of R is d-small if and only
if it belongs to every maximal one-sid ed left ideal of R con taining d.

PROOF. (1) Assum e that a is a small element of R and let H be a maximal left
ideal of R to which a does not belong. Then Ra + H = R and so th ere exist r E R
and h E H satisfying ra + h = 1. By Proposition 6.48 , ra is also small in R and so
h E U(R ). Therefore 1 = h- 1h E H , which is a contradiction. Thus a belongs to
every maximal left ideal of R. Similarly , it belongs to every maximal right ideal of
R .

Conversely, assume th at a belongs to every maximal one-sided ideal of R. Let
se R sa t isfy th e condit ion that a + b = c E U(R ). If Rb is a left ideal of R then, by
Proposition 6.59, it is contained in a maximal left ideal H of R. But th en a E H
and so c =a + s e H , which is a contradi ction since c E U(R ). T hus we must have
Rb = R. Sim ilarly , bR = R and so there exist elements d and d' of R satisfying
bd = d'b = 1. But then d = (d' b)d = d' (bd ) = d' and so b E U( R ), proving that a is
small in R.

(2) Now assume th at R is sim ple and that 1 "# dE R. Let a be a d-small element
of R and assume that a tJ. H , where H is a maximal H ·t ideal of R containing d.
Then R a + H = R and so there exists an element r of R satisfying ra + h = l.
Since a is d-small , so is ra by Prop osition 6.48 . Thus d + h = 1 and so 1 E H ,
which is a cont radiction. Therefore a must be an element of H .

Conversely, assume th at a is an element of R which belongs to every maximal
left ideal of R containing d. Let b be an element of R satisfying a+b = 1. If R(d+b)
is a left ideal of R th en it is contained in a maximal left ideal H of R. Moreover ,
by Proposition 6.62, H is strong and so d, b E H. By th e choice of a , this implies
th at a E H and so 1 = a + b E H, which is a contradi ction . Hence we must have
R(d + b) = R. In particular, th ere exists an element r of R sa tisfying r (d + b) = 1.
Then , by Proposition 4.3, we have 1 = 1 + d + b = (rd + d) + (rb + b) = d + band
so a is d-sm all in R. 0

A [left , right] ideal 1"# {O} of a semiring R is minimal if and only if it does not
contain any [left , right] ideal of R ot her th an itself and O.

(6.64) PROPOSITION. If H is a minimal left ideal of a sem iring R and if 0 "#
e E I X(R ) n H then eH is a division sem iring with multiplicative identi ty e.

PROO F. Clearly (e H , + ) is a commutative monoid and (eH , ·) is a semigroup,
and clearly mul tiplication in eH distri bu tes over addit ion. Since He is a nonzero
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left ideal of R contained in H, we must have H e = H and so for each element a of
H th ere exists an element b of H satisfying a = be. Hence (ea)e = (ebe)e = e(be) =
ea = e(ea), showing that e is the ident ity of (eH , .). Thus eH is a semiring.

If 0 :j; ea E eH then ea = e2a E H ea and so Hea is a nonzero left ideal of R
contained in H. Thus H = H ea and so eH =eH ea. In particular , there exists an
element d of H satisfying (ed)(ea) = e. Similarly, th ere exists an element H of H
satisfying (eh)( Ed) = e and so eh = ehe = eh(edea) = (ehed)ea = ea. Therefore
eH is a division semiring. 0

(6.65) PROPOSITION. If I is a minimal left ideal of R and a E R th en I a is a
left ideal of R which is either minimal or {O} .

PROOF. Clearly I a is a left ideal of R . Assume that it is not equal to {O} and
th at it properly contains a left ideal H of R not equal to {O} . Then H' = {r E
I I ra E H} is a left ideal of R properly contained in I and not equal to {O} ,
contradicting the minimality of I . Thus I a must be minimal. 0

(6.66) PROPOSITION. IfH is an ideal of a sem iring R containing a minimal left
ideal then the sum of all minimal left ideals of R contained in H is an ideal of R.

PROOF . Let H' be the sum of all minimal left ideals of R contained in H . Then
H' is a left ideal of R. If a E R and if I is a minimal left ideal of R contained in
H , th en Ia ~ H and so, by Proposition 6.65, Ia ~ H' . Thus H'a ~ H' for each
a E R, proving that H' is an ideal of R. 0

A nonempty subset D of a semiring R is a coideaI if and only if it is closed
und er multiplication and satisfies th e condit ion that d + rED whenever d E D
and r E R.

(6.67) EXAMPLE . If A is a nonempty subset cf a semiring R then the set F(A)
of all elements of R of th e form al ... . . an + r, where th e a; belong to A and
r E R , is a coideal of R cont aining R and , in fact, is th e unique smallest coideal of
R cont aining A .

A zerosumfree semi ring R must cont ain a maximal prop er coideal. Indeed , let
C be th e set of all coideals of R not containing O. This set is nonempty since it
contains F( {I}) by zerofreeness. The set C is closed und er taking unions of chains,
and so th e result follows using Zorn's Lemma.



7. PRIME AND SEMIPRIME

IDEALS IN SEMIRINGS

As in the case of rings, an ideal I of a semiring R is prime if and only if whenever
H tc ~ I , for ideals Hand tc of R , we must have either H ~ lor tc ~ I . The set
of all prime ideals of a semiring R is called the spectrum of R and will be denoted
by spec(R) .

(7.1) EXAMPLE . [Feigelstock, 1980] Let A be the commutativesemiring defined
in Example 1.9. Then HG] I G a torsion abelian group} is a prime subtractive
ideal of A. Moreover, for each prime integer p , HG] I the torsion subgroup of G is
p-divisible} is a prime subtractive ideal of A.

(7.2) EXAMPLE . [Sancho de Salas & Sancho de Salas, 1989] Let B be the family
of all subsets of IT which are finite unions of singletons and closed subintervals of IT .
Then B is a basis for the closed sets of the usual topology on IT and so (B , U, n)
is a commutative simple semiring. Refer to Example 1.5 for details. The maximal
prime ideals of B are those of the form I; = {b E B IrE b} for each r E IT. The
other prime ideals of B are of the form H; = {b E B I [r , r + e] ~ b for some e > O}
for each 1 # r E IT or of the form K; = {b E B I [re, r] ~ b for some e > O} for each
0# r E IT .

(7.3) EXAMPLE . [Alarcon & Anderson , 1994a] For each A ~ N\ {O} let I(A) be
the ideal of Iffi[X] generated by X and {I + x» Ih E A}. A necessary and sufficient
condition for I A to be a prime ideal of lffi[X] is that N \ A be an ideal of N. In
particular , if An = N \ (2n) for each nonegative integer n then

(X) = I(Ao) C I(Ad c ...

is an infinite ascending chain of prime ideals of lffi[X ].

The following result generalizes the case for rings.

(7.4) PROPOSITION. The following conditions on an ideal I of a semiring Rare
equivalent :

(1) I is prime;
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(2) {arb IrE R} ~ I if and only if a E I or b E I ;
(3) If a and b are elements of R satisfying (a)( b) ~ I th en ei ther a E I or b E I.

PROOF. (1) => (2): Let a,b E R and set l' = {arb I rE R} . If a E I or bEl
then l' ~ I since I is an ideal. Conversely, let H = (a) and J{ = (b). These are
ideals of Rand l' ~ H J{ . Indeed , H J{ is clearly contained in any ideal which
contains I' . Therefore I' ~ I implies, by (1) , that H ~ I or J{ ~ I . Since a E H
and se J{ , this implies that a E I or b E I .

(2) =>(1): Let Hand J{ be ideals of R satisfying H J{ ~ I . Assume that H !£ I
and let a E H \ I . Then for each b E J{ we have {arb IrE R} ~ H J{ ~ I and so,
by (2) , we must have bE I. Thus J{ ~ I.

(2) => (3) : This is immediate. 0

(7.5) COROLLARY. If a and b are elements of a semiring R th en the following
conditions on a prime ideal I of R are equivalent:

(1) If ab E I then a E I or b E I ;
(2) If ab E I then ba E I .

PROOF. Clearly ((1) implies (2) . Conversely, assume (2) . If ab E I then abr E I
for all r E R . By (2) , this implies that bra E I for all r E R and so, by Proposition
7.4 , we observe that a E I or b E I . 0

(7.6) COROLLARY. An ideal I of a commutativesemiring R is prime if and only
if ab E I implies that a E I or b E I for all elements a and b of R.

PROOF. Note that , by commutativity, ab E I if and only if arb E I for all r E R .
The result then follows from Proposition 7.4 . 0

(7 .7) EXAMPLE . [Alarcon & Anderson, 1994a] The ideal I = N \ {l} of N is
prime. However , if t is an indeterminate then the set I[t] of all elements of N[t]
with coefficients in I is not prime, since (2 + t)(l + 3t) =2 + 7t + 3t 2 E I[t] while
2 + t , 1 + 3t f. I[t] . Note that I is semisubtractive but not subtractive.

(7 .8) COROLLARY. Every prime ideal of a semiring R is semisubtractive.

PROOF. Let I be a prime ideal of R and let a E In V(R) . If r E R then
(-a)r(-a) + ar(-a) = 0 and so (-a)r(-a) = -[ar(-a)] . On the other hand ,
ara + ar( -a) =0 and so ara = -[ar( -a)] . By the uniqueness of additive inverses,
this implies that (-a)r( -a) = ara E I for all r E R and so, by Proposition 7.4 ,
-a E I . 0

(7.9) EXAMPLE . If R is a bounded distributive lattice then both (R , V, /\) and
(R, /\ , V) are commutative semirings. Moreover, an easy application of Corollary
7.6 shows that I is a prime ideal of (R , V, /\) if and only if R \ I is a prime ideal of
(R, /\ , V). Thus there exists a bij ective order-reversing correspondence between th e
sp ectra of these two semirings, given by complementation.

A nonempty subset A of a semiring R is an m-system if and only if a, b E A
implies that there exists an element r of R such that arb E A .
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(7.10) EXAMPLE. Since we assume that any semiring R has a multiplicative
identity, any sub monoid of (R , ') is an m-system . In particular, if R is a semiring
then U(R) , C(R) and IX (R) n C(R) are m-systems. So, if R is a commutative
semiring th en IX (R) is an m-system,

We now not e the following immediate consequ ence of Proposition 7.4 .

(7.11) COROLLARY. An ideal I of a semiring R is prime if and only if R \ I is
an m-system .

(7.12) PROPOSITIO N. If A is an m-system of elements of a semiring R and if
I is an ideal of R maximal among all those ideals of R disjoint from A then I is
prune.

PROOF . Let H , J{ be ideals of R not contained in I but satisfying H J{ ~ I .
Then H + I and J{ + I properly contain I and so have nonempty intersection with
A . In particular , there exist finit e subsets {aI, . . . , an,b1, ... , bd of I , {hI , . . . , hn}
of H, and {k 1 , •• • , kd of K such that a = E7=1 hi + ai E An (H + I) and
b = E;=1 kj + bj E A n (Ii + 1). Since A is an m-systern , there exists an element
r of R such that arb E A . But

cont radict ing the hypothesis th at I n A = 0 . Thus I is prime. 0

(7 .13) C OROLLARY. Any maximal ideal of a sem iring R is prime.

PROOF . This is a consequence of Proposition 7.12, Example 7.10, and the fact
th at an ideal of R is maximal if and only if it is maximal among all those ideals of
R disjoint from U(R) . 0

(7.14) PROPOSITION. Every prim e ideal I of a semiring R contains a minimal
prim e ideal.

PROOF . Let {Hi liE Q} be a descending chain of prime ideals of R (in other
words , i 2: j in Q if and only if Hi ~ Hj ) and set H = n iEnHi. Then H is an ideal
of R . Let a and b be elements of R satisfying {arb IrE R} ~ H and suppose th at
a rt. H . Then there exists an element '» of Q such tha t a rt. H k - By Proposition
7.4 , this implies that b E Hk and so b E Hi for all i :S k . Moreover , if i > k then
Hi ~ Hk and so a rt. Hi . Again , by Proposition 7.4 this implies that s« Hi. Thus
bE Hi for all i in Q , proving that b E H . Thus, by Proposition 7.4 , H is prime. The
result now follows from applying Zorn 's Lemma to th e dual of the partially-ordered
set of all prime ideals of R contained in I . 0

(7.15) PROPOSITION. If I is an ideal of a semiring R and if H is an ideal of R
minimal among those ideals of R properly containing I then K ={r E R I rH ~ I}
is a prim e ideal of R .

PROOF . It is straightforward to verify that J{ is an ideal of R. Let K' and J{"

be ideals of R satisfying K' K" ~ K and assume that K" ~ K . We must show
that K' ~ J{ . Ind eed , since K'K" ~ K and K" ~ J{ we have K' K" H ~ I and
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[{" H Cl I. Therefore, I C 1+ ]{" H ~ H and so, by the minimality of H, we
have I + [{" H = H. Therefore ]{' I + ]{' [{" H = [{'H ~ H and so ]{' ~ tc , as
desired. 0

(7 .16) PROPOSITION. If I is a subtractive ideal of a commutative semiring R
which is maximal in the set of all ideals of R which are not finitely generated, then
I is prime.

PROOF. Assume that a, b E R \ I satisfy ab E I. Then I + (a) and I + (b)
are ideals of R properly containing I and so both are finitely generated , say I +
(a) = ({d1+r1a,oo.,dn+rna}) and I+(b) = ({d~+r;b , oo . ,d~+r~b}) . The
set H = {r E R I ra E I} is an ideal of R. Moreover , if 1 ::; j ::; k we note that
(dj + rjb)a = dja + rjab E H and so I C I + (b) ~ H . By the maximality of I , this
implies that H is finitely-generated , say H = ({ e1, . .. , em}). If c E I then there
exist elements Sl, . .. ,Sn of R such that

n n n
C = L(di + ria) = L s.d, + L eir,a .

i=l i=l i=l

Since I is subtractive, E7=1 Siria E I and so E7=1 s; ri E H . Thus there exist
t1, . .. tn in R such that E7=1 sir, = E::1 tie, and c = E7=1 s.d, + E::1 iie,a :
Therefore I is generated by {d1, ... , dn, e1 a, ... , ema}, contradicting the assumption
that I is not finitely-generated . Hence ab E I implies that a E I or b E I, and so I
is prime. 0

(7.17) PROPOSITION. If R is a commutative semiring every ideal of which is
subtractive, then R is noetherian if and only if every prime ideal of R is finitely
generated.

PROOF. If R is noetherian then every prime ideal of R is finitely generated by
Proposition 6.16. Conversely, assume that this condition holds and let C be the set
of all ideals of R which are not finitely generated. By Proposition 6.16, we must
show that C is empty. Assume that this is not the case and let {Ij liE n} be a
chain of elements of C. Then I = UieoIj is an ideal of R which cannot be finitely
generated for, if it were, it would equal one of the I j , contrary to the assumption
that none of the Ij is finitely generated . Therefore, by Zorn's Lemma, C has a
maximal element 10 • By Proposition 7.16, 10 is prime, contradicting our hypothesis
that all prime ideals of R are finitely-generated. Therefore R is noetherian . 0

(7.18) PROPOSITION. Let I be an ideal of a commutative semiring R and let t
be an indeterminate over R. Then I[t] is a prime ideal of R[t] if and only if I is a
subtractive prime ideal of R.

PROOF. Assume that I[t] is a prime ideal of R[t] and let a and b be elements
of R satisfying ab E I . Then a E I[t] n R or b E I[t] n R But I[t] n R = I and so
we have shown that I is prime. Now suppose that a, b E R are elements satisfying
a+ b E I and a E I . Then b(a+b),a2 +b(a+ b),ab E I and so

(bt + a)[(a + b)t + b] = (ab + b2)t 2 + (b2 + a2 + ab)t + ab E I[t].



____PRIME AND SEMIPRIME IDEALS _ 89

Since I[t] is prime, this implies that either bt + a E I[t] or (a + b)t + b E I[t], and
either of these implies that bEl. Thus I is subtractive as well.

Conversely, assume that I is a subtractive prime ideal of R and let I ,9 E R[t]
with deg(f) = nand deg(g) = k . Suppose that ts E I[t) and 1 t/:. I[t] . Then there
is some index h such that I(h) t/:. I . If 1(0) t/:. I then (fg)(O) = I(O)g(O) E I implies
that g(O) E I. Similarly, (fg)(l) = I(O)g(l) + 1(I)g(O) E I and 1(I)g(O) E I so,
by subtractiveness, I(O)g(l) E I . Since 1(0) t/:. I , this implies that g(l) E I . Now
assume inductively that we have shown th at g(O) , . . . , g(u) E I for some u < k .
Then

u+1 (U+I )
(fg)(u + 1) =~ I(i)g(u + 1 - i) = ~ I(i)g(u + 1 - i) + I(O)g(u + 1) E I

with L:~:II I(i)g(u + 1- i) E I and so I(O)g(u + 1) E I , proving that g(u + 1) E I .
Thus 9 E I[t).

Now suppose that 1(0), . . . , I(m - 1) E I but I(m) t/:. I . Then

m-I

(fg)(m) = I: I(i)g(m - i) + l(m)g(O) E I
;=0

and so l(m)g(O) E I . Also,

3-1

(fg)(m + 1) = I: I(i)g(m + 1 - i) + l(m)g(l) + I(m + l)g(O)
;=0

which implies, as before, g(l) E I . An induction argument similar to the one in th e
previous paragraph now shows that 9 E I[t). 0

(7.19) EXAMPLE . The structure of the prime ideals of JE[t], where t is an in­
determinate, is studied in detail by La Grassa , [1995) . In particular , she notes
that every nonzero prime ideal of JE[t] either contains t or 1 + t but that the ideal
1= (1 + t) , itself, is not prime since 1 + t + t3 and 1 + t2 + t3 do not belong to I
whereas (1 + t + t3 )(1+ t 2 + t3

) = (1 + t)6 E I .

For each ideal I of a semiring R let V(I) = {H E spec(R) I I ~ H} and
ID(I) = spec(R) \ V(I) . Also set V (R ) = 0 and ID(R) = spec(R) . It is easy to see
that V(I)UV(I') =V (II' ) for all ideals I and I' of Rand nkEnV(Ik) =V(L:kEn Ik)
for every set {h IkE Q} of ideals of R . Therefore, Zar(R) = {V(I) I I E ideal(R)}
is th e family of closed sets for a topology on spec(R) , called the Zariski topology.
As a consequence of Corollary 7.13 , we not e that the set mspec(R) of all maximal
ideals of a semiring R is contained in spec(R) and so the Zariski topology on
spec(R) induces a topology on mspec(R) . This topology is studied , for the case of
commutative semirings , in [Iseki & Miyan aga, 1956a).

If a E R we will write V(a) and ID( a) instead of V((a)) and ID((a)) respectively.
Note that {ID(a) Ia E R} is a base of open sets for th e Zariski topology. Indeed , if
I is an ideal of R then V(I ) = n{V(a) Ia E I} .
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(7.20) PROPOSITION. If R is a semiring then spec(R), topologized with the
Zariski topology, is a quasicompact To-space .

PROOF . We first note that spec(R) is a To-space . Indeed , if I Cf: I' are elements
of spec( R) then JD:( I) is an open neighborhood of I' not containing I .

It is also quasicompact . Indeed, let {h IkE D} be a family of ideals of R
satisfying 0 = nkEOV(h) = V(2:kEO h). If I == 2:kEo Ik =F R then , by Zorn's
Lemma, I is contained in a maximal ideal of R which, by Corollary 7.13, is prime
and so belongs to "1(1) . Since this is impossible, we must have I = R and so
1 E I . Hence there exists a finite subset A of D such that 1 E 2:kEAh and so
o = niEAV(h). D

An ideal I of a semiring R is semiprime if and only if, for any ideal H of R,
we have H 2 ~ I only when H ~ I . Prime ideals are surely semiprime.

(7.21) PROPOSITION. The following conditions on an ideal I of a semiring R
are equivalent:

(1) I is semiprime;
(2) {ara IrE R} ~ I ifand only if a E I .

PROOF. (1) =? (2): Let a E R and set I' = {ara IrE R} . If a E I then I' ~ I
since I is an ideal. Conversely, assume that I' ~ I and let H be the set of all finite
sums of elements of R of the form rar", where r, r' E R. Then H is an ideal of Rand
H 2 consists of all finite sums of elements of the form rar"ar' ; where r, r', r'' E R.
In particular, I' ~ Hand H 2 is contained in any ideal of R which contains I' and
thus H 2 ~ I . By (1), this implies that H ~ I and so I' ~ I .

(2) =? (1): Let H be an ideal of R satisfying H 2 ~ I and let a E H . Then
{ara IrE R ~ H 2} ~ I and so, by (2), we must have a E I . Thus H ~ I . D

(7.22) COROLLARY. Every semiprime ideal of a semiring 3 is semisubtrective.

PROOF . The proof is the same as that of Corollary 7.8. []

Another way of stating Proposition 7.21 is the following: a nonempty subset A of
a semiring R is a p-system if and only if a E A implies that there exists an element
r of R such that ara E A . Then we have the following immediate consequence of
Proposition 7.21.

(7.23) COROLLARY. An ideal I of a semiring R is semiprime if and only if R\ I
is a p-system.

Any m-system of elements of a semiring R is a p-system. Also, it is clear that the
union of p-systems is again a p-system . Conversely, we have the following result.

(7.24) PROPOSITION. A nonempty subset A of a semiring R is a p-system if
and only if it is the union of m-systems.

PROOF . From the preceding remarks, we note that the union of m-systems is
certainly a p-system. Conversely, let A be a p-system of elements of R and let
ao E A. Then there exists an element ro E R such that al = aoroao E A. Similarly,
there exists an element "i E R such that a2 = al rl al E A. Continue in this manner
to define the subset B = {ao, al, a2, ... } of A . It is easily seen that B is in fact an
m-system, containing ao. Thus A is the union of m-systems . D
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(7.25) PROPOSITION. An ideal I of a semiring R is semiprime if and only if
1= nV(I) .

PROOF. Let I be a semiprime ideal of a semiring R and let A = R \ I . Then,
by Corollary 7.23, A is a p-system and so, by Proposition 7.24, A = niEOBi, where
each B, is an m-system contained in A . Since In B, = 0 for each i E n, we note
by Zorn's Lemma that I is contained in an ideal K, of R maximal with respect
to being disjoint from Bi . By Proposition 7.12, each such K, is prime. Therefore
I c; niEOKi c; n iEO(R \ B;) = I , and so I surely equals the intersection nV(I) of
all prime ideals containing it .

Conversely, assume that 1= nV(I) . Then R \ 1= n{R \ H I H E V(In . By
Corollary 7.11, each R \ H is an m-system and so, by Proposition 7.24, R \ I is a
p-system. Therefore, by Corollary 7.23, I is a semiprime ideal of R . 0

As a consequence of Proposition 7.25 we see that every ideal I of a semiring R
is contained in a unique minimal semiprime ideal of R , namely nV(I). If I is an
ideal of a semiring R then the semiprime ideal nV(I) of R is denoted by Vi. The
ideal J(O) is the lower nil radical of R .

(7.26) EXAMPLE . Let R be a semiring. If r E No(R) has index of nilpotency
n then rn = 0 E I for every prime ideal I of R and so, by primeness, rEI. Thus
No(R) c; J(O). Conversely, assume that r tt. No(R) . Then A = {r i liE N} is
an m-system not containing 0 so (0) n A = 0. Then there exists an ideal I of R
maximal among all ideals disjoint from A and, by Proposition 7.12, I is prime and
r tt. I . Therefore No(R) = J(O).

For an ideal I of R we see that Vi is precisely the set of all elements r E R such
that every m-system in R which contains r has a nonempty intersection with I.

(7.27) PROPOSITION. If I and H are ideals of a semiring R then:

(1) Ie; H implies that Vi c; Vii;

(2) V7J = Vi;
(3) VI + H = v~Vi;=-I+---;Vii=.

PROOF . (1) and (2) are immediate consequences of the definition . Moreover , by

(1) we have 1+ H c; Vi + Vii and so vI + H C vVi+ Vii. Also by (1), we

have Vi + Vii c; '1'1+ H and so, using (2), vVi + Vii c; VvI + H = '1'1+ H.
Thus we have shown (3). 0

(7.28) PROPOSITION. (Krull's Theorem) If I is an ideal of a commutative
semiring R then Vi = {a E R I an E I for some positive integer n} .

PROOF . Set K = {a E R Ian E I for some positive integer n} . If a , b E K there
exist m , n E JlD such that am and b" belong to I . Moreover , (a +b)n+m-l = I: ai bi ,
where either i :::: m or j :::: n in each summand. Therefore (a + b)n+m-l E I and
so a + b E K. Similarly, if r E R then (rar = rmam E I and so ra E K. Since
1 tt. K, we conclude that K is an ideal of R.

Let e E R \ K . If e2 E K then there exists a positive integer n such that
en = (e2)n E I and so e E K , which is a contradiction . Thus e E R \ K and so
R \ K is a p-system, proving that the ideal K is semi prime.
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Finally, let H be a prime ideal containing I. If a E K th en th ere exists a positive
integer n such that an E I ~ H and so a E H by Proposition 7.4. Hence K ~ H .
This shows that V(I) ~ V ([{ ). The reverse containment is surely true and so we
have equality. Since K is semi prime, this implies th at K = VK= Vi. 0

As with rings , we say that an ideal I of a commu tative semiring R is primary
if and only if for each a E R \ I and b E R we have ab E I only when bk E I for
some positive integer k .

(7 .29) C OROLLARY. If I is a primary ideal of a commutati ve sem iring R then
Vi is a prime ideal of R.

PROOF . Let a,b E R satisfy a rt Vi and ab E Vi. Then , by Proposition 7.28,
th ere exists a positive int eger n such that anb" = (ab)n E I. Since I is primary,
th ee exists a positive integer k such that bnk = (bn)k E I and so b E Vi. Therefore
Vi is prime. 0

(7.30) PROPOSITION . If I and H. are ideals of a commutativesemiring R then
VTii = ..jI n H =Vi n Vii.

PROOF . Since IH ~ In H ~ I , H we have VTii ~ VI n H ~ Vi n Vii.
Conversely, let a E Vi n Vii. Then th ere exist positive integers n and m sat isfying
an E I and am E H . Thus an+m E I H and so a E VTii. This proves th e desired
equality. 0

(7 .31) PROPOSITION. Let I be an ideal of a commutative semiring R satisfy ing
the condition that Vi is finitely-generated. Th en there exit s a positive integer n
satisfying (Vi)n~ I .

PROOF . Suppose that Vi = ({ aI , .. . , ad) . For each 1 ::; i ::; k there exists a
positive integer n j for which a7' E I . Let n = L:~=l n j. If b = r Ia l +.. ·+ rkak E Vi
th en

n _ '""'" n! h, h .b - LJ Ih I . . h ,(rIal) . .. . . (rk ak) ,
hi . 2 · .. . k ·

where th e sum is taken over all k-tuples (hI , h2 , . • . , hk ) satisfying L:~=l hj = n .
In each summand, we must have h j 2: nj for at least one ind ex i . and so each
summand belongs to I . Therefore b" E I for each s« Vi. 0

(7 .32) EXAMPLE . If R is a semiring satisfying V(R) = ylV(R) , then LaGrassa
[1995] has shown that an element f E R[t] is nilpotent if and only if f(i) E R is
nilp otent for each i E N.

An ideal I of a semiring R is irreducible if and only if, for ideals Hand K
of R , we have I = H n K only when I = H or I = K, The ideal I is strongly
irreducible if and only if, for ideals H and K of R, we have H n K ~ I only when
H ~ I or [{ ~ I . A strongly irreducible ideal is surely irr edu cible.

A nonempty subset A of a semiring R is an i-system if and only if a , b E A
impl ies that (a) n (b) n A =F 0 .
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(7.33) PROPOSITION. Th e following conditions on an ideal I of a sem iring R
are equivalent:

(1) I is strongly irredu cible;
(2) Ifa ,b E R satisfy (a) n (b) ~ I then a E I or bE I ;
(3) R \ I is an i-system.

PROO F. (I) ::} (2): This is an immediate consequence of th e defini t ion .
(2)::} (3): Ifa ,b E R\I and (a) n (b)n[R\IJ = 0 then (a) n(b) ~ I and so,

by (2), (a) ~ I or b ~ I , whi ch is a cont radict ion.
(3) ::} (1) : Let Hand J{ be ideals of R not contained in I . Then there exist

elements a E H \ I and b E J{ \ I and so, by (3), th ere exists an element c E
[(a) n (b)] \ I. In particular , c E H n J{ and so H n J{ ~ I. Thus we hav e (1) . 0

(7.34) PROPOSITION. Let a be a nonzero elem ent of a sem iring R and let I
be an ideal of R not containing a. Th en there exists an irredu cible ideal H of R
containing I and not containing a.

PROOF . If {H j liE n} is a cha in of ideals in R containing I and not containing
a t hen UjEnHj is an ideal of R not containing a. Therefore, by Zorn 's Lemma, th e
set of all ideals of R not containing a has a maximal eleme nt H . Suppose that
H = H' n HI! , where H' and HI! are both ideals of R prop erly containing H . Then ,
by .the choice of H , we have a E H' and a E HI!. Thus a E H' n HI! = H , which is
a cont ra dictio n. Hence H must be irr edu cible. 0

(7 .35) PROPOSITIO N. Any ideal I of a semiring is the in tersection of all irre­
ducible ideals containing i t .

PROOF . Since 1 rf. I , we know by Prop osition 7.34 that there exists an irre ducible
ideal of R cont aining I . Let I' be th e intersection of all irr edu cible ideals of R
containing I . T hen I ~ I'. If thi s inclusion is proper then there exists an elem ent
a of I' \ I . But , by P rop osition 7.34, th ere exist s an irreducible ideal H of R
containing I but not a, which is a contradict ion. Hence we must have I = I' . 0

(7.36) PROPOSITIO N. An ideal I of a sem iring R is prime if and only if it is
sem iprime and strongly irreducible.

PROO F . If I is prime th en surely it is semiprime. Moreover , if Hand J{ are
ideals of R satisfying H n J{ ~ I th en H J{ ~ H n J{ ~ I so H ~ I or J{ ~ I .
Therefore, I is strongly irr edu cible.

Conversely, assume that I is an ideal of R which is both semiprime and strongly
irr edu cible. If Hand J{ are ideals of R satisfying H J{ ~ I th en (H nJ{) 2 ~ H J{ ~ I
and so, by semiprime ness, H n J{ ~ I . Therefore, by st rong irredu cibility, H ~ I
or J{ ~ I , proving that I is prime. 0

(7 .37) PROPOSITION . Th e following conditions are equivalent for an ideal I of
a multiplicati vely-regular sem iring R :

(1 ) I is prime;
(2) I is irredu cible .
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PROOF. By Proposition 7.36 we see that (1) implies (2). Conversely, assume (2)
and let Hand K be ideals of R satisfying H K ~ I . By Proposition 6.35 we see
that

(H + I) n (« + I) = {(h + a)(k + b) I h E H; kEf{; a,se I} ~ I .

Therefore, by (2), H + I = J or f{ + I = I , namely H ~ I or tc ~ I . 0

(7.38) PROPOSITION. A commutative semiring R is multiplicatively regular if
and only if every irreducible ideal of R is prime.

PROOF . If R is multiplicatively regular then every irreducible ideal of R is
prime, by Proposition 7.37 . Conversely, assume that every irreducible ideal of
R is prime. By Proposition 7.35, this implies that any ideal I of R satisfies
I = VI. In particular, if Hand K are ideals of R then , by Proposition 7.30
we have H f{ = J H f{ = VH n f{ = H n « and so, by Proposition 6.35, R is
multiplicatively regular. 0

(7.39) PROPOSITION. A semiring R is multiplicatively regular if and only if
every ideal of R is semiprime.

PROOF . If R is multiplicatively regular then every ideal of R is semi prime by
Propositions 7.35 and 7.37. Conversely, assume that R satisfies th e conditiont that
every ideal of R is semiprime. Let I be an ideal of R . If 12 = R then surely I is
idempotent . If 12 C R then 12 = nV(I2) . But this implies that I ~ H for each
H E V(I2) and so I ~ 12 , proving that I = 12 . By Proposition 6.35, this implies
that R is multiplicatively regular . 0



8. FACTOR SEMIRINGS

In the category of rings , factor objects are determined by ideals . In the category
of semirings, as in the category of lattices, this is not so and we must look instead
at congruence relations. An equivalence relation p defined on a semiring R which
satisfies the additional condition that if r P 1" and S p s' in R then r + S P 1" + s'
and rs p 1" S' is called a congruence relation . The congruence relation p defined
by r P 1" if and only if l' = 1" is the trivial congruence relation on R. All other
congruence relations on R are nontrivial. The congruence relation p defined by
l' P. 1" for all 1' ,1" E R is the improper congruence relation on R . All other
congruence relations are proper. Note that p is improper if and only if 1 p O.
Indeed , if p is improper this is clearly true. Conversely, if 1 p 0 then for each r ER
we have r = r l prO = 0 and so p is improper.

Th e family Cong(R) of all congruence relations on R is a complete lattice with
meets and joins defined as follows:

(1) If Y is a nonempty family of congruence relations on R then AY is the
congruence relation on R defined by 1'(AY)1" if and only if r P r' for all
relations p in Y.

(2) If Y is a nonempty family of congruence relations on R then vY is the con­
gruence relation on R defined by 1'(VY)1" if and only if there exist elements
r = So, Sl, . . . , Sn = 1" of R and elements P1, . . . , Pn of Y such that Si-1PiS j

for all 1 ::; i ::; n .

Indeed, by an easy modification of a result of Funayama and Nakayama, Cong(R)
is in fact a fram e, and hence a semiring. See [Birkhoff, 1973] for details .

(8.1) EXAMPLE. The Bourne relation =1 and the Iizuka relation [=]1 defined
by an ideal I of a semiring R were shown in Chapter 5 to be congruence relations
on R . If the semiring R is simple then [=h is improper for each ideal I of R .

(8.2) EXAMPLE . [Poyatos, 1977, 1980] An ideal I of a semiring R is additively
absorbing if and only if a + l' E I for all 0 =/: a E I and r E R. Thus, for example,
if c is a strongly-infinite element of R then {O, c} is an additively-absorbing ideal of
R. An additively-absorbing ideal I of a semiring R defines a relation ~(I) on R by
setting r ~(I) 1" if and only if r = r' or both rand 1" belong to I. This is easily seen
to be a congruence relation . Note that the family of additively-absorbing ideals of R
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7. PRIME AND SEMIPRIME

IDEALS IN SEMIRINGS

As in the case of rings, an ideal I of a semiring R is prime if and only if whenever
H tc ~ I , for ideals Hand tc of R , we must have either H ~ lor tc ~ I . The set
of all prime ideals of a semiring R is called the spectrum of R and will be denoted
by spec(R) .

(7.1) EXAMPLE . [Feigelstock, 1980] Let A be the commutativesemiring defined
in Example 1.9. Then HG] I G a torsion abelian group} is a prime subtractive
ideal of A. Moreover, for each prime integer p , HG] I the torsion subgroup of G is
p-divisible} is a prime subtractive ideal of A.

(7.2) EXAMPLE . [Sancho de Salas & Sancho de Salas, 1989] Let B be the family
of all subsets of IT which are finite unions of singletons and closed subintervals of IT .
Then B is a basis for the closed sets of the usual topology on IT and so (B , U, n)
is a commutative simple semiring. Refer to Example 1.5 for details. The maximal
prime ideals of B are those of the form I; = {b E B IrE b} for each r E IT. The
other prime ideals of B are of the form H; = {b E B I [r , r + e] ~ b for some e > O}
for each 1 # r E IT or of the form K; = {b E B I [re, r] ~ b for some e > O} for each
0# r E IT .

(7.3) EXAMPLE . [Alarcon & Anderson , 1994a] For each A ~ N\ {O} let I(A) be
the ideal of Iffi[X] generated by X and {I + x» Ih E A}. A necessary and sufficient
condition for I A to be a prime ideal of lffi[X] is that N \ A be an ideal of N. In
particular , if An = N \ (2n) for each nonegative integer n then

(X) = I(Ao) C I(Ad c ...

is an infinite ascending chain of prime ideals of lffi[X ].

The following result generalizes the case for rings.

(7.4) PROPOSITION. The following conditions on an ideal I of a semiring Rare
equivalent :

(1) I is prime;
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is closed under taking arbitrary intersections and unions. If I and Hare additively­
absorbing ideals of an entire semiring R then {O}U{a+b I0 =/: a E I and 0 =/: b E H}
is also an additively-absorbing ideal of R.

(8.3) EXAMPLE. Let R be an austere commutative semiring and define a rela­
tion ( on R by the condition that a p b if and only if a = b = 0 or ab =/: O. By
Proposition 6.25 it is easily seen that this is indeed a congruence relation on R
whenever R is zerosumfree. Moreover , if R has more than two elements and if pis
a congruence relation on R, then R must be zerosumfree. Indeed, in this situation,
it is the unique maximal proper element of Cong(R) . See [Adhikari, Golan & Sen ,
1994].

(8.4) EXAMPLE. If R is a simple semiring recall that, by Proposition 4.7, each
element a of R defines a subsemiring S(a) of R. Define a relation p on R by setting
a p b if and only if S(a) = S(b) . Clearly this is an equivalence relation ; we claim
that it is a congruence relation as well. Indeed , let a, b, c, and d be elements of R
satisfying ape and b p d. If 0 =/: r E R then

r E S( a + b) ¢} t: + a +b = 1 ¢} r + a E S( b)

¢} r + a E S(d) ¢} r + a + d = 1

¢} r + d E S(a) ¢} r + d E S(c)

¢} r + c + d = 1 ¢} r E S(c + d)

and so S(a + b) = S(c + d). Therefore a + b p c + d. Moreover, by Proposition
4.7(2) , S(ab) = S(a) n S(b) = S(c) n S(d) = S(cd) and so ab p cd, establishing our
claim.

Let p be a congruence relation on R and , for each element r of R, let rip be th e
equivalence class of r with respect to this relation . Set Rip equal to {rip IrE R} .
If p is proper we can define a semiring structure on Rip by setting (rip) + (r' I p) =
(r+r')/p and (rlp)(r'lp) = rr'Lp . Not e that , for any congruence relation p, at
most one of the classes rip can contain an ideal. Indeed, assume that rip and r'I p
contain ideals I and H respectively. Without loss of generality we can assume that,
in fact, rEI and r' E H . Then rr' E IH ~ In H ~ (rip) n (r'lp) , which implies
that this intersection is nonempty and so r / p = r' / p.

(8.5) ApPLICATION . J . M. Anderson [1993] has formulated Mikusiriski's oper­
ational calculus in a semiring context . Let S be the set of all continuous functions
from ~+ to C on which we have the operations of addition and convolution :

for all t E ~+. Then (S ,+,*) is a commutative and associative algebra over C. If
h E S is the constant function t 1-+ 1 then h * f is the integral of f, for we see that
h * f: t 1-+ J; f( u)du. For n ~ 1, let h*n denote h *...*h (n times) . Then it is easy
to see, by induction, that h:" :t 1-+ (n~l)!tn-l. Let H = {h*n In EN}. The Little
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Titchmarsh Theorem asserts that if 0 :j:. / E 5 and k E H then k * / :j:. O. Now
consider the set 5 x H on which we have operations EEl and ® defined as follows :

(I, k) EEl (I' , k') = (I * k' + f' * k, k * k')

(I, k) ® (I' , k') = (I * f' ,k * k')

Then (5 x H, EEl, ®) is a semiring on which we can define a congruence relation p
by setting (I, k) p (I', k') if and only if / * k' = /' * k . Denote the factor semiring
(5 x H)Ip by 5H and write the equivalence class of (I, k) as /Ik. Then the identity
element of 5H is kI k for any k E H. Moreover, we have a monic function ip : 5 -+ 5H

given by ip : /1--+ (I * k)lk . This function is not surjective since klk f/: im(rp) . The
elements of 5H \ im(rp) are called hyperfunctions . Multiplication by s = hlh*2
in 5H behaves like differentiation , and so s * / is the generalized derivative of
/E 5 .

(8.6) EXAMPLE . Let R be an additively-idempotent semiring and let M be a
group of order 2. Let R' = R[M] be the semiring discussed in Example 3.3. Define
a relation p on R' by setting

( ) ( ) {
a + d = b+ e if a :j:. band e :j:. d

a, b p e, d¢:} .
(a, b) = (e,d) otherwise

Then p is a congruence relation on R' . Baccelli et al. [1992] consider this relation for
the special case of the schedule algebra R =(~U { -00}, max, +) and call 5 = R'I p
the symmetr-ized algebra over R . In particular, they distinguish three sorts of
elements of 5 :

(1) classes of the form (a , -00) I p = {(a, b) I b < a}, called positive elements
of 51;

(2) classes of the form (-00 , b)Ip = {(a,b) Ia < b}, called negative elements
of 5;

(3) classes of the form (a, a)1p = {(a, an , called balanced elements of S.

They th en associate each element a with the class (a,-oo)/p . Note that U(5)
consists precisely of all non-balanced (i .e. positive or negative) classes in 5 .

We have already noted that an ideal I of a semiring R defines a congruence
relation =1 on R. We denote the set of all such equivalence classes of elements of
R by RII and the equivalence class of an element r of R by ,1I . Note that ,II
is not necessarily equal to the set r + I = {, + a I a E I} but surely contains it!
Then RII is a semi ring if =1 is proper, i.e. if 011 :j:. R . A semiring of the form
RII is called the Bourne factor semiring of R by I . If 0 :j:. A ~ R, then we
set All = {,II I r E A} . By Proposition 6.54, we note that RII = RI(O/I) for
each ideal I of R . Thus, in taking Bourne factor semirings we can always assume
that we are doing so modulo a subtractive ideal. In a similar manner , if I is an
ideal of R satisfying 0[/]1 :j:. R then R[/]I is a semiring, called the Iizuka factor
semiring of R by I . For any semiring R , we note that Z(R) = O[/]{O} and so the
congruence relation [=]{O} is proper if and only If R is nonzeroic.

If I is an additively-absorbing ideal of a semiring R then RI "'(I) is just
(R \ I) U {O, e}, where e is infinite.
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It is in fact often convenient to represent a given semiring in the form R/p, where
R is a semiring which is in some sense "simpler" than the one we are interested
in studying. This is done , for example, in [Pierce, 1972] where the semiring D, as
defined in Example 1.9, is represented in the form N[M]/p, where M is a suitable
monoid .

(8.7) EXAMPLE. If n is a nonempty set then a filter of subsets F of n is a
nonempty family of subsets of n satisfying the following conditions:

(1) 0 rf: F;
(2) If A E F and A' ~ A then A' E F;
(3) If A, A' E F then A n A' E :F.

If R = XiEnRi is the product of a family of semirings indexed by a nonempty set
n and if F is a filter of subsets of n, then we can define a congruence relation p on
R by setting (ri) P (8i) if and only if {i E n I ri = 8;} E:F. The semiring R/p is
called the F-reduced product of {R i liE n} and is usually denoted by R/F . If
F ={n} then R/F = R.

Maximal filters of subsets of n are called ultrafilters and it is a well-known
result in set theory that any filter of subsets of n is contained in an ultrafilter of
subsets of n. If F is an ultrafilter of subsets of n then the semiring R/F is called
an ultraproduct of the semirings Ri .

(8.8) EXAMPLE . If p is the relation on a semiring R defined by the condition
that a p b if and only if there exist elements rand 8 of R satisfying a + r = band
b+ 8 = a then it is easy to verify that p is indeed a congruence relation . Note that
a p 0 if and only if a E V(R) and so p is improper if and only if R is a ring. If pis
trivial then the semi ring R is reduced . If p is proper then the semiring R/p is the
reduced factor semiring of R. From Proposition 4.22 it is clear that a semi ring
is dear if and only if its reduced factor semiring is clear .

(8.9) EXAMPLE . Let R be a commutative semiring and let Y be a nonempty
family of strong prime ideals of R. Then we can define the relation p on R setting
a p b if and only if, for each HEY , both a and b either belong to H or do not
belong to H . This is clearly an equivalence relation . Moreover , if a p a' and b p b'
then for each H in Y we have a + b E H ~ a, b E H ~ a' , b' E H ~ a' + b' E H
and similarly ab E H ~ a E H or b E H ~ a' E H or b' E H ~ a'b' E H and so p
is in fact a congruence relation on R.

A special case of this is considered in [Slowikowski & Zawadowski , 1955]. Let R
be the semiring of all continuous functions from a bicompact topological space X
to IR+. This is a commutative Gel'fand semiring and so every maximal ideal of R
is strong and prime. Indeed, the maximal ideals of R are all of the form {'I' E R I
'1'( xQ) = O] for some element XQ of X . There exists a bijective correspondence IJ
between R/p and the lattice of all open subsets of X given by '1'/P ~ {x E X I
r.p(x) > O} .

(8.10) EXAMPLE . [Vandiver, 1939] Let 1 < h < k be natural numbers and
define a relation p on N as follows:

(1) If i < hand j EN then i p j if and only if i = i:
(2) If i 2: hand j EN then i p j if and only if i == j (mod k - h + 1).
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Then P is a congruence relation and the semiring N j p is not cancellative .

The set of all congruences p on a semiring R such that Rjp is a semilattice is
studied in [Rodriquez , 1980].

(8 .11) PROPOSITION. If R is a commutative semiring having no nontrivial
proper congruence relations then either R = IB or R is a field.

PROOF. If R has only two elements then either R = IB or R is the field 7Lj(2)
and so, in this case, the result is surely true. Hence we need only consider the case
of R having more than two elements.

We first note that R is multiplicatively cancellative. Indeed, every element a of
R defines a congruence relation Pa on R by r Pa r' if and only if ar = ar' . This
congruence relation is trivial when the element a is multiplicatively cancellable and
is proper if a =F O. Since R has no nontrivial proper congruence relations, we see that
it must be multiplicatively cancellative. This implies that R \ {O} is a sub monoid
of (R, .).

Now assume that R is zerosumfree. Then R \ {O} is closed under both addition
and multiplication and so we have a nontrivial proper congruence relation P on
R defined by the condition that a P b if and only if a = b or a and b are both
nonzero. This is a contradiction and so R cannot be zerosumfree. Then V(R)
contains 0 and at least one nonzero element. Moreover , V(R) is an ideal of R . The
congruence relation =V(R) defined on R is not trivial and hence, by assumption ,
it must be improper. In particular , 1 =V(R) 0 and so th ere exists an element b of
V(R) satisfying 1 + b = O. For any r E R, this means that r + br = (1 + b)r = 0
and so. every element of R has an additive inverse, proving that R is in fact a ring .

If 0 =F a E R and if I = (a) is the principal ideal of R generated by a then the
congruence relation =1 is nontrivial and so must be improper . In particular, 1 =1 0
and so 1 E I, proving that a is a unit . Hence R is a field. 0

By Proposition 8.11, we see that a division semiring or even a semifield may
have proper nontrivial congruence relations: just consider Q+. If P is a proper
congruence relation on a division semiring R, then RjP is surely again a division
semiring.

We now turn to considering Bourne factor semirings.

(8.12) PROPOSITION. If I is a subtractive maximal ideal of a commutative
semiring R then RjI is a semifield.

PROOF. Assume that OJ I =F a] I E R] I . If a2 E I then, by commutativity,
(a)2 <; I and so, by Corollary 7.13, we have a E I , which contradicts the choice of
a. Since a2 E (a), this implies that I C I + (a) and so, by the maximality of I, we
have R = I + (a). Hence there exist an element b of I and an element r of R such
that 1 = b+ra and so IjI = ral I = (rjI)(ajI). Thus ajI E U(RjI), proving that
Rj I is a semifield. 0

(8 .13) PROPOSITION. If I is an ideal of a semiring R satisfying the condition
that R =F H = 0[/]1 then the semirings R[/]H and RjH are plain .

PROOF. Let r[/]H E Z(R[/]H) . Then there exists an element a of R such that
(r + a)[/]H = a[/]H and so there exist elements hand h' of H and an element s
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of R with r + h + (a + 8) = r + a + h + 8 = a + h' + 8 = h' + (a + 8), proving th at
r[/]1! = O[/]1! .

Let rf H E Z(RI1!) . Then th ere exists an element a of R with (r+a)l1! = a[H
and so th ere exist elem ents hand h' of 1! satisfying r + a + h = a + h' . Since h
belongs to H, th ere exist elements c and c' of I and 8 of R satisfying h+c+8 = C' + 8 .

Similarly, there exist elements d and d' of I and 8' of R satisfying h' +d+8' = d' +8' .
Therefore

r + (c' + d) + (a + 8 + 8') = r + a + c' + d + 8 + 8'

= r + a + h + c + 8 + d + 8'

= a + h' + c + 8 + d + 8 '

=a + c + 8 + d' + 8 '

= (c + d') + (a + 8 + 8' ),

proving that r[/]I = 0[/]1 . Therefore r[H = 011!. D

(8.14) COROLLARY. If R is a nonzeroic semiring th en RIZ(R) is pl ain.

PROOF . This is a direct consequence of Proposition 8.13 . D

(8.15) PROPOSITION. If R is a yoked sem iring th en a sub tractive ideal I of R
contains Z( R) if and only if RII is cancellative.

PROOF . Assume th at Z(R) ~ I and that all + b]1= all + c] I in RI I . Then
there exist elements d and d' of I satisfying a + b + d = a + c + d' in R. Since R
is a yoked semiring, there exists an element r of R satisfy ing b + d + r = c + d' or
c+d' +r = b-r d , In th e first case , we have a+c+d' = a+b+d+r =a+ c+d' +r
and so r E Z(R) ~ I . Thus b+(d+r) = c-s- d' implies ~hat b =1 c and so blI = cf L.
The second case yields th e same result by a similar ar gum ent .

Conversely, assume that RI I is cancellative. If r E Z(R) th en th ere exists an
element a of R satisfying r + a = a and so r I 1+ a] I = all . Therefore r I I = 011
and so rEI. D

(8.16) PROPOSITION. If R is a cancellative semiring th en RII is cancellative
for every ideal I of R .

PROOF. If R is a cancellative semi ring th en R is plain and so this is an immediate
consequence of Proposition 8.15. D

The following construction, found in [Bourne, 1962] and [Bleicher & Bourne,
1965], shows how to construct a ring R A from any given nonz eroic semiring R. In
a later chapter , we will show how to further construct a canonical morphism of
semi rings from R to RA .

Let R be a sem iring and let S = R x R. Define operat ions of addition and
multiplication on S by (a, b)+(c, d) = (a+c , b+d) and (a , b)(c, d) = (ac+bd , ad+bc)
for all a, b, c, dE R . These operations turn S into a semiring with additive identity
(0,0) and multiplicative identity (1,0). If th e semiring R is commutative, so is S.
(Indeed , this is just the semi ring R[M], where M is a group of order 2; refer to
Example 3.3.)
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Now set D = {(a , a) Ia E R }. Clearly D is an ideal of 5 . We claim that 0/ D =P 5
if and only if R is non zeroic. Indeed , if R is zeroic then th ere exists an element r E R
such that 1 + r = r and so (1, 0) + (r, r) E D . Therefore, (1,0) E 0/ D . Since (1,0)
is the mul tipl icative identi ty of 5 , this im plies that 5 = 0/ D . Conversely, sup pose
t hat 5 =0/D. Then th ere exists an element r of R such that (1,0) + (r , r ) = (r , r)
and so 1 + t: = r , implying that 1 E Z(R) and hence Z(R) = R. We also note
th at is a subt ract ive ideal of S if and only if the semiring R is cancella t ive and
that (a, b)/ D = (c, d)I D if and only if there exist elements rand r' of R such that
(a, b) + (r , r) = (c, d) + (rl ,rl). That is to say, (a,b)ID = (c,d)ID if and only if
there exist elements rand r' of R satisfying a + r =c + r' and b+ r = d + r' , In
pa rticular, (O,O)I D = {(a , b) I there exists an element r such that a+ r =b+ r} =
{(a, b) Ia[:=] {o}b}.

In par t icular , we see that If R is nonzeroic then 51D is a semi ring . We claim that
in this case 51D is in fact a ring. Ind eed , if (a, b) E 5 then (a ,b)ID + (b,a)I D =
(a + b, a + b)1D = (0,0)1 D so V (51D) =51D and hence 51D is a ring, which we
will call the ring of differences of th e semiring R. We will denot e this ring by RC> .
For th e ana logous constructi on for to pological semirings, see [Bot ero & Weinert ,
1971]. Note that (a, b)1D = (c, d)1D if and only if there exists an element r" of R
satisfying a + d + r" = b + c + r" , Ind eed , if (a, b)1D = (c, d)1D and r, r' are as
above , take r" = t: + r' , Conversely, if such an element r" exists, take r = d + r"
an d r' = b+ r" . Thus the const ruction given here is the sa me as t he one given in
[Poyatos, 1971].

If H is a [left , right] ideal of R then HC> = {(a,b)1D Ia, se H} is a [left , right]
ideal of RC> . Conversely, if I is a [left , right] ideal of RC> then {a E R I (a,0)1DEI}
is a [left , right] ideal of R .

The above const ruc t ion can be generalized . If I is an ideal of R and if 51= R x I ,
then 51 is a subsemiring of th e semiring 5 defined above. Moreover , D I = 51n dis
an ideal ...f 51. If 01DI =P 51 then we can const ruct t he semiring rM = 5 11DI

• In
general, th is is not a ring.

(8 .17) E XAMP LE . [H. E. Sto ne, 1972] Let 5 be the ring of all functions from I'l
to Q with the operations of elementwise addition and mult iplica tion, and let R be
the subsemi ring of 5 consist ing of the zero funct ion and all fun ct ions f sat isfying
the condition that f (i) > 0 for all i E N. T hen 5 = RC> .

(8.18) E XAM PLE . [H. E. Stone, 1977] If R is a cancellative semiring and n is a
positi ve integer th en , as remark ed in Exa mple 4.19, 5 = Mn(R) is also can cella t ive.
Moreover , 5 C> = Mn(RC» .

Unlike the situat ion with rings , it is usally not very easily to visualize the st ruc­
ture of the Bourne factor ring. Under certain circumstances, however , it is easier to
do so . We will now describe one such circumstance which genera lizes the situation
of rings. An ideal I of a semi ring R is partitioning if and only if there exists a
nonempty subset QU) of R such that RQ(I ) = {q + I I q E QUn is a parti tion of
R into pairwi se-disjoin t subsets .

(8 .1 9) EXAMPLE . If R is a ring th en every ideal of R is partit ioning .



102 _______CHAPTER 8 , _

(8.20) EXAMPLE . [Allen, 1969] If m is a positive integer then th e ideal mN of
the semi ring N is partitioning. The ideal N \ {I} of N is not partitioning.

If I is a partitioning ideal of a semiring R and if r E R then it is easy to verify
that th ere exists a unique element q of QU) such that r + I ~ q + I . Thus we see
that if I is a partitioning ideal of a semiring R there exists a surjective function
(PI: R -. RQ(I) which assigns to each element r of R the unique element q + I of
RQ(I) such that r + I ~ q + I .

(8.21) PROPOSITION. If I is a partitioning ideal of a semiring R then there
exists a unique element qo E QU) n V(R) satisfying I = qo + I .

PROOF. Since I is partitioning, there exists a unique element s» of Q( I) such
that 0 E qo + I . Thus there exists an element ao of I satisfying ao + qo = 0, which
shows that qo E V(R) as well.

Ifb E I and b E q + I for some q E Q(I) then there exists an element a of I
satisfying q + a = b = b+ 0 = qo+ (b + ao) and so b E (q + I) n (qo + I). Since I
is partitioning , this implies that q = qo and so se qo + I. Hence I ~ qo+ I. Since
I is partitioning, there exist an element q of QU) and an element c of I such that
qo+ qo = q + c. Then

qo = qo + (qo + ao) = qo + q + c + ao = q + cEq + I .

Thus (qO + I) n (a + I) 1= 0 . This implies that q = qo and so qo + qo = qo + c.
Therefore

qo+ I = qo + 0 + I = qo+ qo + ao + I = qo+ c + ao + I = c + I ~ I

and so qo+ l = L, as desired . 0

(8.22) PROPOSITION. Let I be a partitioning ideal of a semiring R . Tben
.,. =1 r' if and only if 'PI(r) = 'PI(r ').

PROOF. If r =1 r' then there exist elements a and a' of I such that r+a = r' +a' .
Hence (r + I) n (r' + I) 1= 0 . This implies that 'PI(r) n 'PI(r') 1= 0. Since RQ(I)

is a partition of R, this means that 'PI(r) = 'PI(r '). Conversely, assume that
'PI(r) = 'PI(r') = q+ I . Then there exist elements a and a' of I such that r = q +a
and r' = q + a' . Thus r + a' = r' + a and so r =1 r' , 0

(8.23) COROLLARY. Any partitioning ideal I of a semiring R is subtractive.

PROOF. By Proposition 8.21, we know that there exists an element qo of Q(I)
satisfying I = qo + I . If a and b are elements of R satisfying a + b, b E I then
a + b =1 a and so, by Proposition 8.22, qo = 'PI(a + b) = 'PI(a) so a E qo+ I = I,
proving that I is subtractive. 0

By Proposition 8.22, we see that , if I is a partitioning ideal of a semiring R,
the function 'PI induces a bijective correspondence between R/ I and structure on
RQ(I) under the operations EEl and 8 defined as follows:

(1) (q +I) EEl (ql +I) = q" + I , where q" is the unique element of QU) such that
(q + q/) + I ~ q" + I ;

(2) (q +I) 8 (q' +I) = q" + I, where q" is the unique element of QU) such that
qq' + I ~ q" + I.
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Note that the set Q(1) is not uniquely determined by the partitioning ideal I,
However , the above result shows that if Q(I) and Q'(I) are two possible such sets
then the semirings RQ(I) and RQI(I) are isomorphic, and so it is immaterial which
of them we choose to work with .



9. MORPHISMS OF SEMIRINGS

If Rand S are semirings th en a function -y:R --t S is a morphism of semirings
if and only if:

(1) , (OR) = Os ;
(2) ,(IR) = Is ; and
(3) ,(r + r') = , (r ) + ,(r') and ,(rr') = ,(r) · , (r' ) for all r, r' E R.

A function, satisfying conditions (1) and (3) is a morphism of hemirings . A
morphism of semirings [hemirings] which is both injective and surjective is called
an isomorphism. If th ere exists an isomorphism between semirings [hemirings] R
and S we writ e R =:! S . If -y:R --t S is a morphism of semirings [resp . hemirings]
th en im(,) = b(r) IrE R} is a subsemiring [resp . subhemiring] of S.

(9 .1) EXAMPLE . [Heatherly, 1974] Let R be a semiring and let Endo(R) be the
set of all endomorphisms a of th e commutative monoid (R ,+) satisfying a(O) =°
which, as we have already not ed in Example 1.14, is also a semiring. For each
r E R , let f3r :R --t R be th e fun ction defined by f3r :r' I-t rr' , Then f3r E Endo(R)
for each element r of R and th e map r I-t b; is a morphism of semirings. Indeed ,
this morphism is injective since f3r = f3r' implies tha t r = f3r(1 ) = f3r, ( I ) = r' .

(9.2) EXAMPLE . The semiring (lR+, max , ·) is isomorphic to th e schedule alge­
bra (lR U {-oo} , max , +) via th e map a I-t In( a). Similarly, th e semiring
(lR U {<X)}, min , +) is isomorphic to th e schedule algebra via th e map a I-t -a .

(9.3) ApPLICATION. Let R = lR U {-<X)} and let a be a positive real number .
Define operations of EEla and 0 a on R by setting r EEla r' = a . In( er/ a+ er' / a) , where
we take e- OO = 0, and r 0 a r' = r + r' . Then (R , EEla, 0 a) is a semiring and we have
a morphism of semirings -y:lR + --t (R, EEla, 0 a) given by c I-t a · In (c). Note that

lima_o r EEla r' = max{r, r'}

for all r , r' E R. This construction is used to reduce problems in probability calculus
to problems in optimal control. See [Akian , Quadrat & Viot , 1994] for further
details .
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(9.4) EXAMPLE. For any semiring R we have a canonical morphism from the
semiring f::j to R given by n 1---+ niR. Note that the image of this morphism is a
subsemiring of R which is clearly contained in every subsemiring of R. Thus it is
just the basic subs emiring B(R) of R , and that it is contained in C(R) .

(9.5) EXAMPLE . Let k be a positive integer and let M be the monoid (f::jk ,+) .

The semi ring sub(M), as defined in Example 1.10, is additively-idempotent . More­
over, Shubin [1992] has shown that it is a free additively-idempotent semiring with
k generators, in the sense that if R is any additively-idempotent semiring and if
rl, . . . , r k E R then there exists a unique morphism of semirings T sub(M) --+ R
satisying ,({ad) = rt for all i , where a; = [0, . . . ,0, 1,0 , . . . , 0] (the 1 being in th e
ith position) . Moreover, any other additively-idempotent semiring with k genera­
tors having this property is isomorphic to sub(M) .

otherwise
,(r): m 1---+ { r

OR

(9.6) EXAMPLE. If R is a multiplicatively-cancellative additively-idempotent
commutative semiring and if n is a positive integer then , by Proposition 4.43,
th e function ,n :a 1---+ an from R to itself is a morphism of semirings which , by
Proposition 4.44 , is in fact monic. This happens, for example if R is an additively­
idempotent semifield , such as the schedule algebra.

(9.7) PROPOSITION. If R is a semiring then B(R) is isomorphic to f::j or to a
semiring of the form B(n , i) for some n > 1 and n > i 2: O.

PROOF . Let T f::j --+ R be the morphism of semirings given by Tn 1---+ niR . As
we have already noted, im(,) = B(R) . Three posibilities exist :

(1) The map, is injective. In this case, B(R) is isomorphic to l':l.
(2) The map, is not injective and there exists a positive integer k such that

,(k) = OR . Let n be the least such positive integer. Then one checks that B(R) is
isomorphic to B(n , 0) = ':Z j (n).

(3) The map, is not injective and ,(k) # OR for all k > 0, but there exist
m # m' E f::j such that ,(m) = ,(m'). Let n be the least positive integer for which
there exists an integer n > i > 0 such that ,(n) = ,(i) . Then it is straightforward
to check that B(R) is isomorphic to B(n , i) . 0

We will say that the characteristic of a semiring R equals 0 if B(R) is isomor­
phic to f::j and equals (n , i) if B(R) is isomorphic to B(n, i). Note that if R has
characteristic B(n ,O) for some n > 1 then lR E V(R) and so R is in fact a ring .
Thus, as was observed in Chapter 3, a Gel 'fand semiring must have characteristic
oor characteristic (2,1).

We also can extend Example 9.4 by noting that if R is a subhemiring of a semiring
S then we have a morphism of semirings , from the Dorroh extension R x f::j of R
by f::j to S defined by , : (r, n) 1---+ r + n1s, the image of which is clearly the smallest
subsemiring of S containing R as a subhemiring.

(9.8) EXAMPLE . If R is any semi ring and M is a monoid with identity element
e then we have an injective morphism of semirings , : R --+ R[M] given by

ifm = e
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(9.9) EXAMPLE . If R is a semiring then we have already seen that 8ub(R ) has
the structure of a semiring, with addition and multiplication defined by A + B =
{a + b I a E A ;b E B} and AB = {ab I a E A ;b E B} . The function from R to
8ub(R) defined by a >-+ {a} is then surely a morphism of semirings.

(9.10) EXAMPLE. Let R be a semiring. The function -y: R --t lE defined by

{
0 if r = 0

, : r >-+
1 otherwise .

is a surjective morphism of semirings if and only if R is both zerosumfree and entire.
In particular, such a morphism exists from r::l , Q+, or JP; + to lEo Conversely, the
function 8:lE --t R from lE to a semiring R defined by 8(0) = 0 and 8(1) = 1 is
a morphism of semirings precisely when 1 + 1 = 1 in R, i.e. precisely when R is
additively idempotent . Note that in this case 8 is the only possible morphism from
lE to R and that it is injective. Moreover , it is straightforward to verify that if 5 is
a subhemiring of an additively-idempotent semiring R which is not a subsemiring
then 8 induces an injective morphism of semirings from the Dorroh extension of 5
by lE to R defined by (8, i) >-+ 8 + 8(i) . See [Haftendorn, 1979] for details .

This construction can be generalized for commutative semirings. Indeed , in such
a situation the condition that R be zerosumfree and entire is equivalent to the
condition that the ideal {O} be strong and prime. Thus, more generally, if H is any
ideal of a commutative semiring R which is both strong and prime, then H defines
a surjective morphism of semirings -y: R --t lE by ,( r) = 0 if r E Hand ,(r) = 1 if
r tt H .

(9.11) EXAMPLE . Let M = JP; k, partially-ordered with the Pareto partial order
and if A E 8ub(M) , let min(A) be the set of all minimal elements ol the closure of
A in M . Let R = {A E 8ub(M) I A =min(A)} . Then the operations EEl and 8 on
R defined by A EEl B =min(A U B) and A 8 B =min(A + B) define the structure
of a semiring on R .

Now let L = {[bt,...,bk] E JP; k IL:;=t bj = A}, which is a submonoid of (M ,+).
Let 5 be the semiring of all functions from L to the semiring (JP; U {oo}, min , +)
under the operations of pointwise addition and convolution (+) . Let 1 E 5 be the
function defined by

Then 1(+)1 = I · The set 5' = {g E 5 I I(+)g = g(+)1 = g} is a subsemiring of
5 which is isomorphic to R .

For applications of these semirings to multicriteria optimization, refer to [Kolo­
kol'tsov & Maslov, 1998].

A morphism from a semiring R to lE is called a character of R. The set of all
characters on a semiring R will be denoted by char(R) .
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(9.12) EXAMPLE . Let R be a semiring and let S be the semmng
(sub(char(R)), U, n). For each a E R, set x(a) = hE char(R) I,(a) = I}. Then
for a, b E R we have x(a + b) = x(a) U X(b) and x(ab) = x(a) n X(b). Moreover,
X(O) = 0 and X(l) = char(R) . Thus X is a morphism of semirings. It is injective
if and only if R is a bounded distributive lattice [Priestly, 1970].

(9.13) EXAMPLE. If A and Bare nonempty sets and if () : A -+ B is a func­
tion then any morphism of semirings T R -+ S defines a morphism of semirings
,8: RB -+ SA by h 8 f)(a) = ,(f«()(a))) . In particular, if A ~ Bare nonempty sets
and if R is a semiring then we have a canonical morphism of semirings R B -+ R A

given by restriction of functions. Similarly, for each nonempty set A and each
morphism of semi rings ,: R -+ S, the identity map on A induces a morphism of
semirings ,A :R A -+ SA given by f 1-+ , f. Also , we have a morphism of semirings
,«A)) : R«A)) -+ S«A)) for every nonempty set A . If f E R«A)) has finite sup­
port then so does , f and so this morphism restricts to a morphism of semirings
,(R) :R(A) -+ S(R) .

If A is a set which is either finite or countably-infinite and if M(_) is MA ,r(-) ,
MA, c(-), or MA ,rc(-), then a morphism of semirings , : R -+ S defines a morphism
semirings M(,): M(R) -+ M(S) by f 1-+ gf . If M is a monoid with identity e then
, defines a morphism of semirings ,[M] :R[M] -+ S[M] by f 1-+ gf . We note that
if f E RM has finite support then so does,f E SM .

In particular , if R is a zerosumfree entire semi ring then there exists a character
8 of R defined by 8(a) = 1 if a # 0 and 8(0) =O. If A is a set which is either finite
or countably-infinite and if M(_) is MA ,r(-), MA,c(-) , or MA ,rc(-), then the image
of a matrix C in M(R) under M(8) is called the pattern of C.

(9.14) PROPOSITION. If R is a commutative zerosumfree semiring then
char(R) # 0 .

PROOF . We have already noted in Chapter 5 that if R is zerosumfree then it has a
maximal proper coideal D and that 1 E D. Set I = R\D. We claim that I is an ideal
of R. As before, we denote the smallest coideal of R containing a set A by F(A).
If a, s « I then , by the maximality of D, we have F(D U {a}) = R = F(D U {b}) .
Thus there must exist elements d, e E D, elements r, s E R, and positive integers
h, k such that ahd + r = 0 = bke + s . Since R is zerosumfree, this implies that
ahd = bke = 0 and so (a + b)h+kde = O. Therefore F(D U {a + b}) = R , whence
a + s « I . Similarly, if a E I and r E R then ahd = 0 for some positive integer h
and dE D. Therefore (ra)hd =0 and so F(D U {ra}) = R, proving that ra E I.

We now define the function , : R -+ lE by ,(r) = 1 if and only if rED. The
proof that this is indeed a morphism of semirings is immediate. 0

(9.15) EXAMPLE . [Golan & Wang, 1996] The commutativity condition in
Proposition 9.14 is necessary. Ineed, let R be the noncommutative semiring M2( lE)

and let us assume that, E char(R). We claim that , ([~~]) = O. Indeed, if

, ([~ ~ ]) = 1 then, ([ ~ ~ ]) =0 since [~~] [~~] = [~~] . Thus
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But [~~] = [~ ~] [~~] and so

,([~ ~]) <: ([~ ~]) ., ([~ ~]) = 0,

10 9

which is a contradixtion that establishes the claim . Similarly, we must have

, ([ ~ ~]) = o.Therefore

which is also a contradi ction .

We now return to other examples of morphisms of semirings.

(9.16) EXAMPLE . [Loh & Teh , 1966/7] More generally, if T R -l- S is a mor­
phism of semirings and if 0:M -l- M' is a morphism of monoids satisfying the con­
dition that 0- 1 (m') is finite for each m' E M' th en we have a morphism of semirings
,[0]:R[M] -l- S[M'] defined as follows : ,[O](f) :m' I-l- I:b/(m) I m E O-l(m')}
for each 1 E R[M] and m' EM' .

(9.17) EXAMPLE . If R is a semi ring and if A and B ar e non empty sets th en
there exists an isomorphism of semirings T R«A))B -l- RB«A)) defined as follows :
if 1 E R«A))B , w E A* , and se B th en ,(f)(w)(b) = I(b)(w).

(9.18) EXAMPLE . [Thornton , 1972] Define a topology on N by taking the fol­
lowing as open sets: 0 , N, and {O ,I , ... , k } for each kEN. Let X be a finit e
To-space and let C(X ) be th e family of all conti nuous fun ctions from X to N. This
is a subsemiring of N X which , moreover , uniquely characterizes th e topology on X .
If Y is another finit e To-space, th en any morphism of semirings ,: C(Y ) -l- C(X) is
induced by a unique continuous function r.p-y :X -l- Y . If, is an isomorphism then
r.pg' is a homeomorphism.

(9.19) EXAMPLE . Let R be a semiring, let A be a nonempty set , and let r.p be a
fun ction from A to th e center C(R) of R. Then r.p defines a function f<p : R(A) -l- R
given by

(which is well-defin ed since 1 has finite support) . Indeed , f<p is a morphism of
semirings, called th e r.p-eva lu a t io n morphism. In particular, if R is a semiring
and if r E C(R) th en th ere exists a morphism of semirings f r : R[t] -l- R given
by I: aitj I-l- I: ajr i . The complexity of comput ing th e evaluat ion morphism for
commutative semirings has been considered in detail in [Jerrum & Snir , 1982].

If we consider the spec ial case of th e function r.p: A -l- C( R) defined by r.p(a) =0
for all a E A th en f <p , defined by f<p : 1 I-l- 1(0), is the augmentation morphism
on R(A) . In fact , this fun ction can be extended to a map from R«A)) to.oR given
by 1 I-l- 1(0).
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(9.20) EXAMPLE . Let R be a subsemiring of a semiring S, let I be an ideal of
R, and let H be an ideal of S satisfying I <; R n H . Then we have a canonical
morphism of semirings T R/I -+ S / H defined by T r / I t-> r / H . This map is well­
defined since if r =1 r' in R then r =H r' in S. As a consequence of this , it is
also easy to see that if I <; H are ideals of a semiring R then we have a canonical
morphism of semi rings R6 1 -+ R6 H . If S = R , this morphism is surjective. As
a special case of this, we note that for any ideal H of a semiring R we have a
surjective morphism of semirings from R to R/H given by r t-> r / H .

(9.21) EXAMPLE. Let R be the schedule algebra (lR U{-oo}, max, +) . For each
kEN, let ,k :R -+ R be the map given by ,da) = ka for each a E R . Clearly
'k is a morphism from R to itself which is both injective and surjective and so is
an isomorphism. If 5 = (lR U {oo},min, +) then the function T R -+ S defined
by ,(a) = -a is an isomorphism of semirings. Now let S = N U {-oo}, which is
a subsemiring of R. For each positive integer n, let X n be the semiring given in
Example 1.8 and let bn : 5 -+ X n be the function given by

{
i if i < n

bn : it-> - .
n otherwise

Then bn is a surjective morphism of semirings for each n.

(9.22) EXAMPLE. Let R be the semiring (lR+U{oo},min,+) and let 5 be the
semi ring (JI , max, .). Then we have a morphism of semirings T R -+ 5 defined by
T r t-> 2- r (where , by definition , 2- 00 = 0) .

(9.23) EXAMPLE . Let I:X -+ Y he a continuous function between topological
spaces. Let (R ,n,u) be the semi ring of all closed subsets of X and let (5, n, u)
be the semiring of all closed subsets of Y (see Example 1.5). Then the function
'J :5 -+ R defined by 'J : a t-> 1- 1 (a) ISa morphism of semirings. If R' is a basis for
the semiring (R ,n,U) and if X' is a subspace of X then {X' n bib E R'} is a basis
for the semi ring (R", n,U) of all closed subsets of X' and the function T b t-> X' n b
is a morphism of semi rings from R' to R" .

(9.24) EXAMPLE. In Proposition 6.29 we saw that if R is a semiring then the
set idea/(R) is a semiring under the operations of addition and multiplication of
ideals. Similarly, in Chapter 6, we defined the set Zar(R) of subsets of spec(R).
This was the family of closed subsets for the Zariski topology on spec(R) and so
it too is a semiring if we take addition to be intersection and multiplication to be
union. Moreover, the map ideal(R) -+ Zar(R) given by I t-> V(I) is clearly a
surjective morphism of semirings.

(9.25) EXAMPLE. If I is a nonzero ideal of a Dedekind domain R, then to
each prime ideal H E spec(R) we can assign a natural number n(I, H) such that
1= TI {Hn(I,H) IH E spec(R)}, where , by convention, HO = R for all H E spec(R).
We furthermore define n(R, H) =0 and n((O),H) =00 for all H E spec(R) . For a
fixed element H of spec(R) and for ideals I and I' of R, we then have :

(I) n(I + 1' , H) = min{n(I, h) , n(I' , H)};
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(2) n(I n [I , H) = max{n(I , H), n(I', H)} ;
(3) n(II' , H) = n(I, H) + n(I' , H) .

Therefore, for each fixed prime ideal H of R we have a function n(_,H) which
is both a surj ective morphism from the semiring (ideal(R) ,+,n) to the semiring
(N U {oo} , min , max) and a surj ective morphism from the semiring (ideal(R) ,+,.)
to th e semiring (N U {oo}, min , +) . By allowing negative exponents as well, we
can ext end this map to corresponding morphisms from fra ct(R) to z.: u {oo}. See
[Gilmer , 1972] for det ails .

(9.26) EXAMPLE . If A is a nonempty set then th e function supp:1ffi((A)) ...-.
sub(A*) is an isomorphism of semirings.

(9.27) EXAMPLE . If h, k E BN , let h U k be the greatest common divisor of h
and k . By Example 1.17, we see that (N , U, ·) is a semiring. Moreover , we have an
isomorphism of semirings TN ...-. ideal( z.:) defined by v: n >-+ z.: n .

(9.28) EXAMPLE . Let R be th e commutat ive semiring (N U {oo}, ma x , min).
Then ideal(R) = {R,N}U{I<r IrE R} , where K; = {a E R Ia ~ r}. The function
T R ...-. ideal(R ) given by T R >-+ K; is a morphism of semirings which is injective
but not surjective since N is not in the image of , .

(9.29) EXAMPLE . [eao , Kim & Roush, 1984] If R is a simple semiring for
which th ere exists a positive int eger n satisfying th e condition that rn = rn +1 for
all r E R th en , by Proposition 4 .9, we saw that (JX(R),+ ,0) is a commutative
simple semiring , where ° is the opera tion defined by a °b = (ab)n. Moreover , it
is easy to see th at th e function T r >-+ rn is a morphism of semirings from R to
JX (R) .

(9.30) EXAMPLE . Let X and Y be topological spaces and let R and S be 1ne
semirings of all closed subsets of X and Y respectively. If R == S it does not
necessarily follows th at X and Y are hom eomorphic. A sufficient condition for
this to happen is that X and Y satisfy th e T1 separation axiom. Th e problem of
when an isomorphism between Rand S implies the existe nce of a homeomorphism
between X and Y is studied in det ail in [Thron , 1962] .

We now begin considering some prop erties of morphisms of semirings.

(9 .31) PROPOSITIO N. If , : R ...-. S is a morphism of semirings then
,(comp(R» ~ comp(S) .

PROOF . If a E comp(R) then ,(a) + ,(a.1) = , (a + a.1) = ,(In) = Is while
,(a)/(a.1) = ,(aa.1) = ,(On) = as and, similarly, ,(a.1 )/(a) = as. Thus ,(a) is
compl emented , with ,(a).1 = ,(a.1) . 0

If {R i l iE n} is a fam ily of semirings having direct product R = x iEORi th en for
each hEn we have a surj ective morphism of semirings I/h : R ...-. Rh which assigns to
each element of R its hth component and an injective morphism of hernirings (but
not of semirings!) Ah: Rh ...-. R which assigns to each element a of Rh th e element
of R th e valu e of whose hth component is a and the value of all of whose other
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components is O. Note th at the image of th e multipl icative identity of Rh is not lR
but does belong to C(R) n IX (R) . A subring 5 of R is a subdirect product of
th e R; if and only if th e restriction of Vh to 5 for each hEn is still surject ive.

A set {e1 , " " en} of nonzero elements of C(R) n IX (R) is a complete set of
orthogonal central idempotents of R if and only if e1+.. ·+ en = 1 and e;ej =0
for all i =F j. Let { e1, ' . . , en } be a compl ete set of orthogonal central idempotents
of R and set ei) =I:;E U e, and f u = I: ;~ u ej for any proper nonempty subset U
of {I , .. . , n} . Then ei) + f u = 1 while eu f u = 0 = [u eu . Thus, for each such U,
eo E comp(R) and e& = Iu- In particular , ej E com p(R ) for each 1::; i::; n.

(9 .32) PROPOSITIO N. The following condi tions on a semiring R are equivalen t :

(1) There exis t semirings R1 ' . .. , R n and an isomorphism T R -+ X1:1 R j;
(2) There exist s a complete set { e1,"" en } of orthogonal central idempotents

of R.

PROOF . (1) ~ (2) : Let 5 = x 'i=lR;. For each 1 ::; i ::; n, let I, be the
multiplicative identity of Ri , let >.;: R; -+ 5 be th e canonical injective morphism of
hemirings defined above . Note that since I is an isomo rphism , it is both injective
and surject ive and so for each element s of 5 there is a unique element r = 1- 1 (s)
satisfying I( r) = s .

For each 1::; i::; n , let ej = 1 - 1 (>';(1;)). Then

and so e1 + .. .+ en = lR . If i =F j th en I( e;ej) = (>' ;(lj))(>'j(1j)) = Os = ,(OR)
and so e;ej = OR. Also, I(e1) = I(ed/( e;) = >' j(I;)>'j( I;) = >'j(lj) :7. I( ej) and
so el = ei, proving that e, E P(R) . Fin ally, if r E R th en "y(r ej) = ~' (r)>'j(l j) =
A;(l j)J(r) = I( ejr) and so e; E C(R) .

(2) ~ (1) : If r E R then r = rlR = re 1 + ...+ ren, where r e; E R~j for all i.
Thus every elemen t of R can be written as a sum of th e elements of th e Rei, This
sum is unique in the sense th at if r = r1e1 + .. .+ rn en th en re, = (rj e;) ej = rj ej
for each 1 ::; i ::; n . Thus we have an injective and surjective funct ion I :R -+ x R;
given by I( r)( i) = rei , As noted in Chapter 1, each R e; is a semiring, and it is
straightforward to show that I is a morphism of semirings. 0

(9.33) COROLLARY . If R is an integral sem iring then there do not exist semir­
ings R ' and RI! su ch that R is isomorphic to R' x RI! .

PROOF . This is a direct consequence of Proposition 9.32 and the remarks before
it . 0

We now extend th e notion of a derivation , int roduced in Chapter 3. Let R be a
semiring and let T R -+ R be a morphism from R to itself. A I-derivation is a
function d : R -+ R satisfying d(r + r') =d(r) +d(r') and d( rr') = I( r)d(r') + d(r)r'
for all r , r' E R.

(9 .34) EXAMPLE . [Brzozowski, 1964] Let A be a nonempty set , let R = sub(A*)
be the semiring of all formal languages on A introduced in Example 1.11, and let
T R -+ R be the morphism defined by T L ....... L n {D} . Every word w in A* defines
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a function dw : R -+ R by dw : L ......... {w' EA· I ww' E L} and it is easy to verify th at
thi s is a ,-derivation of R.

If R[t] is the semiring of polynomials in the indeterminate t over R th en we
can define a new operation of multiplicat ion on R[t] with th e aid of th e rule tr =
,(r)t +d(r) for all r E R and th e distribu tivity of multiplication over addition from
both sides. This semi ring , denoted R[t ;" d], is called the 0re ext en sion of R
by , and d. In th e special case that d is taken to be th e zero map , we obtain the
semiring R[t ;,], called th e skew polynomial semiring over R . In th e special case
, is taken to be the identity map we obtain th e differenti al polynomial semiring
R[t ; d] defined in Chapter 3.

We now return to th e rings of differences introduced in Chapter 8. Let R be a
nonzeroi c semiring and let R 6 = 51 D be the ring of differences of R . Then we have
a morphism of semirings v : R -+ R6 , called th e canonical morphism, defined by
t/ : r ....... (r ,0)1D. This morphism need not be injective. Indeed , if v(r) = v(r') then
(r, 0)1D = (r' , 0)1D and so th ere exists an element a of R such that (r + a, a) =
(r' + a, a) and hence r + a = r' + a. Thus we see that a necessary and sufficient
condition for v to be injective is that R be cancellative. Furthermore, we note that
an arbitrary element (a, b)1D of R6 is v(a)v(b) and so every element of R6 is the
difference between two elements in im(v ). In particular, we conclude th at if R is
a cancellative semiring th en R is isomorphic to a subsemiring of a ring R6 such
that every element of R6 is the difference between two elements in th e image of R.
It is this property of cancellative semirings which leads some authors to call th em
halfrings . We will , in general , identify a cancellative semiring with its image in its
ring of differences, and thus consider it as a subsemiring of tha t ring .

(9.35) PROPOSITION. If 1 is a left ideal of a nonzeroic spm iring R then 16 =
{v(a)v(b) Ia,bE 1} is a left ideal of R 6 .

PROOF . If a, a', b, b' E 1 then [v(a)v(b)]+ [v(a')v(b')] = v( o + ai)v(b+ b') E 16 .

If, furthermore, r , r' E R th en

[v(r )v( r')][v(a)v(b)] = v( r)v(a)v( r )v(b)v(r')v( a) + v( r')v(b)

=v(ra + r'b)v(rb + r'a) E 16

Thus 16 is a left ideal of R6 . 0

It is clearly true from th e above const ruct ion that 16 is the smallest left ideal
of R6 containing v(I) .

(9 .36) PROPOSITION. If R is a nonzeroic semiring then the function
T ideal(R) -+ ideal(R6

) defined by 1 ......... 16 is a morphism of sem irings.

PROOF . Clearly ,({OJ) = {OJ and ,(R) = R 6 . If 1 and H are ideals of R
then (I + H)6 is th e smallest ideal of R6 containing 1 + H and hence surely
(I + H)6 ~ 16 + H 6 . Conversely, suppose th at s = [v(a)v(a')] + [v(b)v(b')]
belongs to 16 + H 6

, where a , a' E 1 and b, b' E H . Then s = v(a + b)v(a' +
b') E (I + H)6 , proving equality. Similarly, (IH)6 ~ 16 H 6 . Conversely, if s =
[v(a)v(a')][v(b)v(b')] belongs to 16 H 6 th en s = v(ab + a'b')v(ab' + a'b) E (IH)6,
again proving equality. 0
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(9.37) EXAMPLE. [Dale, 1981] If R is a nonzeroic semiring and I is an ideal of
R , it does not follow th at I = V- I (fA) , even if R is cancellative. For example, let
R = f\l and let I = {0}U{2i+61 i E f\l}. Then fA = 22: and so v-I(fA) = 2f\l:::) f.

Example 9 .37 shows th at the morphism, given in Proposition 9. 36 need not be
injective even if v is injective.

If R is a cancellative semiring th en its ring of differences is also a morphic image
of the semi ring of polynomials R[t] over R . To see this , consider th e eleme nt
u = (0 ,1)/D of R A

. This is an element of th e center of R A satisfying 1 + u =
O. Therefore, by Example 9 .19 , th ere exists an evalua t ion morphism of semirings
e: R[t] --+ RA det ermined by the fun ction t f-+ u . Note th at if a , b E R th en
ab = a + bu E im( f) . Since every element of RA is the difference between two
elements of R , we thus conclude that i m(f) = RA

.

Let R be a nonzeroic semiring having ring of differences RA = S / D and let
u: R --+ RA be th e canonical morphism. If , : R --+ R' is a morphism from R
to a ring R' th en , defines a morphism of semirings " from S to R' given by
,' : (a , b) f-+ ,(ah(b). Moreover , ,'(a, a) = 0 for all a E R and so " induces
a ring homomorphism 1" :RA

--+ R' . If a E R th en I"v(a) = ,"«a,0)/D) =
,'(a ,O) = ,(a) and so , = ,"v. The map ," is unique with this prop erty. Indeed ,
if 5: R A --+ R' is a ring homomorphism satisfying th e condition that, = 5v then
for each element (a ,b)/ D of RA we have 5«a , b)/ D) = 5«a ,0)/ D)5«b ,0)/D) =
5v(a)5v(b) = , (ah (b) = , "«a , b)/D) so 5 =,".

In particular , if Rl and R2 are cancellative semi rings contained in th eir respective
rings of differences R~ and R~ th en every morphism of semi rings , from Rl to R2

can be extended to a uniqu e ring homomorphism ,A from R~ to R~ . Moreover ,,A is injective if and only if , is injective and it is surj ective if and only if, is
surjective.

(9.38) PROPOSITION. If R is a cancellative semiring th en there exists an in­
jective morphism of semirings , : R --+ S from R to an entire ring if and only if R
satisfies the following condition:

(*) Ifa ,a' ,b ,b' E R satisfy ab+a'b' = ab' + a'b then a = a' or b = b' :

PROOF. Assum e th at such an injective morphism , exists and identify R with
its image in S . If a, a' , b, b' are elements of R satisfying ab+ a'b' = ab' + a'b th en in
S we have (aa')(bb') = O. Since S is assumed to be entire, we deduce th at a = a'
or b = b',

Now, conversely, assume that R satisfies (*) . It suffi ces to show that th e ring
RA is ent ire . Indeed , suppose th at (a,a')/D and (b,b')/D are two elements of RA

satisfying 0/ D = [(a , a')/D][(b ,b')/D] = (ab + a'b' , ab' + a'b)/D. Then we must
have ab+ a'b' = ab' + a'b and so, by (*), a = a' or b = b', i.e. eit her (a , a') E D or
(b, b') E D. Thus RA is ent ire . 0

(9.39) EXAMPLE. [Mitchell & Sinutoke, 1982] Let R = Hal , a2, as, a4) E f\l4 I
ai = 0 for all i or a; # 0 for all i} . Then R is a subsemiring of f\l4 which is can­
cellative and ent ire. On th e other hand , R cannot be embedded in an ent ire ring .
To see this , not e that we have distinct elements a = (2 ,1 ,1 ,1) , a' = (1 ,2 ,1 ,1) ,
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b = (1,1 ,2,1) , and b' = (1,1 ,1 ,2) satisfying ab + a'b' = ab' + a'b, so R does not
satisfy condition (*) of Proposition 9.38.

(9.40) EXAMPLE . [H. E. Stone, 1972] If R is a cancellative semiring and if t is
an indet erminate over R then there exists a canonical morphism of rings T R[t]A -+

RA[t] given by T I: aiti - I: bit i
1---+ I:(aib;)ti for all I: aiti and I: bit i in R[t]. It

is st raightforward to show that, is in fact an isomorphism of rings .

(9.41) PROPOSITION . IfR is a cancellative semiring with ring of differences RA

then a proper subset I of R is a subtractive left ideal if and only if it is of the form
R n H for some left ideal H of RA .

PROOF . Assume that I is a subtractive left ideal of R and let H = I A ~ R A .

Then H is an left ideal of RA satisfying I ~ R n H . Conversely, if r ERn H th en
th ere exist elements a and b of I such that r + b = a. Since I is subtractive, this
implies that rEI . Hence I = Rn H .

Conversely, assume that I = R n H for some left ideal H of R A . Then clearly I
is an left ideal of R . If a and b are elements of R such that a + band b belong to I
then a = (a + b)b E Rn H = I . Thus I is a subtractive left ideal of R . 0

We have thus seen that cancellative semirings have very nice properties. The
following result shows that there are "enough" such semirings around .

(9.42) PROPOSITION . IfR is a sem iring then there exist s a cancellative sem iring
5 and a surjective morphism from 5 to R .

PROOF . Let R be a semiring and let A = {a r IrE R} be a set indexed by R .
Let 5 be th e free monoid on A, written additively. Define a new operation · on 5
by

Then (5,+,.) is a cancellat ive semi ring with additive identity 0 and multiplicative
identity al . Moreover , the function T 5 -+ R given by ,(D) = 0 and T I:rEA ar 1---+

I:rEA r for A # 0 is clearly a surj ective morphism of semirings. 0

(9.43) PROPOSITIO N. A zerosumfree semiring R is either additively idempotent
or contains a subsemiring isomorphic to o -.

PROOF . Let, be the function Ql+ -+ R defined by T min 1---+ (m1R)(nlR)-1 .
Using Proposition 4.52, it is easy to verify that this is a morphism of semirings.
Moreover , if , (hl k ) = ,(min) then h1R(klR)-1 = m1R(n1R)-1 and so hnl R =
mk1R . If R is not additively idempotent then , from Proposition 4.51, we conclude
that hn = mk and so hlk = min. Thus, in this case, , is an isomorphism from
Q+ to a subsemiring of R. 0

Note that if R is a zerosumfree semiring which is not additively idempotent
then the subsemiring of R constructed in Proposition 9.43 contains B(R) and is
contained in U(R) .

If T R -+ 5 is a morphism of semirings and if p is a congruence relation on 5
then , as an immediate consequence of th e definitions, th e relation p' on R defined
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by r p' r' if and only if , (r) p g(r'), is a congruen ce relation on R . In particular,
each morphism of sem irings T R -+ S defines a congruence relation =, on R by
setting r =, r' if and onl y if ,( r) = ,(r') .

(9.44) EXAMPLE . If R is a nonz eroic semiring and 1/: R -+ RA is t he canonical
morphism then =v and [=]{O} are equal.

(9.45) PROPOSITION. A morphism of sem irings T R -+ S induces an injective
morphism ofsem irings 1':R/ =,-+ S defined by ,'(r / =,) =,(r) . If, is surjective
then " is an isomorphism .

PROOF . The function " is well-defined sin ce r] =,= r' / =, implies that , (r ) =
,(r') , and it is clearly a morphism of semirings. If ,'(r/ =,) = I'(r'/ =,) then
,(r) =,(r') and so r] =,= r' / =" Thus " is inj ective. 0

(9.46) PROPOSITION. Let T R -+ S be a morphism of semirings.

(1) If H is a left ideal of S then ,-I (H) is a left ideal of R . Moreover, if H is
subtractive then so is ,-I(H).

(2) If, is a surjective morphism and if 1 is a left ideal of R then ,(I) is a left
ideal of S .

PROO F . (1) Assume that H is a left ideal of S. If a , b E ,-1 (H) then ,(a +b) =
,(a) + ,(b) E H so a + b E ,-I(H). If r E R and a E ,-I(H) then ,(ra) =
,(rh(a) E H so ra E ,-I(H). Finally, if lR E ,-1 (H) then I s = ,(1R) E H, which
is impossible. Thus lR f!. ,-1 (H) and so ,-I(H) is a left ideal of R. Now assume
that H is subt ract ive. If a , a+b E ,-I(H) th en ,(a) and ,(a)+ ,(b) = ,(a+b) E H
and so ,(b) E H. Hence s« , - I(H ).

(2) Assume that [ is a left ideal of R . Ifa , bEl then ,(a)+,(b) = ,(a+b) E ,(I) .
If a Eland s E S th en s = ,(r) for some r E R and so s,(a) =, (r h (a) = ,(ra) E
,(1). Thus ~l(I) is a left ideal or S . The proof for right ideals and for ideals is
similar . 0

(9.47) PROPOSITION . If T R -+ S is a surjective morphism of semirings and [
is an ideal of R then:

(1) ,(0/1) ~ 0;'(1) ; and
(2) ,(0[/]1) ~ O[/h(I)·

PROOF . (1) Ifr E 0/1 th en th ere exist elements a and a' of 1 satisfying r+a = a'.
Then ,(r) + ,(a) = ,(a') = 0 + ,(a') and so ,(r) E Oh(1) .

(2) If r E 0[/]1 then th ere exist elements a and a' of 1 and r" of R satisfying
r + a + r" = a' + r" , Therefore , (r) + ,(a) + ,(r") = ,(a') + ,(r") and so
,(r) E O[/h(I). 0

(9.48) PROPOSITION. Let , : R -+ S be a surjective morphism of semirings. If
R is a yoked semiring then so is S .

PROOF . Let sand s' be elem ents of S and let rand r' be elements of R satisfying
,(r) = s and ,(r') = s' , Sin ce R is a yoked semiring, th ere exists an element a of
R satisfying t: + a = r' or r' + a = r . Hence s + ,(a) = s' or s' + ,(a) = s, proving
that S is also a yoked semiring. 0
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(9.49) PROPOSITION. If R is a plain yoked sem iring satisfying the descending
chain condition on subtractive left ideals and having no nonzero nilpotent elements
and if I is a nonzero subtractive ideal of R then I is itself a semiring and there
exists a surjective morphism of semirings T R -+ I .

PROOF . By Proposition 4.22, the semiring R is cancellative. By Proposition
6.55, we know that there exists an element e E IX (R) n I satisfying I = Re .
In fact, from the proof of that result we see that a = ae for all a E I . Let
H = {a E I I ea = O} . Then H is a right ideal of R satisfying He = H and so
H 2 = (He)H = H(eH) = {O} . Since R has no nonzero nilpotent elements, this
implies that H = {O} . If a E I then , since R is a yoked semiring, there exists an
element b of R satisfying b + a = ea or a = b+ ea. Since I is subtractive, we in
fact have b E I . If b + a = ea then ea = e2a = eb + ea and so, by cancellation,
eb = O. Thus b E H and so b = O. Similarly, b = 0 if a = b+ ea as well. Therefore
a = ea for all a E I, proving that (I , +, .) is a semi ring with multiplicative identity
e. If a E I then a = eae and so the function T R -+ I defined by I : R >-+ ere is a
surjective morphism of semirings. 0

The following is an adaptation of a well-known result for rings .

(9.50) PROPOSITION. The following conditions on a semiring R are equivalent:

(1) There exist a positive integer n , a semiring 5, and an isomorphism T R -+

M n(5) .
(2) There exists a set {eij I 1 ~ i , j ~ n} of elements of R satisfying the

conditions that L:7=1 eii = 1 and

for j = k

otherwise

PROOF . (1) ~ (2) : For each 1 ~ i ,j ~ n let Eij be the matrix [ahk] E M n(5)
defined by

{
I for h = i and k =j

ahk = .o otherwise

Set eij = 1-1(Eij) for each 1 ~ i, j ~ n. Then {eij} clearly satisfies the conditions
in (2).

(2) ~ (1): Let 5 = {L:~=1 eh1 ae1h" , a E R} . This set is clearly closed under
addition . Moreover,

(I:>h1 ae1h) (2: eh1 be1h) = 2: eh1 (aellb )e1h

and so 5 is closed under multiplication as well. Surely 0 E 5, while we also have
1 = L: eh1 1e1h E 5 . Thus 5 is a subring of R. Define the function I : R -+ M n(5)

by Tr >-+ [Cij], where Cij = L:ehirejh = L:eh1(elirejt}e1h . It is straightforward
to check that I(r + r') = I(r) + I(r') for all r E R. Moreover , if r, r' E R then
I(rr') =[cij], where
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and this is th e valu e of the (i ,j)-entry of I (r h (r ' ). Thus 1 is a morphism of
semirings. It is straightforward to see th at 1 is both surje ct ive and inj ective, and
so it is an isomorphism of semi rings . 0

We now generalize an other well-known result for rings to th e case of semirings.
Ideals I and H of a semiring Rare comaximal if and only if 1+ H = R . A family
{Ij I j E Q} of ideals of R is p airwise comaximal if and only if every pair of
distinct elements of the family is comaximal.

(9 .51) PROPOSITION. (Chinese Remainder Theorem) Let {Il ,"" In} be
a finite set of pairwise comaximal ideals of a semiring R . Then the morphism of
semirings T R ---> X'/=lR/lj given by r ........ (r/ h ,. . .,r] In) is surjective.

PROOF. It suffices to show that for each 1 ::; k ::; n , th e element

(0, . . . , 0, 1/ I» ,0, ... , 0)

belongs to im(,) . We will show this for the case k = 1, the proof of th e other cases
being similar . Since th e given ideals are pairwise comaximal, we know that for each
k > 1 th ere exist eleme nts ak E hand h E h such that 1 = ak + bk . Therefore
1 = l k

-
l = rr ~= 2 ( ah + bh). By distributivity, this product becomes a' + r , where

a' E hand r = b2b3 • .• • • bn E 12 n·· ·n In . Therefore r] h = 1/hand r] h = 0/h
for 1 < J{ ::; n , proving th at I (r ) = (1/t. .0, . .. , 0), as desired . 0

A semiring R is separative if and only if a + a = a + b = b + b in R implies th at
a = b. Cancellative semirings are certainly separative. This condit ion is defined
for semigroups in [Clifford & Prest on , 1961]. Moreover , it is shown th ere that a
commutative semigroup is separative if and only if it is embeddable in a semigroup
which is ,1 union of groups. An analogous result can be proven for semirings.

(9.52; PROPOSITION. A sem iring R is separative if and only if th ere exis ts an
injective m orphism of sem irings I : R ---> 5, where 5 is a semiring satis fy ing th e
property that it s additive monoid is the union of groups.

PROOF. Assume that R is separat ive. Define a relation p on R by setting a p b if
and only if th ere exist positive int egers m and n and elements rand s of R such that
a + r = mb and b+ s = na . This can be eas ily checked to be a congruence relation .
Let R' = {(a , b) E R x R I a p b} and define operations EB and 0 on R' by setting
(a ,b) EB( c,d) = (a+c ,b+d) and (a ,b) 0(c,d) = (ac+bd,ad+bc) . Then (R' , EB ,0)
is a semiring with additive identity (0,0) and multiplicative identity (1,0) . Define
a relation ( on R' by setting (a , b) ( (c, d) if and only if ape and a + d = b + c.
This is also a congruence relation and so 5 = R' /( is a semiring.

Define a fun ction 1 from R to 5 by T a ........ (2a , a)/( . Clearly,(a + b) = , (a )+,(b)
for all a,b E R . Moreover , ab p 2ab p 4ab p 5ab and so 2ab+4ab = ab+ 5ab, proving
that (2ab, ab) ( (5ab, 4a b). Thus

I (ah(b) = [(2a, a )/ ( ]0 [(2b, b)/(] = (5ab, 4ab)/( = (2ab , ab)/( = , (ab).

Also , 1(0) = Os and ,(1) = (1 + 1, 1)/( = (1,0)/( = I s . Hence 1 is a morphism of
semirings. It is injective since I(a) = I(b) implies that (2a , a) ( (2b, b). But th en
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2a pap b p 2b and 2a + b = a + 2b, whence a = b, since R is separative. We are
thus left to show that 5 has th e desired property.

Inde ed , if (a , b)/( E 5 then a p b p 2a p a + b so (a , b)/( $ (a , a)/( = (a , b)/( .
Sim ilarly (a , b)/( $ (b, a)/( = (a , a)/( . Therefore (a , b)/( generates an additive
subgroup of (5, $) with identity element (a,a)/( . Hence (5, $) is th e union of
groups.

Now, conversely, assume that th ere exists an injective morphism of semirings
T R -+ 5 , where 5 satisfies the property that its additive monoid is the union
of groups. For each a E R , let H(a) be a maximal group contained in (5, +)
cont aining ,(a) . If a, b are elements of R satisfying a + a = a + b = b + b then
I(a) + I(b) E H(a) n H(b) . Moreover, I(a) = [/(a) + I(b)h(b) E H(b) and so
I (a) E H(b) , which implies th at H(b) ~ H(a) by the maximalityof H(a) . Similarly,
H(a) ~ H(b) and so we have equality. Therefore , by cancellation in th e group H(a)
we have I(a) = I(b) and hence a = b since I is injective. Thus R is separative. 0

A preordered set is a non empty set together with a reflexive and transitive
relation, usually denoted by ~ , defined on it. If Q is a preordered set th en a direct
system of semirings over Q is a family {Ri liE Q} of semirings together with
morphisms of semirings lij : R ; -+ Rj for all i ~ j in Q satisfying th e following
conditions:

(1) I ii is th e identity map for all i E Q;
(2) I j kl ij = lik for all i ~ j ~ k in Q.

If {Ri l iE Q} is a direct system of semirings the the direct limit lim R, of the
-->

system is a semiring R together with morphisms Oi : R; -+ R for each i E Q such
tha t :

(3) OJ/ij = s, for all i ~ j in Q and
(4) For any semi ring 5 and any set of morphisms 'fli: R, -+ 5 (i E Q) satisfying

th e condition that 'flj/ ij = 'fli for all i ~ j in Q there exists a unique
morphism of semirings n: R -+ 5 satisfying 'flOi = 'fli for all i E Q.

Directed limits of directed syst ems of semirings always exist . Ind eed , if {Ri , l ij ;Q}
is such a system let 5 be th e disjoint union of the R; and define a binary relation
( on 5 by set ting a ( b if and only if there exists i, j ~ k in Qsuch that a E Ri ,
s e Rj , and lik(a) = I jk(b). Then l in(a) = Ijn(b) for all n ~ k, from which we
can easily verify th at ( is an equivalence relation on 5 . Moreover, R = 51( can be
checked to be a semiring and we have canonical morphisms of semirings Oi : R; -+ R
given by Oi : a I---> al( which have th e required properties.

(9.53) EXAMPLE . Let R be a semiring and , for each positive integer i, let
k( i) = 2i and S, = M k( i)( R) . Then th ere exists an injective morphism of semirings

I i :s. -+ 5 i +1 defined by A I---> [~ ~] If i ~ j are positive int egers , define v« to be

th e identity map and l ij = Ij-l"Yj- 2" ' / i ifi < j . Then {5i l iE IF}, together with
the morphisms {/ij} is a directed system and so th e semiring 5 = lim S, exist s .

-->

Dually, if Q is a preordered set then an inverse system of semirings over Q is a
family {Ri liE Q} of semirings together with morphisms of semirings lij : Rj -+ R;
for all i ~ j in Q satisfying the following conditions:

(1) I ii is the identity map for all i E Q;
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(2) »r» k = l ik for all i ~ j ~ k in O.
If {Ri l iE O} is an inverse syst em of semirings then the inverse Iirrrit lim R; of

f--

the system is a semi ring R toget her wit h morphisms Oi: R -+ R; for each i E 0 such
that:

(3) l ijOj = Oi for all i :::; j in 0 ; and
(4) For any semiring S and any set of mo rphisms TJi :S -+ R; (i E 0 ) satisfying

th e condition lij TJj = TJi for all i :::; j there exists a unique morphism of
semi rings TJ :S -+ R satisfying Oi TJ = TJi for all i E O.

Inverse limits of semirings always exist . Indeed , if {Ri l i E O} is an inverse system
of semi rings then we can take~Ri to be { (ri ) E X i En Ri I r i = l ij (rj)} for all i:::;
n·

Let R be a semiring and let h ;2 12 ;2 . .. be a descending chain of ideals of R .
For each j ~ 1, set Rj = R I Ij . T hen for all i :::; i we have a canonical surjective
morphism of semirings l ij :Rj -+ R; and thi s tu rns {Ri I i ~ I} into an inverse
syst em of semirings. T hus we can form the semiring lim Ri, which is called the

f--

completion of R with respect to the given chain of ideals. In partic ular , if th ere
exists an ideal I of R such that Ij = I j for all j ~ 1 then this inverse limi t is called
the I-adic co m p le t ion of the semiring R. T he elements of the I- adic completio n
S of R are sequences of the form (r + I j) for r E R . T herefore we have a canonical
morphism of semirings 1'= R -+ S given by r 1-+ (rI I j) .
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By Proposition 9.8 we see that if -y: R ---+ S is a morphism of semi rings th en 1- 1(0)
is an ideal of R, called th e kernel of I ' and denoted by ker(/)' By Proposition
9.46, ker( I) is an ideal of R . If R is a ring , we know that any ideal of R can be th e
kernel of a morphism from R to some ring S but , as we shall see, this is not th e case
for arbit rary semirings. Also , unlike th e case of rings , we note that a morphism
of semirings -y: R ---+ S need not be moni c when kerb) = {O} . To see an example
of thi s , consider the totally-ordered set R = {O , a , I} on which we define addition
to be ma x and multiplication to be min . This is a semiring by Example 1.5. Let
-y: R ---+ Iffi be the character of R defined by 1(0) = 0 and I( a) = 1(1) = 1. This
map has kernel {O} but is not moni c.

(10.1) EXAMPLE . [Shubin , 1992] Let S and S' be ent ire zerosumfree semirings
and let R = S lXl 5' . Then the function -y: R ---+ S defined by -y: 0 ~ Os and
-y: (s , s') ~ s is a morphism of semirings which is not moni c, having kernel {O} .

We note th at if R is a division semiring and -y: R ---+ S is a morphism of semirings
th en ker( / ) = {O} . Ind eed , if 0 #- a E kerb) th en I s = I (1R) = l(ah(a- 1 ) = Gs.
which is a cont radict ion. In this case, th e image of I is again a divi sion semiring.
Nonetheless, I may not be monic. Indeed , if the semirings S and S' in Example
10.1 are both division semirings then R is a division semiring and im(I) = S , but
nonetheless I is not monic.

(10.2) EXAMPLE. If I is an ideal of a semi ring R and if -y: R ---+ RII is the sur­
jective morphism defined by r ~ rI I th en ker( I) = {r E R I r +a E I for some a E
I} = 011.

(10.3) E X A M PLE. Let R be a semiring and let {Sj I j E n} be a family of
semirings. For each j E n, let Ij : R ---+ Sj be a morphism of semirings. Then we
have a morphism of semirings I : R ---+ x j EOSj given by r ~ (/j (r)) . The kernel of
this morphism is n jEOkerbj) .

(10.4) EXAMPLE . If R is a nonzeroic semiring th en the kern el of th e canonical
morphism R ---+ RA is precisely Z(R).
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(10.5) EXAMPLE. Let (5,0 ,.) be the hemiring defined in Example 1.18. Then
the function -y: 5 --+ 5 defined by -y: a ........ a 3 is a morphism of semirings the image
of which is contained in Z(5) since , for each a E 5, t he self-d ist ributivity condition
im plies that a3 ° a3 = a3 + a3a6 = a3

. The kern el of 7 is precisely {a E 5 I abc =
ofor all b, c E 5} .

(10.6) EXAMPLE. We now generalize th e construc tion given in Example 9.18.
If R is a semiring andM is a monoid then the fun ct ion EM : R[M ] --+ R defined
by EM: f ........ l:U(m ) I m E M } is a surjective mo rp hism of semirings called th e
augmentation morphism. T he kern el of EM is called the augmentation ideal
of R[M ].

(10.7) P ROPOSITION. If R is a sem iring and 7 E char( R) then ker(7) is prime.

PROOF. Let a and b be elements of R satisfying the condition that arb E ker(7)
for all r E R . T hen, in particular , ab E ker(7). If a f/:. ker(7) t hen 0 = 7(ab) =
7(ah(b) = 7(b) and so b E kerb) . Thus, by Proposition 7.4, ker(7) is pr im e. 0

(10.8) PROPOSITION. If -y: R --+' 5 is a morphism of semirings then ker(7) n
U(R) = 0 .

PROOF. If a E ker(7 ) n U(R) t hen there exists an eleme nt b of R satisfying
ab = l R and so Os = OS'Y(b) = 7(ah(b) = 7(ab) = 7(1R) = Is . This is a
contradict ion , and so ker(7) n U( R) must be empty. 0

We have al ready seen that any morphism of semi rings -y: R --+ 5 defines a con­
grue nce relation =-y on R by setting r =-y r' if and only if 7(r) = 7(r') . Another
cong rue nce relation defined on R by 7 is the relation = k er (-y ) . It is clearl y t rue that
r =-y r' whenever r = k er(-y) r' bu t the converse need not be true. If th e relations
=-y and = k er(-y) coincide, then the mo rp hism 7 is steady. A steady mo rphism
-y: R --+ 5 is mo nic if and only if kerb ) = {O} . Morever, by Proposition 9.45 we see
that if -y: R --+ 5 is a st eady surjective mo rp hism of semirings then 5 is isomorphic
to R/kerb).

A surj ectiv e morphism of semirings 7: R --+ 5 is a sem iis omor p h is m if and
only if kerb) = {O} . Isomorphisms of semi rings are clearly sem iisomorphisms bu t
the converse is not true, as we have seen. However , a st eady sem iisomorphism is
an isomor ph ism . By combi ning Proposit ion 8.16 and Propositi on 9.42 , we see that
for each semi ring R t here exists a cancellative semiring 5 and a semi isomo rphism
5 --+ R.

(10.9) EXAMPLE. Let R be t he semiring (~ U {-oo},m ax,+) . Let t be an
ind etermina te over a zeros umfree sem iring 5 and let -y: 5[i ] --+ R be the d egree
function given by 7(P) = sup{i I p(i) =f. O} if p =f. 0 and 7(0) = - 00 , which
we defined previously. T hen 7 is a surj ect ive morp hism of semirings. Moreover ,
kerb) = {p E 5[i] I 7(P) = - <X) } = {O} so 7 is a semii somorphism bu t is clearly
not an isom orphism.

(10.10) PROPOSITION. If -y: R --+ 5 is a semiisomorphism of sem irings then:

(1) R is entire if and only if 5 is entire; and
(2) R is a ring if and only if 5 is a ring.
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PROOF . (1) Assume R is entire and let s, s' E S be elements satisfying ss' = O.
Then there exist elements rand r' of R satisfying ,(r) = sand ,(r') = s' . Thus
,(rr') =0 and so rr' E kerb) = {O} so rr' =O. Since R is entire, this means that
r = 0 or r' = 0, and hence s = 0 or s' = O. Now assume that S is entire and that
rand r' are elements of R satisfying rr' = O. Then ,(rh(r') = ,(rr') = 0 and so
,(r) =0 or ,(r') =O. Thus either t: or r' belongs to ker(,) and so r =0 or r' =O.

(2) Now assume that R is a ring. If s E S and if r E R is an element satisfying
,(r) = s, then 0 =,(0) =,(-r + r) =,(-r) + ,(r) =,(-r) + s and so s E V(S) .
Thus S is a ring . Conversely, assume S is a ring. If r E R then there exists an
element r' E R satisfying ,(r') = -,(r). But then

,(r + r') = ,(r) + ,(r') = ,(r) + -,(r) =0

so r + r' E ker(,) = {O} . This implies that r E V(R) and so R is a ring . 0

We now characterize those ideals of a semiring which can be kernels of mor­
phisms.

(10.11) PROPOSITION . An ideal I of a semiring R is the kernel of a morphism
of semirings if and only if it is subtractive.

PROOF . Assume that I is the kernel of a morphism , : R - S . If a and bare
elements of R satisfying a,a + bEl then 0 = ,(a + b) = ,(a) + ,(b) = ,(b)
and so s e ). Thus I is subtractive. Conversely, if I is a subtractive ideal and if
T R- RI I is the surjective morphism of semirings defined by r f--> rII then surely
I ~ kerb) . On th e other hand, if r E kerb) then there exist elements a and a' of
I such that r + a = 0 + a' E I . Since I is subtractive, this means that rEI and so
I = kerb) . 0

In particular, we note that if R is an austere semiring then any morphism T R ­
S has kernel {O} .

(10.12) PROPOSITION. Let R be a yoked semiring, let S be a plain semiring, and
let T R - S be a surjective morphism of semirings. Then there exists a bijective
correspondence between the set of all subtractive left ideals of R containing ker(,)
and the set of all subtractive left ideals of S. This correspondence is given by
I f--> ,(1) .

PROOF . If I is a left ideal of R then, by Proposition 9.46, we know that ,(1)
is a left ideal of S . Now assume that I is subtractive and contains ker( ,) . If
s ,s + t E ,(1) then there exist elements a,bEl and d E R satisfying ,(a) = s ,
,(b) = s + t , and ,(d) = t. Since R is a yoked semiring, there exists an element t:

of R such that r + b = d or r + d =b.
Case I: Assume that r + b = d. Then ,(r + a) + ,(d) = ,(r) + ,(a) + ,(d) =

,(r) + ,(a + d) = ,(r) + ,(b) = ,(r + b) = ,(d) and so ,(r + a) E Z(S) = {O} ,
Hence r + a E ker(,) ~ I . Since I is subtractive, this implies that rEI and so
d = r + bEl. Hence t E ,(1) .

Case II: Assume that r + d = b. Since R is a yoked semiring, there exists an
element r' of R satisfying r' + a = r or a = r' + r, If r' + a = r then

,(a + d) = ,(b) = ,(r + d) = ,(r) + ,(d)

= ,(r') + ,(a) + ,(d) = ,(r') + ,(a + d)
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so i (r' ) E Z(5) = {OJ and so r' E ker CJ) ~ I . Thus r = r ' + a E I. Since
r + d = b E I and I is subt ractive, this impli es tha t d E I and so t E i (I ). If
a = r' + r th en f eb) = i (a + d) = i (r ' + r + d) = i (r' ) + i (r + d) = i (r ' ) + i(b)
so, again , r' E ke rCJ) ~ I. Hence rEI and, as before, t E i (I) .

Thus we have shown th at if I is a subtract ive left ideal of R containing ker(i)
then i(I) is a subt ractive left ideal of 5 . Conversely, by Proposition 9.46(1), we
see that every sub tr active left ideal of 5 is of th e form iCJ- 1 (H)) , where i - 1(H )
is a subtract ive left ideal of R containing k erCJ).

Finally , let I and I' be subt ract ive left ideals of R containing k er(i ) and satisfy­
ing i (I ) = i (I' ). If s« I' th en there exists an element a of I satisfying i(b) = i(a) .
Since R is a yoked semiring, th ere exists an element r of R satisfying t: + a = b
or r + b = a . In th e first case, i (a) = fe b) = i (r + a) = fe r) + i (a ) and so
i (r ) E Z(5) = {OJ. Thus r E k er CJ) ~ I and so b = r + a E I . In th e second case,
i (a) = fer) + feb) = fer) + i (a ) so, again , i (r ) E Z( 5 ) = {OJ and r E kerCJ) ~ I.
Since I is subt ract ive, this impli es that b E I . Thus, in both cases, we have shown
that I' ~ I . A similar argument shows that I ~ I' and so we have equality.

Thus th e correspondence I f-+ i(I') is bijective. 0

(10.13) EXAMPLE . [Dulin & Mosher , 1972] Let R = (N U {oo}, max , m in) and
let 5 be th e subsemiring of R given by 5 = {2i liE N} U {1, 00}. Define th e
function T R -> 5 by

{
i + 1

l ei) = i
if 1 < i < 00 and i is odd

ot herwise

Then T R -> 5 is a surj ective morphism of semirings having kernel {OJ . However ,
I = {O, 1,2 , 3} and H = {O, 1, 2, 3,4} are subtractive ideals of R sat isfying i (I) =
i (H ) = {O, 1,2 , 4}. We note that , since 5 is simple, we have Z (5) = 5 # {OJ .

A morphism of semir ings T R -> 5 is tame if and only if the following condit ions
are satisfied:

(1) For each s E im (i ) , th e family {r + k erCJ) IrE i - 1 (s)} I par tially ordered
by set inclusion , has a unique maximal member; and

(2) The unique maximal member of {r+ ker(i ) IrE i - 1(1s )} is lR + k er CJ).

(10.14) EXAMPLE . Any homomorphism from one ring to another is tame .

(10.15) PROPOSITION. lEI: R -> 5 is a tame morphism of sem irings then ker CJ)
is a partitioning ideal of R.

PROOF . Set 1= k er CJ). For each element s E im (i ), let q. be th e element of
i - 1(s) sati sfying the condit ion tha t q. + i - 1(s) is maximal. Set Q = {q. I s E
imCJ)} . T hen surely R = U{q. + I I s E im (i )}. Suppose that s # t are distinct
elements of imCJ) satisfying the condit ion that (q. + 1) n (qt + 1) # 0. Then th ere
exist elements a , a' E I such t hat q.+a = qt+a' and sos = i(q. +a) = i (qt+ a') = t ,
which is a contr adi ction. Thus I is a par t itioning ideal of R . 0
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(10.16) PROPOSITION. If T R -+ 5 is a surjective morphism of semirings then
there exists a sem iisomorphism from R/ker(-y) to 5 . If, in addition , , is tame then
there exists an isomorphism from R/ker(,) to 5 .

PROOF . Set I = ker(,) and define th e function 6:R/I -+ 5 by 6:a/I f-+ ,(a) .
This is well-defined since alb = b]I if and only if there exist elements c and d of I
satisfying a + c =b+ d and in th at case , (a) = , (a)+ ,(c) = ,(a + c) = ,(b + d) =
,(b)+,(d) =,(d) . Moreover , 6 is clearly a morphism of semirings which is surjective
since , is. If 6(a/1) = 0 th en , (a) = 0 so a E I . Thus ker(6) = {O/I} , proving
that 6 is a semiisomorphism.

Now assume that, is tame. For each element s of 5, let q. be the unique element
of ,-1 (s) satisfying the condition that q. +,-1 (s) is maximal. By th e hypothesis of
tameness, q1 = 1R and it is easy to verify that qo =OR. Set Q = {q. Is E 5}. By
Proposition 10.15 and the discussion in Chapter 7, we see that I is a partitioning
ideal of R and that the semiring R/ I is isomorphic to RQ .

Define a function 6: RQ -+ 5 by 6: q. + I f-+ s . This function is well-defined
and is clearly both monic and surjective. Therefore, all that remains for us to
show is that it is an isomorphism. Indeed, let sand t be elements of 5. Then
6«q. + 1) E& (qt + I» = 6(qu + 1) = u, where U is th e uniqu e element of 5 satisfying
(q. + qt) + I ~ qu + I. From this condition , we know that th ere exists an element a
of I satisfying q. +qt = qu +a. Thus s+t = ,(q.)+,(qt} = ,(q. +qt) = ,(qu +a) =
,(qu) +,(a) = u . Therefore 6(q. + I) +6(qt +I) = s+t = u =6«q . +I) E&(qt + I».
A similar argument shows that 6(q. + 1)6(qt + I) = 6«q. + 1) 0 (qt + I) . Thus 6
is an isomorphism of semirings. 0

(10.17) EXAMPLE. [Cao, Kim & Roush , 1984] Let R be a commutative simple
semiring and let n be a posi tive integer satisfying th e condition that an = an+l ior
all a E R. Let v: R -+ R be th e function defined by ,: a f-+ an . Then ,(e) =: e
for each e E IX (R) . In particular, this is so for e = 0 and e = 1. Since R is
commutative, ,(ab) = , (ah (b) for all a, bE R. Moreover , if a , bE R then

,(a + b) =(a + bt = (a + b)2n = L a i bh
.

i + h= 2n

Thus we see that if i + h = 2n th en either i 2 n or h 2 n. In the first case,
a2n + a i bh = an + an (ai - n bh ) = an by Proposition 4.3; while in th e second case, by
similar reasoning, we have b2n + a i bh = b", This implies that ,(a + b) = an +b" =
,(a) + ,(b) and so , is a morphism of semirings, the image of which is IX (R) . The
kernel of, is the set N of all nilpotent elements of R which is thus an ideal of R.
Therefore, by Proposition 10.16 , there is a semiisomorphism from R/N to IX(R).

(10.18) PROPOSITION. A semiring 5 is subisomorphic to a subdirect product
of a family {R i liE n} of semirings if and only if for each i E n there exists a
surjective morphism of semirings ,i : 5 -+ H; such that niEnker(-yi) = {O} .

PROOF . Set R = XiEn Ri. By Example 10.3, we have a morphism of semirings
T 5 -+ R given by T r f-+ (, i(r») , th e kernel of which is {O} . Therefore 5 is
sub isomorphic to the subsemiring R' = im(-y) of R . Since ,i is surjective for each
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i , we see that for each hEn th e restriction of the canonical proj ection Vh: R -+ Rh
to R' is a surjection. Thus R' is a subdirect product of th e Ri . 0

We now prove versions of the Second Isomorphism Theorem and Third Isomor­
phism Theorem for semirings.

(10 .19) PROPOSITION. If S is a subsemiring of a semiring R and I is an ideal
of R then :

(1) S + I is a subsemiring of R ;
(2) S n I is an ideal of S ;
(3) There exists a surjective morphism of semirings I :S/(S n I) -+ (S + I)/I ,

which is a semiisomorphism if I is subtractive.

PROOF. (1) and (2) are clear. Define the function I by T s/(SnI) 1-+ s] I . This
is clearly a surj ective morphism of semirings. If I is subtractive and s/ (S n I) E
ker( I) then there exist elements a and a' of I satisfying s + a = 0 + a' and so, by
subtractiveness, we have s E I, which implies that s/(S n I) = O/(S n I) . Therefore
I is a semiisomorphism. 0

(10.20) PROPOSITION. If I ~ H are ideals of a sem iring R and if H' = 0/H,
th en R/H is isomorphic to (R/ I)/(H' / I).

PROOF. Define a function I : R/I -+ R/H by T r / I 1-+ r/ H. This function is
well-defined since I ~ H and , indeed , it is straightforward to show th at I is a
surjective morphism of semirings having kernel {r/ I E R/I I r / H = O} = {I E
R/I IrE H'} = H' / I . By Proposition 10.16, I induces a semiisomorphism I'
from (R/I)/(H'/I) to R/H . If/((r/I)/(H'/I» = I'((r'/I)/(H'/I) th en rf H =
r'/H so (r/I)/(H'/I) = (r'/I)/(H'/I) . Therefore I is monic and so is in fact an
isomorphism . 0

If I : R-+ S is a morphism of semirings then 1-1 (15 ) = {r E R I/(r) = I s}
is not , in general, closed under sums and so is not necessarily an ideal of R . If
r.r' E g- l(l s) th en I(rr') = I(rh(r') = 1515 = 15 and so 1- 1(1 5 ) is closed
under multiplication . Since lR also clearly belongs to this set , we see that it is a
sub monoid of (R, .). The following result shows that it is sometimes an ideal of R.

(10.21) PROPOSITION. If I :R -+ S is a morphism of sem irings and if S is a
strongly-infinite element of S then 1- 1 (s ) is an ideal of R .

PROOF. Note that 1- 1(s) =F R since OR f; 1- 1(s). On the other hand , if a,b E
1-1(s) and if r E R then I(a + b) = I(a) + I(b) = s + s = s while I(ra) = I(r)s =
s = sl(r) = I(ar) . 0

(10.22) ApPLICATION. Let A be a finite set, let M be the idempotent monoid
(sub(A) ,n) , and let R = ~+[M] . Let eu : R -+ ~+ be the augmentation morphism
of semirings. Then i:\:l(l) is the set of all probability distributions on sub(A) . These
fun ctions are called "unnormalized belief st ates" in [Hummel & Landy, 1988] and
are used to form a space of "belief states" for a statistical theory of evidence used in
the design of expert systems which is a modification of th e Dempster/Shafer theory
of evidence [Shafer, 1976].
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If T R ---> S is a morphism of semirings we define the multiplicative kernel of
, to be mke1'(J) = ,-1(15) n U(R) ={a E U(R) I ,(a) = Is} . This set is always
nonempty since it containa lR. It is a proper subset of R since 0 rt mker(J) for
any morphism , .

(10.23) PROPOSITION. IfTR --+ S is a morphism of semirings then mker(,)
is a normal subgroup of the group (U(R), .) .

PROOF . If a, b E mker(,) then ,(ab) = ,(a),(b) = 15 . 15 = 15 so ab E

mker(,) . If a E mke1'(J) then 15 = ,(1R) = ,(aa-1) = ,(a),(a-1) = ,(a-I) so
a- I E mker(,). Thus mker(,) is a subgroup of U(R). Finally, if r E U(R) and
a E mke1'(,) then ,(1'ar- 1 ) = ,(1'),(a),(r- 1 ) = ,(r),(1'- 1 ) = ,(r1'- 1 ) = ,(1R) =
15 so 1'ar- 1 E mke1'(')' Hence mker(J) is normal in U(R) . 0

If R is a division semiring then we see by Proposition 10.23 that mke1'(J) is a
normal subgroup of th e multiplicative group R\ {O} for each morphism of semirings
T R ---> S. In such a situation a normal subgroup of (R \ 0, ·) is called a normal
divisor of R.

(10.24) PROPOSITION. A normal divisor N of a division ring R is of the form
mker(,) for some morphism of semirings T R ---> S if and only if for all elements
r , r' E R satisfying r + 1" = 1 and for all a, bEN we have cr + br' EN .

PROOF . If N = mker(,) for some morphism T R ---> S and if r , r', a , b are as
stated then ,(ar + b1") = ,(a),(r) + ,(b),(1") =,(1') + ,(r') =,(1' + 1") = 15 and
so ar + br' E mke1'(,) = N .

Conversely, assume that N satisfies the desired condition. Define a relation =N

on R by setting r =N r' if and only if l' = r' or r'r- 1 E N . This is clearly an
equivalence relation, and we claim that it is a congruence relation as well . Indeed ,
if a =N band c ~N d in R then

But ab- 1 and cd- 1 belong to N while b(b + d)-1 + d(b + d)-1 = 1 so, by the
assumed property of N, r E N . Therefore a + c =N b + d. Finally, ac(bd)-1 =
acd- 1b- 1 = (ab- 1)b(cd- 1)b- 1 and this belongs to N since ab- 1 E N, cd- 1 E N,
and b(cd- 1)b- 1 E N by normality. Thus ac =N bd.

The congruence relationssje is proper since clearly 0 and 1 are not related under
it . Therefore we can define the factor semiring S = Rj =N and the morphism of
semirings , : R ---> S given by r 1--+ r j =N. For this morphism, mker(,) = {r E R I
r =N I} = N . 0

(10.25) PROPOSITION. If R is a division semiring then a morphism ofsemirings
T R ---> S is monic if and only if mke1'(,) = {I}.

PROOF. If, is monic then surely mker(,) = {I}. Conversely, assume that,
is not monic. Then there exist elements a =1= b of R satisfying ,(a) = ,(b). One
of these , say a, must be nonzero. Therefore 15 = ,(1) = ,(aa-1) = ,(a),(a-1) =
,(b),(a- 1

) = ,(ba- 1 ) , and so 1 =1= ba- 1 E mker(,) . 0



11. SEMIRINGS OF FRACTIONS

In this chapter we build the classical semiring of fra ctions of a semiring using a
st raight forward adaptation of the meth od used for rings. This is a special case of
the more general meth od of const ruct ing semirings and semimodules of quotients ,
to which we will return in Chapter 18.

Let R be a semiring . A left 0re set of elements of R is a submonoid A of (R , ·)
satisfying the following condit ions:

(1) For each pa ir (a, r ) E A x R th ere exists a pair (a' , r' ) E A x R satisfying
a'r = r' a;

(2) If ra = r'a for some r , r' E R and a E A then there exists an element a' E A
satisfying a'r = a' r' ;

(3)- 0 rf. A .

Right 0re sets are defined analogously.

(11.1) EXAMPLE . If R is a semiring th en any sub monoid of (C(R), ·) not con­
taining 0 is a left and right 0 re set . If T R -+ S is a morphism of semirings th en
this is true, for example, of 1- 1(l s ) n C(R ). In parti cular , if R is commutat ive
th en any sub monoid of (R \ {O},·) is a left and right 0 re set. Thus, if I is a prime
ideal of a commutative semiring R then R \ 1 is a left and right 0 re set .

A semiring R is a left [resp. right] 0re semiring if and only if R \ {OJ is a left
[resp. righ t] 0 re set . Note that 0re semirings are necessaril y ent ire.

(11 .2) EXAMPLE . Any commutative ent ire semiring is a left and right 0 re
semiring; thus, in particular , I'J is a left and right 0re semiring.

For a left 0re set A of elements of a semiring R define the relation e- on A x R
by setting (a, r) ,..., (a' , r' ) if and only if there exist elements u and u' of R such th at
u r = u'r' and ua =u' a' E A. If (a , r) E A x R and if u is an element of R satisfying
ua E A then by taking u' = 1 we see tha t (a , r) ,..., (ua , ur ). We also note that if
r , r' E R then (1, r ) ,..., (1 , r ' ) if and only if there exists an element a E A such that
ar = ar' ,

(11.3) PROPOSITION. Let A be a left 0 re set of elements of a sem iring R. If
(aI , rr) ,..., (a2, r2) in A x R and if th ere exis t elements u and u' of R satisfying
ual = u' a 2 E A th en th ere exists an elemen t v of R satisfy ing vur 1 = vu' r2 and
vua1 = vu' a 2 EA .
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PROOF. Since (al ,rl)"'" (a2' 1'2) , there exist elements Rand 1" in R satisfying
1'1'1 = 1"1'2 and ral = 1" a2 E A . Since A is a left 0re set , there exist elements
1''' of R and a" of A such th at (a"r)al = a"(rad = r"(uad = (r"u)al and so
there exists an element bl of A satisfying bl(a"r) = bl(r"u). This implies that
(blr"u')a2 = blr"ual = bla"1'al = (bla"r')a2 and so, again, there exists an element
b2 of A satisfying b2(blr"u') = b2(bla"r') If we now set v = b2blr" then it is
straightforward to verify that this element has th e desired property. 0

(11.4) PROPOSITION. For each left 0re set A of elem ents of a semiring R , the
reletiou r- on A x R defined above is an equivalence relation.

PROOF . Clearly (a , 1')"'" (a , 1') for all (a , 1') E A x R and (a , 1')"'" (a' , 1") implies
that (a' ,r') ,..., (a , 1') . We are therefore left to show transitivity. Indeed, assume
that (al ,rd"'" (a2' 1'2) and (a2,1'2)"'" (a3' 1'3) in A x R. Then there exist elements
u, u'; v, v' E R satisfying uri = «r« , vr2 = v'1'3 , ual = u'a2 E A , and va2 =
v'a3 EA . Since A is a left 0re set of elements of R, th ere exist elements A of A
and R of R such that av = ru' , Then (ru)al = r(u'a2) = (av)a2 = a(va2) E A .
By Proposition 11.3, there exists an element w of R satisfying w( ru ) 1'1 = w(av)1'2
and w(1'u)al = w(av)a2 E A . Then (wru) rl = (wav)r2 = (wav')r3 and similarly
(w1'u)al = (wa v')a 3 E A , and we are done. 0

We will denote th e set (A x R)j ....., by A-I R and th e equivalence class of each
pair (a ,r) in A x R by a-lr . Note that if u is an element of R satisfying ua E A
th en a-l r = (ua)-lur. If B is a nonempty subset of R then we set A-I B to be
equal to {a-lb Ia E A ,b E B} .

Now define operations of addition and multiplication on A-I R as follows:

(1) (a1lrd+(a;-lr2) = (aad-l[arl +1'1'2], where r E R and a E A are elements
chosen such that aal = 1'a2 ;

(2) (allrd(a2'I1'2) = (aad-lrr2 , where a E A and l' E R are chosen so that
aal E A and arl = ra2.

We must , of course, establish that these operations are ind eed well-defined . This
will be done in three stages:

Stage I: First , we show that sums and products are independent of the choice of
the element s R and a . Indeed , since A is a left 0re domain there exist elements
ao of A and 1'0 of R satisfying aOal = rOa2 . Now choose elements R of Rand
A of A such that aal = 1'a2. Then th ere exist elements 1" of R and a' of A
satisfying r'o« = a'« and so (a'r)a2 = a'(1'a2) = a'(aad = (a'a)al = (1"ao)al =
r'(aoad = r' (roa2) = (r'ro)a2 and so there exists an element b of A satisfying
b(a'r) = b(1"1'o) . Moreover , br'asa, = ba'aa, E A and so (aoal)-l[ao1'l + 1'01'2] =
(br'aoad-l[br'a01'l + br'ro1'2] = (ba'aat}-l[ba'arl + ba'rr2] = (aad-l[a1'l + 1'1'2] '
Thus, this last expression is indep endent of th e choice of a and r .

Similarly, there exist elements Co of A and So of R satisfying Carl = SOa2. Now
choose elements r of R and a of A such that arl = ra2. Then there exist elements
s' of Rand e' of A satisfying s' eo = c'a and so (e'r)a2 = e'(ra2) = e'(arl) =
(e'a)1'1 = (1" Co)1'1 = (1" So )a2 and so there exists an element e of A satisfying cc'r =
cr' e«. Moreover , cs'eOal = cc'aa; E A and so (coad-lsor2 = (es'eoal)-les'ro1'2 =
(ce'aat}- lee'rr2 = (aaJ}- lr1'2 and so this last expression is independent of the
choice of A and r ,
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Stage II: Next, we must show that th ese operations are independent of the choice
of representative of the equivalence class all r1 . Indeed, suppose that al1r1 = bl 1Sl
in A -1 R. Then there exist elements u and u' of R such that ur1 = U'Sl and
ua1 = u'b, E A . Select elements r E R and a E A such that a(ua1) = ra2. Then
(au)a1 = ra2 and so

(ai1rd + (a21r2) = (auad-1[aur1 + rr2) = (ua1)-lur1 + a21r2

= (u'h)-l U'Sl + a21r2 = (au'bl}-l[au'sl + rr2)

= (abd-1[as1 + rr2] =(bi 1si) + (a2 1r2)'

Similarly, select s E R ana se A such that b(ur1) = sa2. Then b(uad E A so

(ai1r1)(a21r2) = (ua1)-1 sr2 = [(uad-1urd[a21r2]

=[(u'bd-1u'sd[a21r2] = (bu'bd- 1sr2

= (bi1sd(a21r2)'

Stage III: Finally, we must show that these operations are independent of the
choice of representative of the equivalence class a21 r2. Indeed, suppose that
a2

1r2 = b2
1S2 . Then there exist elements u and u' of R satisfying ur2 = U'S2

and ua2 = u'b2 E A . Select elements r E R and a E A such that aa1 = r(ua2).
Then aa1 = r(u'b 2) and we have (ai1rd + (a21r2) = (aa1)-1[ar1 + (ru)r2] =
(aad-1[ar1 + r(u's2») = (ai1rd + [(u'b2)-l u'S2) = (ai1rd + (b2

1S
2). Similarly,

select 's E Rand b E A such that ba1 E A and br, = s(ua2). Then br1 =
s(u' b2) so (ail rd(a2

1r2) = (ba1 )-1 sur2 = (bad- 1su' s2 = (ail rd[(u'b2)-1 u' r2) =
(ai1rd(b2 i r2)'

Thus th operations of sum and product in A -1 R are well-defined. We also note
that if a E A and ifr1,r2 E R th en (a-1rl)+ (a- 1r2) = a- 1(r1 +r2). Moreover ,
if all r1 and ail r2 are elements of A -1 R and if r' E R and a' E A are elements
satisfying a'a2 = r'o., then ai1r1 = b- 1(r'rd and a21r2 = b- 1(a'r2)' where b =
a' a2 E A. Repeating this process finitely-many times, we conclude that any finite
set of elements of A -1 R can be represented with a "common denominator" .

(11.5) PROPOSITION. If A is a left 0re set of elements of a semiring R then
(A -1 R, +,.) is a semiring.

PROOF. The verification of the semiring axioms is routine. The additive identity
of A -1 R is 1-10 and the multiplicative identity of A -1 R is 1-11. 0

Th e semi ring A -1 R defined in Proposition 11.5 is called the classical left
semiring of fractions of R with respect to the left 0re set A . The classical
right semiring of fractions RB- 1 of R with respect to a right 0re set B of
elements of R is defined in an analogous manner. This construction can also be
accomplished for topological semirings. See [Botero & Weinert , 1971).

(11.6) EXAMPLE . Clearly IlD- 1N is isomorphic to Q+.
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(11. 7) EXAMPLE . Let R be a commutative entire semiring and let A = R \ {O}
which , as we noted in Example 11.2, is an 0re set . If a- 1r is a nonzero element
of A-1R th en we must have r =f:. 0 and so r- 1a E A-1R as well . Moreover ,
a-1r · r- 1a = 1-11 and so a-1r E U(A -1 R) . Thus every nonzero element of A -1 R
is a unit, proving that A- 1R is in fact a semifield .

(11.8) EXAMPLE . Let R be a semiring, let A = {t} , and let S = R«A)) be th e
ring of formal power series in an ind et erminate t. Each t i E A* corresponds to th e
elem ent Ii E S defined by

h {I if i = hj;:t 1-+ •o otherwise

Thus we can consider A* as a subset of the center of S and , indeed, it is an 0re
set . Moreover , (A*)-1S is just the semiring of Laurent series over R in the
ind eterminate t .

(11.9) EXAMPLE. If R = (~U {-oo} , EEl , ®) is the schedule algebra (where
EEl = max and ® = +) and if t is an ind eterminate over R , th en A = R \ {O} is
a left 0re set of elements of R and so we can consid er the semiring A -1 R. This
is don e in [Cuninghame-Green & Meijer , 1980]. In particular, they give necessary
and sufficient conditions for an eleme nt q(t)-1 p(t) to have a resolution into partial
fractions of the form EEli::dt EEl ai]- 1bi . Such resolutions have important applications
in optimization theory.

For every left 0re set A of elements of a semiring R we have a function fA : R --+

A-1R defined by fA :r 1-+ l- 1r . Clearly fA t akes th e additive and multiplicative
identities of R to th e additive and multiplicative identities of A- 1R resp ectively.
Moreover, f A(r + r') =1- 1(r + r') = l- 1r + l- 1r ' = fA(r) + f A(r') and fA (rr') =
1-1 (rr') = fA (rhA (r') and so fA is a morphism of semirings. The kernel of this
morphism is precisely {r E R I ur = 0 for som e u E A} . Thus th e kernel of this
morphism is {O} whenever ar = 0 => r = 0 for all a E A . This is so if every element
of A is left multiplicatively can cellable and hence certainly so if R is entire. In fact ,
if every element of A is left multiplicatively cancellable th en fA is easily seen to
be injective since fA(r) = fA(r') implies that l- 1r = l- 1r' and so there exists an
element a of A satisfying ar = ar'; which in turn implies that r = r' , Moreover ,
if a E A then (l-1 a)(a-11) = (a- 11)(l-1a) = 1-11 and so fA(A) ~ U(A- 1R).
As a consequence, we see that if R is a left 0re sem iring then A -1 R is a division
semiring.

(11.10) EXAMPLE . [Vandiver , 1940; Murata, 1950] Let R be a semiring and let
c be a multiplicatively cancellable element of C(R). Then A = {ci liE N} is an
0re set satisfying the condition that fA is injective.

(11.11) PROPOSITION. Let R be a semiring and let A be a left 0re set of
elements of R contained in JX (R) . Then fA is surjective.

PROOF . If a E A and r E R then a-1r = (a2)-1(ar) = a-1(ar) = 1-1r =
fA(r). 0
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(11.12) EXAMPLE . [Sancho de Salas , 1987] If R is a bounded distribu tive lattice
then,A:R --+ A -1 R is surject ive for every 0re subset A of R . Thus, for example,
if Y is a subspace of a topological space X, if R is th e semiring of all closed subsets
of X , and if A is the 0re subset of all closed subsets of X which do not intersect
Y th en A - 1X is the lattice of "germs of closed sets along Y", namely th e lattice
obtained from R by identifying closed sets which agree in a neighb orhood of Y .

(11.13) PROPOSITIO N. Let A be a left 0re set of elements of a sem iring R and
lei-» : R --+ 5 be a morphism of sem irings satisfying ,(A) ~ U(5). Th en there exists
a morphism ofsemirings 8: A -1 R --+ 5 satisfying 8,A = , and ker( 8) = A - 1ker(,) .

PROOF . Define 8 by 8(a- 1r) = [,(a)]-l,(r) . This is well-defined since if a- 1r =
b- 1s th en th ere exist elements u and u' of R satisfying ur = u' s and ua = u'b E A .
Then

[,(a)t 1,(r) = [,(ua)]-l,(ua)/(a)-l,(r) = [,(ua)t 1,(u)/(a)/(a)-l,(r)

=[,(ua)]-l,(u)/(r) = [,(ua)t 1,(ur)

= [,(u'b )t 1
, ( u' s) = [,(u'b)t1

, ( u' b)/(b)-l,(s)

= [r(b)t 1,(s) .

Straightforward verification shows that 8 is a morphism of semirings satisfying
8,A =,. Clearly A- 1ker(r ) ~ ker(8) . Conversely, if a- 1r E ker(8) th en
,(a)-l,(r) = 0 and so ,(r) = 0, proving th at a- 1r E A-1ker(,) . 0

(11.14) ApPLICATION . Let R be the semifield (N U { -00 } , max , +) and let 5
be a zerosumfree semiring. In Example 10.9 we considered the semiisomorphism
, :5[i] --+ R which assigns to each polynomial its degree. If A is a left 0re set of
elements of 5[i] th en , by Proposition 11.13 , th is map can be extended to a morphism
of semirings 8: A- 15 [i ] --+ R which is also a semiisomorphism.

This construction was considered in [Cuninghame-Green , 1984] for th e special
case of 5 =N and A =5 \ {O} and applied to various problems in optimization th e­
ory, linear programming, and quadratic programming . His method is to formulate
a problem as a computation in R, to consider its preimage in 5[i], solve the problem
th ere using regular polynomial computation , and th en translate th e solution back
to R via v.

(11.15) PROPOSITION . If A is a left 0re set of elem ents of a sem iring R and if
I is a left ideal of R then :

(1) A- 1I is a left ideal of A-1 R if and only if A n I = 0;
(2) A-1I = A-1R oth erwise.

PROOF. If a, b, c E A , r E R , and s, t E I th en it is easy to verify that b- 1s+C- 1t
and (a- 1r )(b- 1s) both belong to A- 1I . Therefore, A- 1I is either a left ideal of
A -1 R or equa l to all of A-I R . If a E A n I then 1-1 a E A -1 I n U (A -1 R. so for
each element b- 1r of A- 1R we have b- 1r = [(b- 1r)(a- 11)](1- 1a) E A- 1I . Thus
A-II = A- 1R . Conversely, assume that A-II = A- 1R. Then 1-11 = I- 1b for
som e element b of I . Thus there exists an element u of A satisfying ub = u and so
ub E I n A , proving th at I n A :f. 0 . 0
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(11.16) PROPOSITIO N. If A is a left 0 re set of elem ents of a semiring R which
satisfies the condition th at / A is injective then:

(1) A -I R is cancellative whenever R is;
(2) A -I R is plain whenever R is.

P ROOF. (1) Assume that R is cancellative and let UI , U2 , and Ua be elements
of A-I R satisfying UI + ua = U2 + Ua . By t he remark before Proposition 11.5, we
see that there exist an element a of A and elements rl , r2, and ra of R such that
Ui = a-Iri for i = 1, 2, 3. Hence

/A( rl + r2) = I-I (rl + r2) = (1- la)(a- Ih + r2J)

= (I -I a) [a-I r l + a- Ir2] = (I-Ia) [a-Irl + a- Ira ]

=(1- 1a) (a - Ih + raj) = I- I(rl + ra)

= / A(rl+ ra)

and so rl + r2 = rl + ra. Since R is cancella t ive, thi s im plies that r2 = ra and so
U 2 = Ua . Thus A-I R is also cancellative.

(2) Assume th at R is plain and tha t U and v are eleme nts of A-I R sa t isfying
U +v = v . By the rem ark before Prop osition 11.5, th ere exist an eleme nt a of A and
elements R and r' of R such that U = a-Ir and v = a-Ir' . T hus a- I[r + r '] = a- Ir'
so /A(r + r') = I-I (r+r' ) = (1-l a) [a- l(r + r')] = (l- Ia)(a-I r') = I- Ir' = /A(r')
and hence r + r' = r' , This implies th at r E Z (R) and so r = 0, whence U = O.
T hus A-I R is plain . 0

If R is a commutative semiring and A is an 0 re set of eleme nts of R, th en
LaGr assa [1995] has shown that A - I I is a prime ideal of A - I R for every prim e
ideal I of R disjoint from A. Also, conversely, if H is a pr ime ideal of A - I R then
/AI( H) is a prime ideal of R . Thus there in fact exists an order-p reserving biject ion
between spec(A - I R) and {I E spec( R) I I n A = 0 } .

If R is a subsem iring of a sem iring S then S is a left sem iring of fractions of
R if and only if for all s oF s' E Sand s" E S there exists an eleme nt R of R such
that rs oF rs ' and rs" E R. T his conditio n was studied for rings in [Lambek , 1966]
and for bo unded distributive lat ti ces in [Schmid , 1983].

(11.17) PROPOSITIO N. If A is a left 0re set of elem ents of a sem iring R th en
A -I R is a left sem iring of fractions of / A (R ).

PROOF . If a- Ir oF b- I s and c- I t are elements of A-IR t hen, from th e defini­
tions, one sees th at (l-I c)(c-It) = I- It E /A( R) and (1- lc)(a- Ir) oF (1- l c)(b- ls ).
o

The const ruction of ot her semirings of fractions of a sem iring is t ied in with
genera l localiz ation theory for semi modules over sem ir ings , and we will therefore
defer its consideration until Chapter 18.



12. EUCLIDEAN SEMIRINGS

If a is an element of a semiring R then we denote by RD( a) th e set of all right
divisors of a in the monoid (R , -). That is to say, RD(a) = {b E R Ia E Rb} = {b E
R I Ra ~ Rb}. Since b E RD(b) for all b E R, it is clearly true th at b E RD( a) if
and only if RD(b) ~ RD(a ). Note th at if R is a simple semiring and if bE RD(a)
th en there exists an element r of R such th at a = rb and so, by Proposition 4.3, we
have a+ b= rb + b=b. Thus we see th at if a is an element of a simple semiring R
then RD(a) :I 0 implies th at a E Z(R).

If a is an element of a semiring R th en U(R) ~ RD(IR) ~ RD(a) . If a rf:. U(R)
and RD(a) = U(R) U {a} then a is said to be irreducible from the right .
Irredu cibility from the left is defined simil arly.

(12.1) EXAMPLE . [Jacobson & Wisner , 1966] If R = M 2(l\!) th en the only

elements of R having determinant 1 which are irredu cible from th e right are [~ ~ ]

and un.
If A is a nonempty subset of a semiring R th en the set of common right

divisors of A is CRD(A) = n{RD(a) I a E A} = {b E R I RA ~ Rb}. An
element b E CRD(A ) is a greatest common right divisor of A if and only if
CRD(A) = RD(b) .

(12.2) PROPOSITIO N. IfA is a nonempty subse t ofa semiring R th en an elemen t
b of R is a greatest common right divisor ofA if and only if th e foJJowing condi tions
are satis fied :

(1) RA ~ Rb;
(2) If c E R satis fies RA ~ R c th en Rb ~ Rc.

PROOF . Assume that b is a greatest common right divisor of A. Then b E
CRD(A) and so b E RD(a) for each a E A. Thus Ra ~ Rb for each a E A,
implying that RA ~ Rb. Moreover , if RA ~ Re for some element e of R th en
e E CRD(A) = RD(b) and so Rb ~ Re.

Conversely, assume conditions (1) and (2) are sati sfied . By (1), b E CRD(A)
and so RD(b) ~ CRD(A) . By (2) , if e E CRD(A) th en RA ~ Re and so Rb~ Re.
Hence e E RD(b) , proving that CRD(A) ~ RD(b) and thus yielding equality. 0
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(12.3) COROLLARY. If every left ideal of a semiring R is principal, then every
nonempty subset of R has a greatest common right divisor.

PROOF . Let A be a nonempty subset of R . Then RA = R or RA is a left ideal
of R. Hence, by hypothesis , there exists an element b of R satisfying RA = Rb . By
Proposition 12.2, b is a greatest common right divisor of A . D

(12.4) PROPOSITION. Let a , b, and c be elements of a semiring R . If d is a
greatest common right divisor of {a, b} and e is a greatest common right divisor of
{c, d} then e is a greatest common right divisor of {a , b, c} .

PROOF . By definition , RD(e) = RD(d) n RD(c) = RD(a) n RD(b) n RD(c) =
CRD({a,b ,c}) . D

If a and b are elements of a semi ring R then C RD( {a , b}) is clearly contained in
CRD( {a + b, b}) . We now investigate th e conditions for having equality.

(12.5) PROPOSITION. The following conditions on a semiring R are equivalen t:

(1) CRD({a, b} ) = CRD({a + b, b}) for all a , b E R ;
(2) Every principal left ideal of R is subtractive.

PROOF . Assum e (1) and let Rd be a principal left ideal of R . If a and a + b
belong to Rd th en dEC RD( {a + b, a}) = C RD( {a, b}) and so b E Rd. Therefore
Rd is subtractive. Conversely, assume (2) and let a, b E R . If dECRD( {a + b, b})
then a + band b both belong to Rd and so, by (2), a E Rd. Therefore d E
CRD({a,b}) . D

A semiring for which th e equivalent conditions of Proposition 12.5 hold will be
called a PLIS-semiring.

(12.6) EXAMPLE . Recall that in Example 6.28 we presented a semiring R having
a nonzero left ideal H containing no nonzero subtractive left ideals . In particular,
if 0 I- h E H th en Rh is not subtractive. Hence R is not a PLIS-semiring.

Elements a and b of a semi ring R are right associates if th ere exists an element
u E U(R) satisfying a = ub. Note that in this case b = u-1a and Ra = Rb.

A left euclidean norm 0 defined on a semiring R is a function 0:R \ {O} -+ N
satisfying the following condition:

(*) If a and b are elements of R with b =P 0 th en th ere exist elements q and r of
R satisfying a =qb + r with r =0 or o(r) < o(b) .

A right euclidean norm is defined similarly, except that in condition (*) we have
a = bq + r . A semiring R is left [resp . right] euclidean if and only if th ere
exists a left [resp. right] euclidean norm defined on R. For commutative semirings,
needless to say, the notions of left and right euclidean norm coincide. If we want
to emphasize the role of 0, we will speak of the euclidean semiring (R, 0).

If 0 is a left euclidean norm on a semiring R we can extend 0 to a function 0'
from R to N U {(X)} by setting 0'(0) = 00 . This function satisfies the condition
that if a and b are elements of R satisfying o'(a) 2: o'(b) then there exist elements
q and t: of R satisfying a = qb + r , where r = 0 or o'(r) < o'(b) . Conversely, if
0' : R -+ N U {(X)} is a function satisfying this condition then its restriction is a left
euclidean norm on R.
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(12.7) E XAMPLE . T he semiring N is euclidean if we define the euclidean norm
oby 0:n ......... n or 0: n ......... n 2 •

(12.8) E XA M PLE . [Hebisch & Weinert , 1987] Let S [t] be the semiring of polyno­
mials in th e indeterminate t over a division semi ring S and let p be the congruence
rela tion on S[t] defined by L:ait i P L:biti if and only if a l t + ao = bl t + bo.
Let R be the factor semiring S[tJlp. Then the there exists a left euclidea n norm
0: R \ {O} -+ N defined by setting

( ) {
I if ao :I 0

s L ai
ti

/ P = 0 ot herwise

(12.9) EXA M PLE . [Hebis ch & Weinert , 1987] Let R be the subsemiring of Q+
defined by R = {q E Q+ I q = 0 or q 2: I} and suppose tha t we have a left euclidea n
norm 0:R \ {O} -+ N. Let 0 < a < b be elements of R . If o(a) 2: o(b) th en there
would have to exist elements q and r of R sa t isfying a = qb + r , where r = 0 or
o(r) < o(b). But a < b implies that a < qb for all 0 :I q E R and a = Ob + r leads
to the cont radict ion 8(a) = 8(r) < o(b). T hus a < b implies th at o(a) < o(b) for all
0 :1 a,s« R. Therefore R\ {O} is order-isomorphic to the subset im(o) ofN , which
is impossible. Thus no left euclidea n norm can be defined on R, and so R is not a
left euclidea n semiring.

(12.10) PROPOSITION. If 0 is a left euclidean norm defined on a sem iring R
then there exists another left euclidean norm 0" defined on R and satis fy ing:

(1) o"(a ) :5 o(a) for all a E R \ {O} ; and
(2) o"(b) :5 o(rb) for all b, r E R satisfying rb:l O.

PROOF . For each 0 :I a E R , set 0"(a) = min{o(ra) I ra :I O}. The function 0"
clearly satisfi es (1) and (2) , so all we have to show is that it is indeed a left euclidean
norm on R. Let a and b be nonzero elements of R satisfying 0"(a) 2: 0"(b). Then
th ere exists an eleme nt s of R such that o"(sb) = o(sb). Then o(a) 2: o(sb) and so
th ere exist elements q and r of R such that a = qsb+r , where r = 0 or o(r) < o(sb).
In th e second case, we have o"(r) :5 o(r) < o(sb) = o"(b). T hus 0" is a left euclidean
norm on R. 0

Thus, if (R ,0) is a left euclidean semiring we can, without loss of generality,
assume that 0 sati sfies th e condition that o(b) :5 o(rb) for all 0 :I b E R and all
r E R such th at rb :I O. A left euclidean norm sa tisfying this condition is sa id
to be submultipIicative . A left euclidean norm 0 defined on a semiring R is
multiplicative if and only if o(ab) = o(a)o(b) for all a,b E R sa tisfying ab :I O.
That is to say , 0 is mul t iplicative if and only if it is a semigroup hom omorphism
from R \ {O} , .) to (N , .) .

(12.11) PROPOSITION . If R is a semiring on whi ch we have defined a submul­
tipiicetive euclidean norm 0: R \ {O} -+ N and if M6 = {r E R lo(r)} is a minimal
element of im(o) then:

(1) l R E M6;
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(2) If a E Mb then there exists an element q of R satisfying 1 = qa;
(3) ss, n I+(R) = {IR};
(4) U(R) ~ Mb' with equality holding if R is commutative.

PROOF . (1) If 0 :j; a E R then, by submultiplicity, o(lR) :s o(alR) = o(a) and
so lR E M b .

(2) If a E Mb then there exist elements q and r of R satisfying lR = qa + r with
r = 0 or o(r) < o(a) . The latter case is impossible by minimality, and so lR = qa.

(3) If c E Mb n I+(R) then , by (2), there exists an elem ent q of R satisfying
lR = qc and so c = lR c = qc2 = qc = lR .

(4) If a E U (R) th ere exists an element b of R such th at lR = ba and so
o(a) :s o(ba) = O(1R) . Since lR E Mb' this means we have equality and a E M i .
Hence U(R) ~ Mb. If R is commutative, then by (2) th e reverse containment is
true. 0

(12.12) PROPOSITION. Let R be a commutative cancellative semiring and let
o be a submultiplicative euclidean norm defined on R. Th en o(a) = o(-a) for all
a E V(R) .

PROOF . Assume the result is false and let A be the nonempty set of all of nonzero
eleme nts a' of V(R) satisfying o(a') > o(-a') . Choose a to be an eleme nt of A for
which o(-a) is minimal. Then there exist elements q and r of R satisfying a =
q(-a) + r , where r = 0 or o(r) < o(-a) . Assume r :j; O. Then q(-a) + (-a) + r = 0
and so c = q(-a) + (-a) E V(R) and -[q( -a) + (-a)] = r . Moreover , c rt. A ,
since otherwise we would contradict the choice of a . Thus o(c) = o(r) . But this
is impossible sin ce th en o(r) = o(c) = o([q+ 1](-a)) 2: o(-a) by submultiplicity.
Thus we must have r = 0 and hence a = q(-a) . Then qa+a = q(a+(-a)) = qO = 0
and so -a = qa + a + (-a) = qa. This implies that o(-a) 2: o(a), contradicting
th e assumption th at a E A. Thus A must be empty, proving th e proposition. 0

(12.13) PROPOSITION. If T R --+ S is a surjective morphism of semirings and
if 0 is a left euclidean norm on R then there exists a left euclidean norm 0' on S
defined by o'(c) = min{o(a) I a E ,-l(c)} for all O:j; a E S .

PROOF. Let c and d be eleme nts of S with d :j; O. Then th ere exist elements a
and b :j; 0 of R such that ,(a) =c and ,(b) =d. Moreover , we can choose b so that
o'(d) = o(b). Since 0 is a left euclidean norm on R, there exist elem ents q and r of
R satisfying a = qb-sr , where r = 0 or O(r) < o(b). Hence c = ,(a) = ,(q)d+,(r) ,
where ,(r) = 0 or o'(,(r)) :s o(r) < o(b) = o'(d) . This proves that 0' is a left
euclidean norm on S . 0

(12.14) PROPOSITION. If R is a left Euclidean semiring then every subtractive
left ideal of R is principal.

PROOF. Let 0 be a left euclidean norm on R and let I be a subtractive left ideal
of R . Then {o(a) Ia E I} has a minimal element, say o(b). Assume that a E I\Rb .
Then there exists an element r E R\ {O} such that a = qb+r and o(r) < o(b). But
rEI since I is subtractive, contradicting the minimality of 8(b). Hence we must
have 1= Rb. 0



_____.EUCLIDEAN SEMIRINGS _ 139

(12.15) PROPOSITION. Th e following conditions on a left Euclidean sem iring R
are equivalent:

(1) R is a PLIS-semiring;
(2) There exist s a left Euclidean norm 8 defined on R satisfying the condition

that if a = qb+ r for r E R \ {O} and 8(r) < 8(b) then at/: Rb.

PROOF . (1) => (2) : By Proposition 12.10, we know that th ere exists a left
euclid ean norm 8 on R satisfying the condit ion that 8(s ) S 8(rs) for all r, s E R\{O} .
Assume that a = qb + r for r E R \ {O} and 8(r) < 8(b). If a E Rb then by (1) we
must have r = cb for some c E R and so 8(r) 2: 8(b) , which is a contradiction. Thus
at/: Rb.

(2) => (1): Assume that a.b E R and that t E CRD({a + b,b}). Then we can
write a + b = dt and b = et for elements d and e of R . By th e choice of 8, we
know th at 8(a) 2: 8(t) and so either a = qt or a = qt + r for some 0 # r E R
satisfying 8(r) < 8(t) . But in th e latter case we have dt = (e + q)t + r , which again
contradicts th e stated condition . Thus we must have a = qt and so t E RD(a) .
Since t E RD(b) by the choice oft , we have t E CRD({a,b}) . Thus R is a PLIS­
semiring by Proposition 12.5. 0

(12.16) PROPOSITION . If R is a left Euclidean PLIS-semiring then any non­
empty finite subset A of R has a greatest common right divisor.

PROOF . By Proposition 12.4, it suffices to consider th e case of A = {a ,b} . If
a = b = 0 then 0 is a greatest common right divisor of {a,b} and we are done.
Hence, without loss of generality, we can assume that b # O. Since R is a PLIS­
semiring, we know by Proposition 12.15 that there exists a left Euclidean norm 8
defined on R satisfying th e condition that if a = qb+ r for r E R \ {O} satisfying
b(r) < 8(b) then a t/: Rb.

By repeated applications of 8, we can find elements ql , . . . , qn+l and rl, .. . , rn cf
R\ {O} such that a =q1b+rl , b =q2rl +r2 , .. . , rn-2 =qnrn-l +rn, rn-l =qn+lr"
and 8(b) > 8(rd > ... > 8(rn) . (The proc ess of selecting th e qj and rj must indeed
terminate after finit ely-m any steps , since there are no infinite decreasing sequences
of elements of N.) Working backwards , we th en see th at

rn-2 = [qnqn+l + 1]rn

rn- 3 = [qn-lqnqn+l + 'l» - 1 + qn+drn

et c. unt il we establish that rn E C RD({a ,b}) . Conversely, assume that d E
CRD({a ,b}) . By Proposition 12.15, we see that a « RD(rl) , dE RD(r2), .. . ,
a« RD(rn) and so RD(rn) = CRD({a ,b}) . Thus r« is a greatest common right
divisor of {a,b}. 0

Closely related to the notion of a Euclidean norm is that of a Dale norm. If R
is a commutative antisimple semiring then a fun ction 8: R --+ N is a Dale norm if
and only if the following conditions are satisfi ed :

(1) 8(a) = 0 if and only if a = OR;
(2) If OR # a+b E R th en 8(a +b) 2: 8(a) ;
(3) 8(ab) = 8(a)8(b) for all a , i e R ;
(4) If a E Rand 0 # b E R th en there exist elements q and r of R such that

a =qb+ r , where r =0 or 8(r) < 8(b).
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One sees immedi at ely th at a Dale norm is a left and right euclidean norm. Also , if
R is a semi ring on which a Dale nor m is defined th en R must be ent ire.

(12.17) EXAMPLE. If R is a division sem iring then we can define a Dale norm
o on R by 0(0) = 0 and o(a) = 1 for all O:f. a E R.

(12.18) EXAMPLE . Let R be th e semiring (l':JU{ -oo} , max ,+) and letl < c E JR .
Then th e fun ction 0: R ---> l':J defined by 0(-00) =0 and o(i ) = ci for i E l':J is a Dale
norm on R.

(12.19) EXAMPLE . The functions n 1---+ n and n 1---+ n2 are Dal e norms defined
on l':J .

(12.20) EXAMPLE . A left euclidean norm need not be a Dal e norm , even if R
is a commutative ring (which is surely antisimple as a semiring) . For example,
consider R = 7l. / (4) and define the fun ction 0: R \ {O} ---> l':J by o(1) = 0(3) = 2 and
0(2) = 3. Then 0 is a left euclidean norm which cannot be converted into a Dal e
norm since the ring R is not entire.

(12.21) PROPOSITIO N. If R is a commutative antisimple semiring on which we
have defined a Dale norm 0 then:

(1) U(R) = {a E R Io(a) = I};
(2) R is a division sem iring if and only if o(R) is finite.

PROOF. (1) Note first th at O:f. 0(1R) = o(IR' lR) = 0(1R)2 and so o(IR) is a
nonzero idempotent of l':J , which implies that O(1R) = 1. If a E U(R) then there
exists an element b of R satisfying ab = 1 so 1 = o(ab) = o(a)o(b) , which implies
tha t o(a) = 8(b) = 1 since l':J has only one unit . Conversely, assume that ' l E R
sa t isfies th e condition th at o(a) = 1. Then there exist elements q and r of Ii such
that lR = qa+ r and either r = 0 or 0(1') < o(a). Since b(a) = 1 we must hav e
l' = 0 and so lR = qa, proving that a E U(R) .

(2) If R is a division semiring th en o(R) = {O, I} and this is finite. Conversely, if
R is not a division semiring th en th ere exists a nonz ero eleme nt r of R which is not
a unit . By (1), this means that 0(1') > 1. Moreover , since r is not a unit , neither is
1'k for all k 2: 1 and , for each k » 1, we hav e o(1' k

) = 0(1')0(1' k
-

1
) > 0(1'k -

1
) . Thus

o(R) is infini te. 0

(12.22) PROPOSITIO N. If R is a commutative antisimple sem iring on which we
have a Dale norm 0: R ---> l':J then R is isomorphic to one of the following :

(1) l':J ;
(2) (l':J U {-oo} , max, +); or
(3) A division semiring.

PROOF . Let A = {niR I n E l':J} be the basic subsemiring of R. First left us
consider th e case that R = A. In this case, we have a surjective morphism of
semirings T l':J ---> R given by n 1---+ niR . If, is injective , we have shown that R is
isomorphic to l':J and we are done. If, is not injective, then im(,) = R is finit e and
hence o(R) is a finit e subset of N, By Proposition 12.21(2) , R is a division semi ring
and we are don e.
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Now assume that R "I A and let a E R \ A. Since R is antisimple, there exists an
element al of R satisfying a = al + lR . Clearly al 'I:. A . By an easy induction , we
see that for each n 2: 1 there exists an element an of R \ A satisfying a = an + nlR ·
Hence 5(a) 2: 5(nlR) for all natural numbers n . Thus, for each k, n E N we have
5(a) 2: 5(n klR) =5((nlR)k) =5(nlR)k, which forces 5(nlR) ~ 1 for all n E N. We
now consid er two cases:

Case I: lR + lR = O. If 0 "I a E R th en 5(a) "I 0 and 1 = 5(1R) = 5(IR +
aIR + aIR) 2: 5(alR) = 5(a)5(IR) = 5(a) so 5(a) = 1. By Proposition 12.21(2),
this implies th at a E U(R) and so R is a division semiring and we are done.

Case II: lR + lR = b "I O. Then 5(b) = 1 by th e above and so b E U(R) . Let
e be an element of R satisfying be = lR . Then e + e = eb = lR . Moreover, since
R is antisimple there exists an element y of R satisfying e = y + lR . If z = e + y
then z + lR = e + y + lR = e + e = lR and 5(z) ~ 5(1R) = 1. Thus z = 0
or z E U(R). If z = 0 th en e + y = 0 so 0 = lR + by. If 0 "I a E R then
1 = 5(1R) = 5(IR + aIR + aby) 2: 5(alR) = 5(a) and so 5(a) = 1. Thus, again,
R is a division semiring and we are done . Hence assume that z E U(R) . Then
z + z = e + e + y + y = lR + Y+ y = e + y = z and so z E 1+(R). If z' E R satisfies
z' z = lR then lR = z' z = z'(z + z) = z' z + z' z = lR + lR . This implies that R is
additively idempotent .

Thus we are in th e situation in which A = {O, I} is a proper subsemiring of the
semiring R. If 0 "I a E R then, by antisimplicity, there exists an element b of R
satisfying a = b+ lR and so a + lR = b+ lR + lR = b+ lR = a. If a E U(R) and if
a' is an eleme nt of R satisfying aa' = lR then lR = aa' = (a + lR)a' = aa' + a' =
lR + a' = a' so a = lR. Thus we see that U(R) = {lR} . Thus, in particular, we
note that if r E R \ A th en r 'I:. U(R) so 5(r) > 1. Pick an element a of R \ A
having the property that 5(a) is minimal in N. Then 5(a) < 5(a2 ) < .. . in N. Let
,] = {lR ' a, a2 , .. . } . Then G is an infinite cyclic semigroup . Since lR + ah = a"

for all h E P:l , we see that ai + ai+h = ai+h for all i , hEN . Hence R' = G U {O} .s
a subsemiring of R and there is an isomorphism I from (N U {-oo}, max , +) to H'
satisfying ,(-00) = 0 and ,( i) = ai for all i E N. We will therefore complete th e
proof if we can show that R = R' .

Assume that R "I R' and let e E R \ R' . Then 5(c) > 1 and we can pick
e among those elements of R \ R' such that 5(c) is minimal. By th e choice of
a and by the fact that 5(ai ) = 5(a i +1 ) for all natural numbers i , there exists a
natural number n such that 5(an) ~ 5(e) < 5(an+1

) . Moreover, since R is a
euclidean semiring there exist elements q and r of R such th at e = qa" + r , where
r = 0 or 5(r) < 5(an) . If r "I 0 th en the choice of e implies that r = ak for
some 1 ~ k ~ n - 1 and hence e = (qan-k + lR)ak. If qa'":" = 0 we obtain
e = ak E G , which is a contradiction . Hence qan-k "I O. By th e above, we
th en have qan - k + lR = qan - k and so e = qa'" , corresponding to the case r = O.
Moreover , we now have 5(a)n = 5(an) ~ 5(e) = 5(q)5(a)n < 5(an+1 ) = 5(a)n+l
and so 1 ~ 5(q) < 5(a) , implying that 5(q) = 1 and so q E U(R) . But this mean s
that q = lR , which is a contradiction. Thus we mus t have R = R' , as desired . 0



13. ADDITIVELY-REGULAR

SEMIRINGS

An element a of a semiring R is additively regular if and only if th ere exist s
an element a# of R satisfying a + a + a# = a and a# + a# + a = a# . Actually,
as in th e case of multiplicatively-r egular elements, it suffices to assume th at th ere
exists an element b of R satisfying a + a + b = a for , if such an element exists, th e
element a# = b+ b+ a satisfies both of th e above condi tion s. If a E I+(R) th en a
is additively regular with a# = a. If p is a congruence relation on R and a is an
addit ively-regular element of R th en surely alp is an additively-regular element of
Rip·

(13.1) PROPOSITION . If a is an additively-regular element ofa sem iring R then
the element a# is unique.

PROOF . Assume that band c are elements of R satisfying a+a+b -= a = a+a+ c,
b+ b+ a = b, and c+ c + a = c. Then b = b+ b+ a = b+ b+ a + a + (;= b+ a + c =
c + b+ a =c +c + b+ a + a = c +c + a =c. 0

We will denote th e set of all additively-regular elements of a semiring R by
reg(R) . This set is nonemp ty since 0 E reg(R ) with 0# = O. Also, if a E reg(R )
then a# E reg(R) with a# # = a. Note that we clearly have I+(R) ~ reg(R)n Z(R) .

(13.2) PROPOSITIO N. If R is a semiring then reg(R) E ideal(R) .

PROO F . If a, se reg(R ) th en (a# + b#) + (a + b) + (a + b) = a + b and

(a# + b#) + (a# + b#) + (a + b) = a# + b#

so a+b is addit ively regular with (a +b)# =a# +b# . If a E reg(R) and r E R th en
ra# + ra + ra = ra and ra# + ra# + ra = ra# , so ra is additively regular, with
(ra)# = ra# . Similarly ar is additively regular wit h (ar)# =a# r. Thus reg(R) is
either all of R or is an idea l of R . 0

Note , in particul ar , that if a, bE reg(R) th en a#b# = (a#b)# = (ab)## = abo
T hus, if a E JX(R) we have a =aa = (a#) 2.

If a is an addit ively-regular element of a semiring R we set aO = a + a# . This is
an addi tively-idempotent element of R. Conversely, if a is an additive-idempotent
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element of R then a = a + a = a + a# = a" , We note th at if a, b E R then
aOb = (a + a#)b = ab + a#b = ab + (ab)# = (ab)o . Similarly, ab" = (abt .

The semiring R is additively r egular if and only if R = reg(R) . If R is
additively regular then clearly so is R A for any nonempty set A and Mn(R) is also
additively regular for every positive integer n .

(13.3) E XAM PLE . [Tirasupa, 1979] A sufficient condit ion for R to be additively
regular is tha t R = VCR) + J+(R) . Ind eed , if this condit ion holds and if a E R
th en we can write a = b + e, where b has an addit ive inverse and e is additively
idempotent . Ifa# = -b+e we th en have a+a+a# = b+e+b+e+(-b)+ e = b+e = a
while a# + a# + a = (-b) + e + (-b) + e + b+ e = (-b) + e = a#.

(13.4) E XAM PLE. A ring R is additively regular , with a# = -a for all a E R .
A generalization of this observation is due to [Lee, 1971]. Let (D , ~) be a join
semilattice having a unique minimal element u and , for each i E D, let (Ri ,+i, 'i )
be a ring , where we assume that RinRj = r::l for all i # j in D. Assume furthermore
that for each i ~ j we have a ring homomorphism l ij : R, --+ Rj satisfying

(1) Iii is th e identity map for each i ED ; and
(2) Ijk/ij = li k for all i ~ j ~ k in D.

Set R = U{R; l iE D} and define on it operations of addition and multiplication as
follows: if a E R ; and b E Rij and if k =iV j in D , th en a+b = li k(a)+k Ijk(b) and
a · b = l ik(a) 'k Ijk(b) . Under thes e definitions, (R , + , .) is a semiring with additive
identi ty 0" and multiplicative identity 1" . (In fact , R = lim Ri') Moreover , R is

---+

additively regular where, for a E Ri' we let a# be the negation of a in Ri .

(13 .5) EXAMPLE . If R is an addit ively-idempotent semiring th en R is addit ively
regular with a# = a for all a E R .

(13.6) EXAMPLE . [Sen & Adhikari , 1992] Let 5 = (Ill' U {oJO}, U, rn , where IIl' is
th e set of positive integers and where the operations are given by

{
lcm(a, b) ifa,bE IIl'

aub=
00 if a =00 or b =00

and

{

gcd(a, b) if a, i e Ill'

a n b = a if b = 00

b if a =00

Then R = z::; x 5 is an additively-regular commutative semi ring in which (k, s)# =
(-k ,s). Moreover , H = {(D ,s) I s E 5} is a subtractive ideal of R cont aining
J+(R) .

(13.7) E XAM PLE. Let R be a ring and let 5 be a subsemiring of ideal(R ).
Set R' = {(a, I) I a E J E 5} and define operations EB and 8 on R' by setting
(a ,I) EB (b,H) = (a + b,J + H) and (a , I) 8 (b,H) = (ab,JH) . Then R' is an
additively-regular semiring where, for each (a , I) E R' , we have (a, I)# = (-a , I) .
Moreover , J+(R') = {CO, I) I J E 5}.
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(13.8) PROPOSITION. IfR is an additively-regular semiring which is not a ring,
then there does not exis t a semiisomorphism from R to a cancellative semiring.

PROOF . Assum e th at th ere exist a cancellat ive semiring 5 and a semiisomor­
phism T R -+ 5 . Since R is not a ring , there exists an element r E R \ V(R).
Then r" E I+(R) and so ,(rO

) E 1+(5) . But 5 is cancellat ive so ,(rO
) = 0 and

hence r" E ker(-y) . Since, is a semiisomorphism, this means th at r? = 0 and so
r E V(R) , contradicting our assumption . 0

(13.9) CORO LLARY. If T R -+ 5 is a surjective morphism of sem irings with
R additively regular and 5 cancellative then the congru ence relations =ker(,,),) and
[=h er (")') on R coincide.

PROOF . Set I = ker(-y). By Proposition 10.16 we know th at th ere exists a
semi isomorphism ,' : RI1-+ 5 induced by,. Moreover, RII is additively regular
since R is and so, by Proposition 13.8, we conclude that RI I is a ring . If r , r' E R
satisfy r[=lIr' th en th ere exist elements a and a' of I and an element s of R
satisfying r+a+s = r' + a' + s . Therefore (r+s)11= (r' + s')1 I and so rl1= r'l I
since RII is a ring . Hence r =1 r' . The converse is always true, as remarked in
Chapter 5, and so th e relations =1 and [=lI coincide. 0

If R is an additively-regular semiring then we have a congruence relation p on
R defined by a p b if and only if aO= b" , Since a p 0 if and only if a + a# =0, we
can deduce easily that this relation is improper if and only if R is a ring .

(13.10) PROPOSITION. If R is an additively -reg ular sem iring then (rlp ,+) is a
group for each r E R .

PROOF. Let r E R and let G = rip. If a,b E G then (a + b)O = aO+ bO =
r" + r" = r O and so a + bEG. In particular, r" = r + r# E G. If a E G
then a + r" = a + aO = a. Furthermore, a# E G since (a#)O = aO = r" and
a + a# =aO= r" , Thus (G , +) is an addit ive group with identity element r" , 0

Thus, in particular , we see that if R is an additively-regular semiring th en (R , +)
is the union of groups.

(13.11) PROPOSITION. Let R be an additively-regular semiring which is not a
ring and let 5 = Rip. Then

(1) 5 = IX (5) if and only if aO = aa" for all a E R;
(2) 5 is commutative if and only if ab" = b"a for all a , b E R;
(3) 5 is a lattice if and only if 5 = IX (5) , 5 is commutative, and a + aOb = a

for all a, b E R .

PROOF . (1) Assume that 5 = IX (5) . If a E R th en a p a2 and so aO= (a2)0 =
aa" , Conversely, suppose that aO= aa", Then (a2)0 = aa" = aOand so a2 p a for
all a E R. This shows th at 5 = IX (5) .

(2) Assum e that 5 is commutative. Then for a,b E R we have ab" = (ab)O =
(ba)O =bOa . Conversely, assume that ab" =b':«. Then (ab)O = (ba)O and so ab p ba
for all a , b E R, proving that 5 is commutat ive.

(3) Assum e that 5 is commutative, th at 5 = IX (5), and that the given condi tion
is satisfied . If a E R th en (a+a)O= aO+ao = aOand so a p a+a . Thus 5 =1+(5) .
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If a, bE R then aO = a# + a = a# + aOb = aO + aOb = aO + (ab)O = [a + ablo so
a p a + ab p a2 + ab p a(a + b) and hence (5, +,.) is a lattice by Example 1.5.
Conversely, if 5 is a lattice then 5 is commutative, 5 = IX (5), and aO = aO + aOb
so a = a + aO = a + aOb for all a , bE R. 0

If R is an additively-regular semiring we now define a relation ( on R by setting
a ( b if and only if a + bO = aO + b.

(13.12) EXAMPLE . If a , s« j+(R) then a = aO and b = bO so a + b" = aO + b
and hence a ( b.

(13.13) PROPOSITION. Ifa and b are elements of an additively-regular semiring
R then a ( b if and only if a + b# E 1+(R).

PROOF. If a ( b th en

(a + b#) + (a + b#) = a + b# + b# + b+ a + b#

= a + bO + (a + b#) + b#

=aO + b + a + b# + b#

= a + a# + b + a + b# + b#

=a+ b#

and so a + b# E I+(R) . Conversely, if a + b# E I+(R) th en a + b# = (a + b#)# =
a# + b so

a + bO = a + b# + b = (a + b#) + (a + b#) + b

=a + b# + a# + b+ b

=a + a# + b = aO + b,

proving that a (b . 0

In particular , a ( 0 if and only if a E 1+(R) .

(13.14) PROPOSITION. The following conditions on an additively-regular semir-
ing R are equivalent:

(1) ( is a congruence relation on R;
(2) Z(R) = I+(R) .

PROOF . (I):=} (2): Clearly I+(R) ~ Z(R) . Conversely, assume that i e Z(R) .
Then there exists an eleme nt a of R satisfying a + b = a. IIenceb+ aO =a": By (1),
aO = (a + b)O = aO + b" so aO ( band aO ( b", when ce b ( b" by (1). This implies
that b = b + b" = b"+ b" = b" so b E j+(R) .

(2) :=} (1) : If a and b are elements of R th en clearly a ( a , and a ( b when and
only when b (a . Assume that a, b, and c are elements of R satisfying a ( band
b ( c. Then , by Proposition 13.13,

(a + c#) + (a + c# + bO)

=(a + c# + bO) + (a + c# + bO) + (a + b#) + (b + c# ) + (a + b#) + (b + c#)

=(a+b#)+(b+c#) =a+c# +bo .
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By (2) , th is implies that a + c# E [+(R). Therefore a + c# = (a + c# )O and so
(a+c#)+(a+c#) = (a+c#)+(a+c#)#+(a+ c#) =a+ c# which, by Proposition
13.13, implies that a ( c. Thus ( is an equivalence relation.

If a ( c and b ( d in R th en a + b+ (c + d)O = a + b+ CO+ dO= aO+ bO+ c + d =
(a + b)O + c + d and so a + b ( c + d. Similarly, ab+ (cb)O = ab+ CO b = (a + cO)b =
(aO + c)b = aOb + cb = (ab)O + cb and so ab ( cb. In a like manner, cb ( cd and so
ab ( cd. Thus ( is a congruence relation on R. 0

An additively-regular semiring satisfying the equivalent conditions of Proposition
13.14 will be called a Bandelt semiring.

(13.15) COROLLARY. If R is a Bandelt semiring which is not addit ively idem­
potent then R/( is a ring.

PROOF . By Proposition 13.14 we know that ( is a congruence relation on Rand
so R/( is a semiring. If a E R th en a + a# E [+(R) and so, by Example 13.12,
a+a# (0. Thus a/( +a# /( = (a+a#)/( =0/(, showing that a/( has an additive
inverse in R/( . Thus R/( is a ring . 0

(13.16) PROPOSITION. A semiring R is isomorphic to a subdirect product of
a ring and a lattice if and only if it is a Bandelt semiring satisfying the following
conditions:

(1) aa" = aO for all a E R ;
(2) ab" = bOa for all a, s« R ;
(3) a + aO b = a for all a, b E R .

PROOF. If R is isomorphic to a sub direct product of a ring and a lattice then
surely it is Bandelt semiring satisfying th e given conditions . Conversely, assume
th at R is a Band el.t semiring satisfying the given conditions. By Proposition 13.11
we see that R/p is a lattice and by, Corollary 13.15, we see that R/( is a ring . We
also a morphism of semirings T R --+ R/p x R/( given by r 1-+ (r/ p , r / 0 , and all
we need to show is that this map is injective . Ind eed , assume th at ,(a) = ,(b).
Then aO = b" and a + bO = aO + b so a = a + aO = a + bO = aO + b = b"+ b = b. 0



14. SEMIMODULES OVER

SEMIRINGS

The modules over a ring are an important tool in characterizing properties of
the ring and so it is only natural that we should look at the corresponding con­
struction over semirings. And, indeed , many of the const ruct ions from ring theory
can be transfered , at least partially, to this more general setting. Moreover, many
important constructions in pure and applied mathematics can , as we shall see, be
understood as semimodules over appropriate semirings. In this chapter we lay the
foundations for the study of semimodules.

Let R be a semiring. A left R-semimodule is a commutative monoid (M, +)
with additive identity OM for which we have a function R x M --+ M, denoted
by (r , m) >-t rm and called scalar multiplication , which satisfies the following
conditions for all elements rand r' of R and all elements m and m' of M :

(1) (rr')m = r(r'm) ;
(2) r(m + m') = rm + rm' ;
(3) (r + r')m = rm + rim;
(4) 1Rm = m ;
(5) rOM =OM = aRm.

Right semimodules over R are defined in an analogous manner. In what follows,
we will generally work with left semimodules, with the corresponding results for
right semimodules being assumed without explicit mention.

If Rand S are semirings then an (R, S)-bisemimodule (M, +) is both a left
R-semimodule and right S-semimodule satisfying the additional condition that
(rm)s = r(ms) for all m E M, r E R, and s E S . If M is a left R-semimodule then
it is in fact an (R, C(R))-bisemimodule, with scalar multiplication on the right
being defined by m . r = rm. In particular, if R is commutative then any left
R-semimodule is an (R, R)-bisemimodule.

If R is a semi topological semi ring then a left R-semimodule Mis semitopologi­
cal if and only if it has the additional structure of a topological space such that the
function M x M --+ M defined by (m, m') >-t m + m' and the function R x M --+ M
defined by (a , m) >-t am are continuous. If the underlying topological space is Haus­
dorff, then the semimodule is topological. Thus every semi topological semiring is
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a semitopological left semimodule over itself.
If m is an element of a R-module M then an element m' of M satisfying m+m' =

OM is an additive inverse of m. Clearly additive inverses , if they exist , are unique ,
and we will denote the additive inverse of m , if it exists, by -m. The set V(M)
of all elements of M having additive inverses is nonempty, since 0 E V(M) . An R­
semimodule M is zerosumfree if and only if V(M) = {O} . At the other ext reme,
an R-semimodule M satisfying V(M) = M is an R-module.

A nonempty subset N of a left R-semimodule M is a subsemimodule of M
if and only if N is closed under addition and scalar multiplication . Note that this
implies that OM E N. Subsemimodules of right semimodules and subbisemimod­
ules are defined analogously. For example, if A is a nonempty subset of a left
R-semimodule M and if I E lideal (R) then the set IA of all finite sums of the form
rlml +.. ·+ rkmk (rj E I and mj E A) is asubsemimoduleof M . A subsemimodule
which is an R-module is a submodule. Thus V(M) is a submodule of any left or
right R-semimodule M containing all other submodules of M . We will denote the
poset of all subsemimodules of a left R-semimodule M by ssm(M) . An atom of
ssm(M) is a minimal subsemimodule of M .

If N E ssm(M) and a E C(R) then aN = {an I n E N} is also a subsemimodule
of M. Moreover, if a, bE C(R) and N, N' E ssm(M) we have a(N+N') = «Nu-o.N'
and a(bN) = (ab)N . Thus ssm(M) is itself a left C(R)-semimodule.

We note that if N is a subsemimodule of a left R-semimodule M and if m E M
then (N : m) = {a E R I am E N} is a left ideal of R . More generally, if A is a
nonempty subset of M we set (N : A) = n{(N : m) 1m E A} . Following the usual
convention , we will write (0 : A) instead of ({O} : A) . Since the intersection of an
arbitrary family of left ideals is again a left ideal , this too is a left ideal of R .

(14.1) PROPOSITION. If Nand N' are subsemimodules of a left R-semimodule
M and if A and Bare nonempty subsets of M then:

(1) A ~ B implies that (N : B) ~ (N : A) ;
(2) (N n N' : A) = (N : A) n (N' : A);
(3) (N : A) n (N : B) ~ (N : A + B) , with equality holding if OM E An B .

PROOF . (1) This is an immediate consequence of th e definition .
(2) By definition , if r E R then r E (N n N' : A) ¢? rm E N n N' or all

mEA ¢? rm E Nand rm E N' for all mEA ¢? r E (N : A) n (N' : A) .
(3) If r E (N : A) n (N : B) then r(m + m') E N for all mEA and m' E Band

so r E (N : A + B) . Conversely, if OM E An B then AU B ~ A + B and so the
reverse inclusion holds. 0

If T R --t S is a morphism of semirings and if M is a left S-semimodule then
it is also canonically a left R-semimodule , with scalar multiplication defin ed by
r· m = i(r)m for all r E Rand m EM . In particular, if M is a left S-semimodule
th en M is a left R-semimodule for every subsemiring R of S.

(14.2) EXAMPLE . If R is a bounded distributive lattice then the left R­
semimodules have been studied by Fofanova [1971, 1982] under the name of poly­
gons . More generally, the structure of R-semimodules over commutative simple
semirings R has been studied in [Kearnes, 1995].
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(14.3) EXAM PLE . The N-sem imod ules are precisely the commutative additive
monoids. T hus, for example, Z \ III' is an N-semimodule. Also, every sem iring R is
an N-semimodule. If R is a sem ifield which is not a field th en , by Proposit ion 4.34,
R is zerosum free and so R is also a Q +-semimodule, where, for r E R and r;- E Q +,
we set

If (M , +) is an idempotent commutat ive monoid then M is a left N-semimodule
with scalar mul t iplication defined by Om = OM for all m E M and im = m for all
m E M and all 0 < i E N.

(14.4) EXAMPLE. If M is a left R-semimodule and A is a nonempty set th en M A

is a left R-semimodule with addition and scalar mul tiplication defined elementwise:
if f ,9 E M A and r E R then (J + g)(a) = f(a) + g(a) and (r f)(a) = r[f(a)] for all
a E A. Moreover , M (A ) = U E M A I f has finit e support } is a subsemimodule of
M A .

Similarly, if M is an (R , R)-bisemimodule th en so are M A and M (A ). This is true
certainly for M = R. Thus we see tha t th e set of all R- valued relat ions between
nonempty sets A and B is an (R , R)-bisemimodule, as is the set of all R-valued
gra phs on a set of ver tices V .

If B is a boolean ring then a m easure on B is a function m from B to th e
semi ring JR + U {oo} satisfying the following condit ions:

( 1) m (b V b') = m(b) + m (b' ) whenever b /\ b' = 0 in B ;
(2) m(b) = 0 if and only if b = OB ;
(3) If {b;} is a sequence converging to b in B then m(b ) = sup {m( b; )} in JR +.

T he family of all measures on B is a subbisem imodule of the (JR +, JR +)-b isemimod ule
(JR +)B.

(14.5) ApPLICATION . Let R = (IR u{ oo} , m in , +) and consider M = Ri!. as a left
R-semimodule. Elements of M are sign a ls. Addit ion in M correspo nds to parallel
composition of signals, and scalar mul tiplication corresponds to "a m p lifica t ion of
signals. See [Baccelli et aI., 1992] for an analysis of this sit uation and its applications
to systems theory and signa l processing .

(14.6) EXAMPLE . Let A be a nonempty set and let A* be th e free monoid of
A . Let R be a semiring and let M be a left semimodule over R . Then , in a man­
ner analogous to th at used in Cha pt er 2, we can define M ((A)) to be th e set M A'

toget her with an operat ion of add it ion defined component wise. This is a <:ommu­
tative monoid . If f E R((A)) and q E M((A)) then we can define fq E M((A )) by
setting f q: w t--+ L W'W"=W f( w')q(w") for all w E A* . This operation of scalar mul­
t iplicat ion turns M (( A)) into a left R((A))-semim odule. Since R( A) is a subsemir­
ing of R((A)), this means that M (( A)) is also a left R( A)-semim odule. Moreover ,
M (A) = {q E M ((A)) I q has finite support } is clearl y an R(A)-sub semimodul e of
M((A)).
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(14.7) EXAMPLE . Let 0 be a nonempty set which is either finit e or count ably­
infinite, let R be a semiring , and let M be a left semimodule. In a mann er analogous
to that used in Chapter 2, we can define the set Ml1(M) of all (0 x O)-matrices on
M to be th e set of all functions from 0 x 0 to M. Again , addit ion can be defined
componentwi se on this set to turn (Ml1(M) , +) into an additive monoid which is
a left semimodule over Ml1 ,r(R) or Ml1 ,rc(R) .

(14.8) EXAMPLE . If R is an ent ire zerosumfree sernmng , if M is a left R­
semimodule, and if 00 is an element not in M th en we can define th e left R­
semimodule M {oo} to be the set M U{oo} on which the opera tions of addition and
scalar multiplication from M have been extended by setting m' +00 =oo+m' =00
for all m' E Moo, roo =00 for all 0 # r E R, and 000 =OM .

(14.9) EXAMPLE. If -y: R -+ S is a morphism of semirings th en S is an (R, R)­
bisemimodule in which we define r . s = ,(r)s and s . r = s,(r) for all r E Rand
s E S. Thus, in particular , if R is a semiring and A is a nonempty set then R((A))
is an (R , R)-bisemimodule in which we define rf and fr by rf:w f-t rf(w) and
fr :w f-t f(w)r for all r E R , f E R((A)) , and wE A*. Also, by Proposition 9.10,
we see th at every additively-idempotent semiring is a (lE, lE)-bisemimodule.

(14.10) EXAMPLE . Let R be a semiring and let M be a left R-semimodule.
Then (0 : M) = {r E R I rm = OM for all m E M} is an ideal of R. Moreover , if
I is any ideal of R contained in (0 : M) th en M is a left (R/ I)-semimodule, with
scalar multiplication defined by (r/ I)m = rm for all r E R and mE M .

(14.11) E X AM PL E . An JR +-subsemimodule of JR n for some positive int eger n
is called a convex cone in JR n. If C is any nonempty convex subset of JRn then
{r v IrE JR + and v E C} is a convex cone in JR". For th e relations between th ese
semimodules and barycentric algebras, see [Romanowska & Smith , 1985].

(14.12) E X A M PL E . A quemiring is a structure of th e form R x M , where R
is a semiring and M is a left R-semimodule, on which addition is defined compo­
nentwise, while multiplication is given by (a,m) · (a',m') = (aa' , am' + m) . This
is not a semiring since (a, m) . (0,0) = (0,0) only when m = O. Also note that
while right distributivity of multiplication over addition always holds , left distribu­
tivity holds only sometimes. However, the quemiring R x M cert ainly contains
R' = {(a,0) I a E R} as a subsemiring , and can be profitably be studied as a left
R'-semimodule.

An element m of a left R-semimodule M is idempotent if and only if m+m = m.
The set of all idempotent elements of M is nonempty since it contains OM and ,
ind eed , is clearly a subsemimodule of M , denoted by I(M) . If I(M) = M th en
M is additively idempotent . If M is a left R-semimodule th en the left C(R)­
semimodule ss m (M ) is additively idempotent. As with semirings , every additively­
idempotent semimodule is zerosumfree.
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(14.13) EXAMPLE. If (M , +) is an additively-idemp otent commut at ive monoid
then M is a left ~semimodule with scalar multiplication defined by Om = OM and
1m = m for all m E M . By Proposition 9.10 we know th at if R is a zerosumfree
ent ire semi ring then there exists a surj ective morphism -y:R -r 11K Thus M is also
a left R-semimodule with scalar multiplication defined by r . m = 'j'(r)m for each
r E Rand m EM. This allows us, for example, to consider (JR U {oo}, min) as
a left JR+-semimodule with scalar multiplication defined by am = m if a > 0 and
Om = 00 .

Let M be a left R-semimodule and let {Nj liE n} be a family of subsemimod­
ules of M . Then n jEnNj is a subsemimodule of M which, indeed , is th e largest
subs emimodule of M contained in each ofthe Nj • In particular, if A is a subset of a
left R-semimodule M th en th e intersection of all subsemimodules of M containing
A is a subsemimodule of M, called the subsemimodule generated by A . This
semimodule is just RA = {rt at + ...+ rnan I r j E R, aj E A}. If A generates all of
th e semimodule M , then A is a set of generators for M . Any set of generators for
M contains a minimal set of generators. A left R-semimodule having a finite set of
generators is finitely generated. An element m of the subsemimodule generated
by a subset A of a subsemimodule M is a linear combination of the elements of
A. The rank of a left R-semimodule M is the smallest n for which th ere exists a
set of generators of M having cardinality n. This rank need not be the same as the
cardina lity of a minimal set of generators for M , as th e following example shows.

(14.14) EXAMPLE . [Cechlarova & Plavka, 1996] Let R = (JR U {-oo,oo}) and
let m > 1 be a positive integer . For an arbitrary positive integer k, select elements
at < a 2 < .. . < ak+m-t in R and consider th e elements

in R'" , Then none of the elements Vh is a linear combinat ion of th e others.

(14.15) EXAMPLE. If R is a semiring and M is a left R-semimodule then two
minimal sets of generators of M need not have th e same cardinality, even if M is
finit ely-generated . For example, if S is a semiring and R = S x S th en {( Is , Is)}
and {(I s , 0) , (0, I s)} are both minimal sets of generators for R, considered as a left
semimodule over its elf.

(14.16) EXAMPLE. [Dudnikov & Samborskif, 1992] If R is the schedule algebra
then M = R3 is a left R-semimodule which is clearly finitely-generated over R . Let
N be the subsemimodule of M generated by the elements of the two-dimensional
disk of radius 1, which is orthogonal to th e element [1,1 ,1] of JR 3. Then N does
not have a finit e set of generators over R.

If M is a left R-semimodule th en th e set EjEn N, of all finit e sums of elements
of UjEnNj is a subsemimodule of M which is the smallest subsemimodule of M
containing each of the Ni. If N is a subsemimodule of M and IE ideal(R), then ,
as we have already not ed, IN is also a subsemimodule of M . Thus, in particular ,
if m E M we have the subsemimodule Rm of M defined by Rm = {rm IrE R} .
Surely M = EmEM Rm .
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(14.17) EXAMPLE . If R is a ring and R - fil is th e set of all topologizing filters
of left ideals of R th en , as we not ed in Example 1.6, (R - fil ,n , ') is a semiring.
If M is a left R-module, let sub(M) be the family of all submodules of N and , for
each N E sub(M) and", E R - fil , let N", be th e x-purification of N in M. That
is to say, N", = {m E M I 1m ~ N for some IE"'} . We claim th at (sub(M) ,n)
is a right (R - f il)-semimodule. Ind eed, if N, N ' E sub(M ) and", E R - fil then
surely (N n N')", ~ N", n N'",. Conversely, if mEN", n N '", then there exist
I , HE'" sa tisfying 1m ~ Nand Hm ~ N ' . But 1nH E r: and (InH)m ~ Nn N' .
Thus m E (N n N ')"" proving that N", n N '", = (N n N ')",. If N E sub(M ) and
«, ",I E R - fil th en (N ",,,,I) = (N ",)",' by Proposition 4.5 of [Golan , 1987]. Also ,
we clearly have N ('" n ",I) ~ N", n N ",I . Conversely, if mEN", n N ",I then th ere
exist IE'" and H E ",I with 1m ~ Nand Hm ~ N . Thus (I + H)m ~ N .
But I + HE'" n ",I , prov ing that N ('" n ",I) = N", n N ",I . Finally, it is clear th at
N1][R] = Nand N1][O] = M .

(14.18) EXAMPLE . In Example 1.19 we saw that if (L , V , A) is a frame th en the
set PN(L) of all prenuclei on L is a zsrosumfree simple semiring with add it ion given
by A and multiplication by composition of functions . Moreover, it is clear that the
dual frame (L , V, A) is then a left PN(L)-semimodule, with scalar multiplication
defined by z . c = z(c). For the case of that L is th e frame of all torsion th eories on
a module category R - mod over a ring R, this semi ring has been studied in [Golan
& Simmons, 1988].

(14.19) EXAMPLE . Let R be a semiring and let M be a left R-semimodule.
Th en ssm(M) is a left ideal(R)-semimodule, where scalar mul tiplication is defined
as above. In particular, lideal(R) is a left ideal(R)-semimodule. For the case that
R is a ring , this situation has been studied in [Anderson , 1977].

A left R-semimodule M is entire if and only if rm # OM whenever 0 # l' E R
and OM # m E M . A left R-semimodule which is both ent ire and zerosumfree
is an information semimodule over R. A complete classification of all cyclic
information semimodules over r::l is given in [Takahashi , 1985]. Since th e classes of
zerosumfree and ent ire semimodules are both clearly closed und er taking submod­
ules, we see that subsemimodules of information semimodules are again information
semimodules.

(14.20) PROPOSITION. A semiring R is entire and zerosumfree if and only if
there exists a nontrivial information semim odule over R .

PROOF . If R is ent ire and zerosumfree th en it is surely a nontrivial information
semimodule over R. Conversely, assume that th ere exists a non trivial information
semi module Mover R and let OM # m E M . If 1', 1" E R \ {O} th en r'rn # OM and
so (rr')m = r(r'm) # OM. Th erefore 1'1" # 0, proving th at R is ent ire. Moreover ,
rm # OM as well and so (1' + r')m = rrn + r'm # OM and so r + 1" # O. Thus R is
zerosumfree. 0

As in the case of subsets of R , we say th at a nonempty subset N of a left R­
semimodule M is subtractive if and only if m + m' E Nand mE N imply that
m' E N for all m , m' EM . Similarly, N is strong if and only if m+m' E N implies
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that m , m' E N for all m , m' EM. Every submodule of a left R-semimodule is
subtractive . Indeed, if N is a submodule of an R-semimodule M and m EM,
n E N are elements satisfying m + n E N then m = (m + n) + (-n) EN .
In particular , V(M) is a subtractive subsemimodule of any R-semimodule M . If
N' ~ N are subsemimodules of a left R-semimodule M such that N' is a subtractive
subsemimodule of Nand N is a subtractive subsemimodule of M then one sees
immediately that N' is a subtractive subsemimodule of M . If {Mj l iE n} is a
family of subtractive [resp . strong] subsemimodules of a left R-semimodule M then
njEnMj is again subtractive [resp. strong] . Thus every subsemimodule of a left R­
semi module M is contained in a smallest subt ract ive [resp. strong] subsemimodule
of M , called its subtractive closure [resp. strong closure] in M .

We now introduce a construction due to Takahashi [1996a]. Let R be a semi ring
and let M be a left R-semimodule. If Nand N' are R-subsemimodules of M then
set Et;!(N') = {m E M 1m + n EN' for some n EN} . It is easy to verify that for
all such Nand N' we have :

(1) Et;!(N') is an R-subsemimodule of M containing N' ;
(2) Et;!(E:!(N')) = E:!(N') ;
(3) If N is a submodule of M then Et;!(N') = N + N' .
(4) If M' is a subsemimodule of M containing both Nand N' then Et;!(N') n

M' = Et;!' (N') ;
(5) If N ~ N' th en E:! (N) n N' = E~' (N).

Moreover , we see that a subsemimodule N of a left R-semimodule M th en Et;!(N)
is precisely the subtractive closure of N in M, and so N;s subtractive if and only
if N = E:!( N) . Similarly, Ei1( N) is precisely the strong closure of N in M , and
so N is st rong if and only if EM (N) = N .

Any left R-semimodule M has two subtractive subsemimodules: {OJ and M
itself. If these are the only subtractive subsemimodules of M , then M is austere.
That is to say, M is austere if and only if it is the subtractive closure of each of its
nonzero subsemimodules.

(14.21) PROPOSITION. If M is an austere left R-semimodule then (0 : M) =
(0 : m) for all O:/; m E M .

PROOF . Clearly (0 : M) ~ (0 : m) for all m E M and so we must prove
th e reverse inclusion for all 0 :/; m EM. Ind eed , assume th at m E M satisfies
th e condition I = (0 : m) ~ (0 : M) and let N = {m' E M I I ~ (0 : m'n .
Then N is a subsemimodule of M properly contained in M since I ~ (0 : M) .
If n and n' are elements of M such that both nand n + n' belong to N then
{OJ = I(n + n') = In + In' = In' and so n' E N . Thus N is subtractive and so, by
austerity, N = {OJ. Thus (0 : m) ~ (0 : M) for all O:/; m E M . 0

If M is a left R-semimodule then the zeroid of M is defined to be Z(M) =
{m E M 1m + n = n for some element n of M}. Clearly this is a subsemimodule
of M containing I(M) which we claim is subtractive. Indeed , if m and m' are
elements of M satisfying m E Z(M) and m+m' E Z(M) then th ere exist elements
nand n' of M satisfying m + n = nand (m + m') + n' = n' . Therefore m' +
(n + n') = m' + m + (n + n') = n + n' and so m' E Z(M) . Note that if a E Z(R)
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and m E M th en th ere exists an element r of R satisfying a + r = r and so
am + rm = (a + r)m = rm. Thus am E Z(M). Since Z( M) is a subsemimodule
of M , this shows th at Z (R )M ~ M . A left R-semimodul e M is zeroic when
Z(M ) = M and nonzeroic when Z (M ) f. M .

(14.22) PROPOSITION. Let R be a sem iring and let M be a left R- semimodule.
If N , N ', and N il are subsem imod ules of M satis fying the conditions that N is
subt ract ive and N' ~ N, then N n (N' + N il) = N' + (N n N il).

PROO F . Let x E N n (N' + N il). Then we can write x = y + z , where y E
N ' and z E N il. By (2) , we have yE N and so, by (1), z EN n N il. Thus
x E N' + (N n N il), proving that N n (N' + N il) ~ N ' + (N n N il). The reverse
containment is immediate. 0

(14.23) PROPOSITION. If 1 is an ideal of a semiring Rand M is a left R­
semimodule then N = {m E M I Im = {OM}} is a subtractive submodule of
M .

PROOF . Clearly N is a submodule of M. If m , m' E M satisfy th e condition
that m and m + m' belong to N then for each rEI we have 0 = r(m + m') =
rm + rm' = rm' so m' EN . Thus N is subtractive. 0

(14.24) PROPOSITION . If N is a subtractive subsemimodule of a left R-semi­
module M and if A is a non empty subset of M then (N : A ) is a subt ractive left
ideal of R.

PROO F . Since th e int ersection of an arbitrary famil y of subt ract ive left ideals
of R is again subt ract ive, it suffices to show thai (N : m) is subt ract ive for each
element m of M . Let a E R and b E (N : m) satisfy the condition tha t a + b E
(N : m). Then am + bm E N and bm E N so am E N , since N is subt rac t ive.
Thus a E (N : m). 0

(14.25) E XAM PLE . If Rand S are semirings and if M is an (R , S )-bisemimodule
then th e set A of all matrices of th e form [ ~ n; ] for r E R , m E M , and 8 E S is a
semiring und er the operat ions of addition and mul tipli cation defined by

[ O
r m]+ [r' m' ] = [r+ r' m+ m' ]

s 0 8 ' 0 8 + 8 '

and

[ O
r m] [ r' m' ] = [ rr' rm' + m8' ].

8 0 8' 0 88'

Note that th ere is a morphism of semirings from R x S to A given by (r, 8) f-7 [~ ~ ] .

In the special case of S = R we have a subsemiring of this semiring consisting
of all matrices of th e form [ ~ ~] for m E M and r E R. T his is ca lled the trivial
extension of the semiring R by t he (R , R)-bisemimodule M .

If R is a semiring and M and N are left R-semimodules then a funct ion a from M
to N is an R-homomorphism if and only if the following condit ions are satisfied :

(1) (m + m' )a = ma + m'a for all m , m' E M ;
(2) (rm )a = r( m a ) for all m E M and r E R.
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The kernel of a is ker(a) = {ON }a-1 . This is a subtractive subsemimodule of M .
The set M a = {ma Im E M} is a subsemimodule of N .

Hom omorphisms of right semimodules and of bisemimodules are defined similarly
but are written as acting on th e left .

(14.26) EXAMPLE . If M is a left R-semimodule generated by a subset A then we
have a surjective R-homomorphism R(A) --+ M defined by f ~ L:mE stiPp(J) f(m)m.
In particular, we always have a surj ective R-homomorphism from R(M) to M .

(14.27) EXAMPLE . If R is a semiring and A is a nonempty set then for each
word w in A* we have a function f w : R((A)) --+ R given by f w : f ~ f(w) . This is
clearly a homomorphism of (R, R)-bisemimodules.

(14.28) EXAMPLE . Let R be a semiring and let {Mj liE D} be a family ofleft
R-semimodules. Then XjEfl.Mj also has th e structure of a left semimodule under
componentwise addit ion and scalar multiplication. We denot e this left semi module
by TIjEfI. u.. Similarly,

II Mj = {(mj) E IIMj Imj = 0 for all but finit ely-m any indices i}
jEfI.

is it subsemimodule of TIjEfI. Mi , For each h in D we have canonical R-homomor­
phisms 1l"h:TI M, --+ Mh and Ah:Mh --+ 11M, defined respectively by 1l"h :(m j) ~ mi,

and mhA = (Uj), where

Uj = { 0
mh

if i ::j= h

ifi = h

The R-semimodule TI M, is th e direct product of th e R-semimodules M, and
the R-semimodule 11M , is th eir coproduct . It is easy to verify that if M is a
left R-semimodule and if {Mj liE D} is a family of left R-semimodules such that,
for each i E D, we are given an R-homomorphism aj : M --+ M , then th ere exits
a unique R-homomorphism a :M --+ TI jEfI. M, such that aj = a1l"j for each i E D.
Similarly, if we are given an R-homomorphism f3j : M, --+ M for each i E D th en
th ere exists a unique R-homomorphism f3 :11jEfI. M, --+ M such that f3j = Ajf3 for
each i E D.

Let M and N be left R-semimodules and let a and f3 be R-homomorphisms from
M to N . Then K = {m E M I ma =m f3} is a subsemimodule of M . The inclusion
map A:K --+ M is the equalizer of (a , f3 ) in the sense that if () : M' --+ M is an
R-homomorphism satisfying ()a = ()f3 th en there exists a unique R-homomorphism
()' : M' --+ K satisfying () = ()' A. By a well-known result in category theory, we see
that since th e category of all left R-semimodules has products and equalizers, it
has arbitrary limits.

(14.29) EXAMPLE . Let R be a semiring and let M be a left R-semimodule. If
a :M --+ R is an R-homomorphism then we can define an operation 0 0' on M by
setting m 0 O' n = (ma)n . Then (M,+ , 0O') is a hem iring which is not , in general ,
a semiring.
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(14.30) EXAMPLE . In Example 14.17 we saw that if R is a ring and M is a left
R-module then (sub(M), n) is a right (R - fiZ)-semimodule. An R-homomorphism
a :M ---+ M ' of left R-modules induces a map a* : sub(M' ) ---+ sub(M) defined by
a*(N') = N 'a - 1 • Clearly a "(N ' n N il) = a*( N') n a"(N") . If K E R - [il and
N' E sub(M') th en

[a*(N')]K = {m EM I (N'a- 1
: m) E K}

={m EM I (N' : ma) E K} = a*(N'K)

and so a* is a homomorphism of right (R - fiZ)-semimodules.

(14.31) ApPLICATION . As we saw in Example 14.13, M = (~U {oo}, min) is a
left ~+-semimodule . Every n-tuple x = (ml' ... , m n ) of elements of M defines an
~+-homomorphism , x: (~+)n ---+ M by

This allows us to consider linear optimization problems in th e conte xt of homomor­
phisms of semimodules, as is don e in detail in [Zimmermann , 1981].

Another application of semimodule theory to optimization is the following : let
R be th e semifield (~U {oo}, mir., +) , on which we have a metric d, defined by
d(a, b) = le- a - e-bl . For a locally-compact topological space X , let Ca(X) be
the R-semimodule of all cont inuous functions f E R X satisfying th e condit ion for
each f > 0 there exists a compact subset K of X such that d(f(x) ,oo) < e for
all x E X \ K . The study of R-homomorphisrns of th e form Ca(X) ---+ Ca(Y)
is significant in the analysis of a wide range of deterministic problems in optimal
control th eory, and is develop ed for this purpose in [Kolokol 'tsov , 1992].

We have already noted that if T R ---+ S is a morphism of semirings and if M
is a left S-semimodule then M is also a left R-semimodule, with scalar multipli­
cat ion defined by r » m = ,(r)m. If a :M ---+ N is an S-homomorphism of left
S-semimodules then it is immediate that it is also an R-homomorphism.

Here we should note an important point in which semimodules over semirings
differ from modules over rings . Let R be a semi ring and let a :M ---+ N be an
R-homomorphism of left R-semimodules. Given an element n of N , we are oft en
interested in finding na- 1 = {m E M I ma = n} . If we know one element ma of
na- 1 then clearly ma + m' E na- 1 for each element m' of ker( a) . All elem ents of
na- 1 are of this form if ma E V(M) , but this need not be true in general.

(14.32) EXAMPLE. Let M be the left N-semimodule (N[t], +) and let N be the
left N-semimodule {N U {-oo} , max) in which scalar multiplication is defined by
i cot n = -00 if i = 0 and i . n = n otherwise . Then the fun ction a: M ---+ N defined
by a :p(t) 1--7 deg(p) is a surject ive N-homomorphism the kernel of which is {O} .
Nonetheless , ha- 1 is an infinite set for each 0 ~ hEN.
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(14.33) EXAMPLE. Let a and b be elements of a frame R and let 0' : R -+ R be
the R- homomorphism defined by 0' : r 1-7 r 1\ a. Then bo -1 = {r E R I r 1\ a =b} .
If a 'l. b then this set is clearly empty. Otherwise, it is {r E Rib:::; r:::; (b : an .

We have already noted that if T S -+ R is a morphism of semirings then every
left R-semimodule is canonically a left S-semimodule and every R-homomorphism
of left R-semimodules is a homomorphism of left S-semimodules as well. This
allows us occasionally to modify our choice of the semiring R to make the problem
before us easier to solve, as we will see later on.

If M and N are left R-semimodules then we will denote the set of all R­
homomorphisms from M to N by HomR(M, N). If 0' and 13 belong to HomR(M, N)
then so does the map 0' + 13 from M to N which is defined by m( 0' +(3) = rno +mf3.
It is easy to check that (H omR(M, N) , +) is an r::l-semimodule (i.e. a commuta­
tive monoid), the identity element of which is given by the map which sends each
element of M to ON . If M is an (R,S)-bisemimodule then H omR(M, N) is a left
S-semimodule, with scalar multiplication defined by so: m 1-7 (rns}o . If N is an
(R,S)-bisemimodule then H omR(M, N) is a right S-semimodule with scalar mul­
tiplication defined by O'S : m 1-7 (mO')s .

If M, N, and P are left R-semimodules and if cp : M -+ N is an R-homomorphism
then we have induced r::l-homomorphims Hom(P, cp) : HomR(P, M) -+ H omR(P, N)
and Homiip, P) :HomR(N, P) -+ HomR(M, P) given respectively by 0' 1-7 O'CP and
13 1-7 cpf3.

An R-homomorphism from a left semimodule M to itself is called an R­
endomorphism of M . Th. set of all R-endomorphisms of M will be denoted
by EndR(M). In addition to the operation of addition on EndR(M) we have an
operation of multiplication given by composition of functions : 0'13: m 1-7 (mO')f3 for
all m in M . If M is an (R , S)-bisemimodule and let S[t) be the semiring of poly­
nomials in the indeterminate t over S . If 0' E EndR(M) then 0' induces on M the
structure of a (R, S[t))-bisemimodule by setting m(I: Siti) = I: me.o" .

(14.34) EXAMPLE . Let A be a nonempty set , let R be a semiring, and let M
be a left R-semimodule. If u : B -+ A is a function from a subset B of A to A then
u induces an R-endomorphism O'u of M A defined by (O'uf)(i) = (Ju)(i) if i E B
and (O'u/)(i) = 0 otherwise.

In particular , we can consider the case of A = r::l . If B = r::l and u is defined by
u: i 1-7 i + 1 then O'u is the left shift endomorphism on M A . If B = !P' and u is
defined by u: i 1-7 i-I then O'u is the right shift endomorphism on M A .

If M is the left R-semimodule {O} then EndR(M) = [z} , where t is the identity
map m 1-7 m. If M :f {O} then EndR(M) has at least two elements: the identity
map and the map m 1-7 O.

(14.35) ApPLICATION . Let S be the semi ring of all formal languages on a non­
empty set A. Following the terminology of Abramsky and Vickers [1993], we say
that a transition system (P, -+) over A consists of a nonempty set P together
with a subset -+ of P x A x P, where we write p ~ q instead of (p, a, q) E -+. The
elements of A are the atomic actions of the transition system, while the elements
of P are the processes of the system. Each atomic action a E A defines a function
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Ba from th e set C of all subsets of P to itself given by

Ba : U >-+ {q E Pip ~ q for some p E U}.

We can expand this notion by defining Bw for each word w E A* recursively as
follows:

(1) If w = 0 th en Bw is the identity map;
(2) If w = va for some v E A* and some a E A , then Bw = BvBa.

Furtherm ore, if L E 5 we can define th e function BL : C -t C by setting BL : U >-+
U{UBw I w E L} .

Of course , (C, U) is a left $.semimodule. If L E 5 th en BL is a $.endomorphism of
C and , ind eed, {BL I L E 5} is a sub semiring of the semiring of all $.endomorphisms
of C, so that C becomes a right 5-module in which, for each U E C and L E 5 ,
we have UL = {q E Pip ~ q for some pEP and w E L}. This semimodule is
zerosumfree but not necessarily ent ire. But 5' = {L E 5 I L = 0 or 0 E L} th en
5' is a subsemiring of 5 and C is an information semimodule over 5' .

(14.36) PROPOSITION. If R is a sem iring and M :j:. {O} is a left R- semimodule
then 5 = EndR(M) is a sem iring and M is an (R ,5)-bisemimodule.

PROOF . The proof that 5 is a semiring with additi ve identity given by m >-+ 0
and mul tiplicative identity given by m >-+ m is st raight forward . Similarly, it is
st raig htforward to show th at M is an (R , 5)-bisemimodule. Refer to Example
1.13. 0

Note that if M is an additively-idempotent left R-semimodule and if a belongs
to EndR(M) then m( a + a) = rno + rno = rno and so a + a = a. Thus the
semiring EndR(M ) is additively idempotent.

(14.37) EXAMPLE . If M is a nonzero left R-semimodule, it is possibl e for th e
semiring 5 = EndR(M) to be zeroic. For example, set R = M = lE. Then 5
consists precisely of the maps m >-+ 0 and m >-+ m and hence is sure ly zeroic.

(14.38) EXAMPLE. [Corni sh, 1971] To each semiring R we can associate th e
semiring 5 = EndR(RR) x EndR(RR) consist ing of pairs (<p , B) of maps from R
to its elf, the first member of which is a homomorphism of right semimodules and
th e second member of which is a homomorphism of left semimodules. Addition
and multiplication on 5 are defined componentwise. An element (<p , B) of 5 is a
bimultiplication of R if and only if a[<pb] = [aB]b for all a, bE R. The set bim(R)
of all bimultiplications of R forms a subsemiring of 5. Moreover , we have a map
T a >-+ (<Pa ,Ba) from R to bim(R) defined by <Pa: r >-+ ar and Ba :r >-+ ra for all
r E R. This is in fact a morphism of semirings. We claim that , is in fact an
isomorphism. Indeed , if ,(a) = , (b) th en a = <Pa(l ) = <Pb (l ) = b and so , is
injective. If (<p , B) E bim(R) and if a = <p I th en 10 = (IB)1 = 1(<pl) = la = a.
Moreover , for each r E R we have <p(r ) = <p(l r ) = (<pl)r = ar and similarly rO = ra.
Thus (<p ,0) = , (a), showing that, is surject ive.
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(14.39) EXAMPLE . Let R be a semiring, let M =I {O} be a left R-semimodule,
and let () : R -+ EndR(M) be a morphism of semirings. Then we can define the
structure of a semiring on R x M by defining addition and multiplication as follows:
(r, m) + (r' , m') = (r + r', m + m') and (r, m) . (r' , m') = (rr' , rm' + m()(r')) for all
r.r' E Rand m,m' E M . We will denote this semiring by R Xe M . Moreover, the
map r >-+ (r,O) is a morphism of semirings.

Let M1 , ... , Mn be left R-semimodules and let M = Xi'=1M] , Let S be the set of
all rectangular arrays [ajj) where, for each 1 ::; i, j ::; n , aij is an R-homomorphism
from M, to M] . Define addition and multiplication in S by setting [aij) + [,8jj) =
[ajj + ,8ij) and [ajj)[,8jj) = [()jj], where ()ij is defined to be 2::7=1 a jh,8hj . Then Sis
a semiring. Moreover, we have a morphism of semirings T S -+ EndR(M) which
takes [ajj) to th e endomorphism 0' of M defined by

For each 1 ::; i ::; n, let Aj : M, -+ M be the canonical embedding of M, into the
ith component of M and let 1I'i: M -+ M, be the canonical projection of M onto
its ith component . Then each R-endomorphism 0' of M is the image under I of
[Aja1l'j] and so I is surjective. Moreover, I is also clearly injective and hence is an
isomorphism of semirings.

If M is a left R-semimodule and 0' E EndR(M) then , for a given element m of
M it is still difficult, in general, to find all of the members of ma- 1 = {m' E M I
m'a ='m}.

(14.40) EXAMPLE . [Kim & Roush , 1980] let R = Iffi, let M = R2 , and let
0' E EndR(M) be defined by 0' : (a, b) >-+ (a+b, b). Then 0' is multiplicatively regular
since it is multiplicatively idempotent . Moreover, (0,1) E (1,1)0'-1 . However,
(0,1) =I (1,1)0',8 for any ,8 E EndR(M) satisfying 0',80' = 0' , as can be easily
verified directly.

Let R be a semiring and let 0' : M' -+ M and ,8: M -+ Mil be R-homomorphisms
of left R semimodules. If for each m E M th ere exists a unique element x E M 0'

satisfying m,8 = x,8 then the function 1I'a ,/3 :m >-+ x is an R-endomorphism of M
satisfying the following conditions:

(1) 1I'a ,/3 = 11'; ,/3 ;
(2) a1l'a,/3 = 0' ; and
(3) 1I'a ,/3,8 =,8.

In other words, 1I'a,/3 is the projector onto M.a parallel to ker(,8) . Such maps
were first studied by Cohen et al. [1996, 1997] .

(14.41) EXAMPLE. Even in the apparently-simple case of R taken to be the
schedule algebra and the semimodules M', M , Mil taken to be of the form Rk for
suitable values of k , the map 1I'a ,/3 may be difficult to calculate for specific 0' and
,8. See [Gunawardena, 1994] or [Cohen et al., 1996) .



15. FACTOR SEMIMODULES

Congruence relations play ed an important role in th e th eory of semirings and
we would expect them to playa similar role in the th eory of semimodules. Let R
be a semiring and let M be a left R-semimodule. An equivalence relation p on M
is an R-congruence relation if and only if m p m' and n p n' in M imply that
(m + n) p (m' + n') and rm p rm' for all r E R. In other words , an R-congruence
rela tion p on M is an equivalence relation satisfying the condit ion that p is also a
subsemimodule of M x M . Denote th e set of all R-congruence relations on M by
R - cong(M ). This set is nonempty since it contains the trivial R-congruence
=t defined by m =t m' if and only if m = m' and th e universal R-congruence
=udefined by m =u m' for all m , m' E M. I[ M i:- {OM} and th ese are the only
two elements of R - cong(M) , th en the R-semimodule M is simple. Moreover ,
R - cong(M ) is partially-ordered by the rela tion :S defined by P:S p' if and only if
m p m' implies that m p' m'. Clearly =t :S p :S =u for all R-congru ence relations
pin R - cong(M) .

If W is a nonempty subset of R - cong(M ) then th e relation p on M defined
by m p m' if and only if m p' m' for each p' E W is also an R-congruence rela tion
on M and p" :S p' for each p' in W if and only if p" :S p. Thus R - cong(M) is
a complete lattice. I[ m, m' E M we will denote th e unique smallest element p of
R - cong(M ) sa tisfying m p m' by P(m, ml ) .

I[ p belongs to R- cong(M) for some left R-semimodule M and if a E C(R) th en
we can define a relation "p on M by set ting m "p m' if and only if am pam' . It is easy
to verify that this is an R-congruence relation which, indeed , turns (R-cong(M) , V)
int o a left C(R)-semimodule.

If N is a subsemimodule of a left R-semimodule M and if p belongs to R ­
cong(M ), th en the restriction of p to N is an R-congruence relation on N . Thus
we have a canonical map from R- cong(M) to R-cong( N) given by restriction . If
N is a sub semimodule of a left R-semimodule M and if ( is a given R-congruence
relati on on N then th ere exists a unique maximal R-con gru ence relation on M the
restriction of which to N is ( . We will denote this congruence relati on by =(IN. In
particular , we will denote by ==I N th e unique maximal R-con gru ence relation on
M the restriction of which to N is the trivial relation.

Let p be an R-congruence relation on M and , for each m EM , let mjp be the
equivalence class of m with respect to this relation . Set M j p equal to {mjp I m E
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M} and define operations of addition and scalar multiplication on MI p by setting
(ml p)+(nlp) = (m+n)1 p and rirn]p) = (rm)1 p for all m , n E M and r E R. Th en
M Ip is a left R-semimodule, called the factor semimodule of M by p . Moreover ,
we have a surj ective R-homomorphism M -+ M Ip defined by m I-t m]p. Clearly
M I p equa ls M I p' if and only if p and p' are equal.

If N is a subsemimodule of a left R-semimodule M then we have a canonical map
from R-cong(M) to R-cong(N) given by restriction . If p is an R-congruence rela­
tion on M th e restriction of which to N is p' , then there is a monic R-homomorphism
Nip' -+ M I p defined by nip' I-t nip. In particular , if th e restriction of p to N is
trivial then the function N -+ M I p given by n I-t nip is monic .

If C is an R-congruence relation on M Ip then C defines a relation C* on M by
m (* m' if and only if irn] p) C(m' I p). Clearly (* is an R-congruence relation on
M satisfying (* 2: p. Moreover, the fun ction CI-t C* is a morphism of complete
lattices from R - cong(Mlp) to R - cong(M). If p ::; p' in R - cong(M) th en
we have an R-congruence p'I p in R - cong(M I p) defined by th e condition that
(mlp) p'lp (m'lp) if and only ifm p' m' . Clearly, pip is the trivial R-congru ence
on Mlp .

Let M be a left R-semimodule and let p belong to R - cong(M) . If N is a sub­
semimodule of M , then N' = {m E M Imp n for some n E N} is a subsemimodule
of M containing N. Moreover , if p' is the restriction of p to N' then N' I p' and
Nip are equal.

(15.1) EXAMPLE. If 0' : M -+ N is an R-homomorphism of left R-semimodules
then 0' defines an R-congruence relation =a on M by m =am' if and only if
rno = m'cc. Thus, 0' is monic precisely when =a is trivial. Note that 0' also
induces an R-homomorphism 0" from MI =ato N defined by trn] = a)O" = rno
and that this R-homomorphism is in fact monic. More generally, if 0' : M -+ N is
an R-homomorphism of left R-semimodules and if pER - cong(M ) satisfies th e
condition th at p ::; =a ,then th ere exists a unique R-homomorphism 13:M Ip -+ N
satisfying 13:m]p I-t rno for all m EM.

Also not e that if pER - cong(M) and if 0' : M -+ M I p is the R-homomorphism
given by 0': m I-t m]p th en =a and p coincide.

(15 .2) EXAMPLE. If R is a semiring and A is a submonoid of C(R) th en A
defines an R-congruence relation =A on any left R-semimodule M by setting m =A
m' if and only if th ere exists an element a of A satisfying am = am' . As a special
case of this , let R be a commutative semi ring and let A = J{ X(R) , the set of
all multiplicatively-cancellable elements of R . If the R-congruence relation on M
defined by J{x (R) is trivial th en M is classically torsionfree.

(15.3) EXAMPLE . If N is a subsemimodule of a left R-semimodule M , th en N
induces an R-congruence relation =N on M, called the Bourne relation , defined
by setting m =N m' if and only if there exist elements nand n' of N such that
m+n = m' +n' . Note that , using the notation introduced in the previous chapter,
- . . E M XM ( - )=N IS Just NxN =t .

If m E M then we write mfN instead of m] =N. The factor semi module M I =N
is denoted by MIN. Note that nlN = 0IN for all n E N and so if mE M then
amiN = 01N for all a E (N : m). A slight modification of the proof of Proposition
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6.50 shows that if N is a subsemimodule of a left R-semimodule M then 0/N is a
subtractive subsemimodule of M and , indeed, is the subtractive closure of N in M .

We have already noted that both ssm(M) and R - cong(M) are left C(R)­
semimodules. It is a straightforward consequence of the definitions that the function
(} : ssm(M) -+ R-cong(M) defined by (} : N 1--+ =N is in fact a C(R)-homomorphism.
If Nand N' are subtractive subsemimodules of M satisfying (}(N) = (}(N') then
for each n E N we have 0 =N n and so 0 =N' n . Thus there exist n', n" E N' such
that n + n' = n" . Since N' is subtractive, this implies that n E N' and so N ~ N' .
The reverse containment is proven similarly and so N = N' .

(15.4) EXAMPLE . If N is a submodule of a left R-semimodule M then N induces
an R-congruence relation [=)N on M , called the Iizuka relation , defined by setting
m [=)N m' if and only if there exist elements nand n' of N and an element m" of
M such that m + n + mil = m' + n' + mil . If m E M we writ e m[f)N instead of
m/[=)N .

(15.5) EXAMPLE . If M is a left R-semimodule and if p and p' belong to R­
cong(M) Then the relation p" on M defined by m p" m' if and only if there exist
x , x' E M such that x p' x and (m + x) p (m' + x') . Then p" is an R-congruence
relation on M and p ~ p".

If p ~ p' in R - cong(M) then we can define the relation p'/ pER - cong(M/p)
by setting (m/ p) p'/ p (m' / p) if and only if m p' m' . Then clearly p = p' if and
only if p'/p is the trivial congruence in R- cong(M/p).

A nonzero subsemimodule N of a left R-semimodule M is absorbing if and only
if the following conditions are satisfied:

(1) If 0 =F n E Nand mE M then 0 =F n + mEN;
(2) If 0 =F n E N then (0 : n) = {O} .

I[ N is an absorbing submodule of M we will write N !;;; M .

(15.6) PROPOSITION. Let R be a semiring and let 0' : M -+ M' be an R­
homomorphism of left R-semimodules satisfying the condition that ker( 0') !;;; M .
If N' !;;; M' then N = N,O'-l !;;; M .

PROOF. Let 0 =F n E N and let m E M. Ifn E ker(O') then n+m E ker(O') ~ N
by hypothesis. Otherwise, 0 =F nO' E N' and so, by hypothesis, (n + m)a =
no + rno E N', proving that n + mEN. Similarly, let r E R satisfy rn = O. I[

n E ker(O') then r = 0 by hypothesis. Otherwise , r(nO') = 0, where 0 =F nO' EN',
and so t: = O. 0

Thus {O} U{i E N Ii> n} !;;; N for all n E N. Any nonzero R-semimodule which
is an absorbing subsemimodule of itself is zerosumfree. Moreover, a necessary
and sufficient condition for there to exist an R-semimodule which is an absorbing
subsemimodule of itself is that R be an absorbing subsemimodule of itself, which is
equivalent to R being entire and zerosumfree. An element w of a left R-semimodule
M is infinite if and only if w +m = w for all m EM ; it is strongly infinite if and
only if {OM ,w} !;;; M . In this case, {OM ,w} is called the crux of M and denote by
cr(M). If M has no strongly infinite elements, we set the crux of cr(M) = {OM}'
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Thus the crux of a left R-semimodule M is always an information subsemimodule
of M and surely cr(M) ~ M . If it equals all of M, we say that M is crucial.
Otherwise it is noncrucial. Note that if M is an information semimodule over
an entire zerosumfree semiring R then one can always adjoin a strongly infinite
element to M. Indeed , pick an element w $ M and define addition and scalar
multiplication on M U {w} by setting m + w = w + m = w for all m E M, rw = w
for all 0 :I r E R, and Ow = OM .

(15.7) EXAMPLE . Let {(Mi , +i) liE n} be a family of left information semi­
modules over a semi ring R, th e underlying sets of which are disjoint . Further
assume that each M, has a strongly-infinite element Wi . Set

M = {O, w} U U[Mi \ cr(MdJ,
iEO

where 0 and ware elements not in UiEOMi . Define addition and scalar multiplica­
tion on M as follows:

(1) 0 + m = m + 0 = m and rO = 0 for all m E M and r E R;
(2) w + m = m + w = wand rw = w for all m E M and all 0 :I r E R ;
(3) If m, m' EM \ {O, w}, th en

, {m+ h m'
m+m =

w

if m, m' E Mh \ cr(Mh)
otherwise

(4) If m E M h \ er(M h) and r E R then rm is the same as the correspond­
ing value in M h . Then M is an information semimodule over R having
strongly-infinite element w. Moreover, for each i E n we have an monic
R-homomorphism Ai:M, --+ M defined by

{
w if x = Wi

Ai :X f---> •

x otherwise

We denote the semimodule M constructed in this way by U iEOMi .

Let R be an entire zerosumfree semiring and let a : M --+ M' be an R-homomor­
phism of left R-semimodules. As an immediate consequence of Proposition 15.6,
wee see that if w' is a strongly-infinite element of M' contained in M a then N =
w'a- 1 U {OM} is an absorbing subsemimodule of M .

A semimodule can have at most one [strongly] infinite element . If R is antisimple
then every infinite element of a left R-semimodule is strongly infinite. Indeed , in
this situation , any nonzero element r of R is of the form 1 + r' and so rw =
(1 + r')w = w + r'w = w . If w is a strongly-infinite element of a left R-semimodule
M and if N is a subsemimodule of M , then N U {w} is also an R-semimodule of
M . By Proposition 14.20, we note that if R is not ent ire and zerosumfree than no
left R-module can have a strongly-infinite element.
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(15.8) EXAMPLE . [Takah ashi , 1984a] Let R be an antisimple semiring and let
M be a left R-semimodule which is not an R-module. Then N = {OM }U[M\ V(M)]
is an absorbi ng subsemimodule of M , Indeed, if n , n' E N then clearly n + n' E N.
If OM #- n E N and a #- r E R th en r = 1 + s for some s E R. Thus rn + n' = OM
impli es th at n + (sn + n') = OM and so n E V(M) , which is a cont radict ion.
Thus rn E N as well. Thus N is a subsemimodule of M . Let m E M and
n E N \ {OM} = M \ V(M) . If m + n rt. N \ {OM} th en m + n E V(M) so th ere is
an elemen t m' E M sa tisfying OM = m + n + m' = n + (m + m') , contradicting the
assumption th at n rt. V(M) . Thus N ~ M .

We also not e th e converse, if N ~ M and N satisfi es th e condition th at
M \ V(M) ~ N th en M \ V(M) = N for if OM #- x E V(M) n N th en there
exists an element OM #- y E V( i\!I) satisfying x + y = 0, cont ra dict ing th e fact that
M + [N ~ {OM}] = N ~ {OM} '

An absorbing subsemimodule N of a left R-semimodule M defines a congruence
relation "'N on M by setting m "'N m' if and only if m = m' or both m and m'
belong to N \ {a}. Note that M/ "'N= (M \ N) U {O ,w} , where w is a strongly­
infinite element of M / '"N .

If a : M --. N is an R-homomorphism of left R-semimodules and if m, m' are
elements of M satisfying m =ker(o) m' th en sur ely m =0m' , but the converse
does not necessarily hold. If th e relation s =0and =k er(o) coincide, th en th e
R-homomorphism a is steady. Thus, for example, a steady R-homomorphism
a :M --. N is moni c if and only if ker(a) = {a} .

(15.9) PROPOSITIO N. If a is a s teady R- endomorphism of a left R -semimodule
M th en a k is s teady for each k 2: 1.

PROOF . The proof will be by induction on k. For k = 1 th e result is given .
Assum e th erefore that a k is steady and let m and m' be elements of M satisfying
mak+1 =m'a k+1

• Then (mak)a = (m'ak)a so, by steadiness, th ere exist elements
x and x ' of ker(a) such that mak+x =m'ak+x'. But then (m+x)a k = (m'+x' )a k

so th ere exist elements y and y' of ker(a k
) such that m + x + y = m' + x' + y' ,

where x + y and x' + y' belong to ker(ak+ 1 ) . Thus a k+1 is steady. 0

(15.10) PROPOSITION. Let R be a sem iring and let N' ~ N be subsem im od­
ules of a left R-semimodule M . Th en th e function a : M / N ' --. M / N defined by
a :m]N ' ........ m]N is a s teady surjec ti ve R-homomorphism.

PROOF . That a is a surj ective R-homomorphism is clear. Suppose that m]N'
and m' / N' are elements of M / N' satisfying (m/N ' )a = (m' / N')a . Then m]N =
m' / N and so th ere exist elements nand n' of N satisfying m + n = m' + n' . But
nfN' and n'/ N' belong to ker(a) and so m =ker( o) m' . Thus a is steady. 0

(15.11) PROPOSITIO N. Let R be a semiring and let a : M --. N be an R­
homomorphism between left R-semimodules. Let {3: M --. P be a surject ive st eady
R-homomorphism between left R-semimodules satisfying ker({3) ~ ker( a). Th en :

(1) There exists a unique R-homomorphism 0: P --. N satisfying a = {30;
(2) If a is monic so is 0;
(3) ker(O) = (k er(a)) {3 ; and
(4) PO = MO' .
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PROOF . (1) Since (3 is surj ective we know th at if pEP th en p(3-1 :/= 0 . If
m , m' E p(3-1 th en m = [3 m' and so, by steadiness, m =ker([3) m' . Thus there exist
elements k , k' E ke r( (3) ~ ker( a) sat isfying m + k = m' + k' and so

rno = ma + kcx = (m+ k)a = (m' + k')a = m'a + k'a = m'o ,

Define the function 0: P ----> N by 0:p 1-+ rno , where m is any element of p(3-1 . Then
this function is well-defined, and it is easy to show that it is an R-homomorphism
of semimodules satisfying a = (30. Moreover , if 0' : P ----> N is an R-homomorphism
sat isfying a = (30' and if pEP th en for any m E p(3-1 we have pO' = m (30' =
m (30 = pO , proving that 0 = 0' .

(2) Assume a is moni c. If P10 = P20 and if mi E Pi (3-1 for i = 1,2, th en
m1 a = m1 (30 = m 2(30 = m2a and so m1 = m 2· Therefore P1 = m1 (3 = m 2(3 =P2,
proving that 0 is moni c.

(3) Clearly (k er(a) )(3 ~ ker(O) . Conversely, if p E ker(O) and if mE p(3-1 th en
ma = pO = ON so P = m (3 E (k er(a))(3, establising equality.

(4) This is immediate from th e definition . 0

We now prove a dual of this result.

(15.12) PROPOSITION. Let R be a sem iring and let a : M ----> N be an R­
homomorphism between left R-semimodules. Let (3: P ----> N be a monic R-homo­
morphism of left R-semimodules satisfying the condition that P(3 is a subtractive
subsem im odule of P containing M a . Then :

(1) There exists a unique R-homomorphism 0: M ----> P satisfying a = 0(3;
(2) ker(O) = ker(a) ;
(3) Th e subtractive closure of MO in P is N'(3- 1, where N' is th e subtractive

closure of M ain N ; and
(4) 0 is monic if and only if a is monic.

PROOF . (1) If m E M th en rno E Ma ~ P(3. Since (3 is monic, this means
that th ere exists a unique element p of P satisfying pO = ma . Set mO = p. By
uniqu eness, it is easily seen th at the function 0: M ----> P thus defined is an R­
homomorphism satisfying a = 0(3 , which is unique.

(2) If mE ker(a) th en Op(3 = ON = rno so mO = Op, proving that mE ker(O) .
Conversely, if mE ker(O) then ma =mO(3 =ON so m E ke r(a) .

(3) Since P(3 is subtractive, we note that N' ~ P(3. Let P' be th e subtractive
closure of M 0 in P . Then pEP' {:} p' + mO = m' 0 for some m , m' E M {:}
p' (3+ rno = m' a {:} p'(3 E N' {:} p' E N' (3-1.

(4) This is an immediate consequence of the definition. 0

If a : M ----> N is an R-homomorphism of left R-semimodules th en we define the
coimage of a to be coim(a) = M / ker( a) and th e cokernel of a to be N / M a .

(15.13) PROPOSITION. If M is a simple left R-semimodule then M has no
subtractive subsemimodules other than {OM} and itself. The converse is tru e if M
is an R-module.

PROOF . Let M be a simple left R-semimodule and let N be a subtractive sub­
sernimodule of M. Then th e R-congruence relation =N is either trivial or univ ersal.
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If it is trivial and if n E N then n =N OM so n = OM . Thus N = {O N}. If =N is
universal and m E M th en m =N OM so th ere exists an element n of N satisfying
m + n EN . Since N is subt ract ive, thi s implies th at mEN and so we must have
N=M.

Conversely, let M be a left R-module sat isfying th e condition that {OM} and M
are its only subtractive submodules and let p be an R-congruence relation on M.
Set N = {m EM Imp OM}. Then N is a subtractive submodule of M. If N = M
th en p is universal ; if N = {OM} th en p is trivial. Therefore M is simple. 0

As an immediate consequence of Proposition 15.13 and Proposition 14.23, we
see that if M is a simple left R-semimodule and if I is an ideal of R th en either
I ~ (0 : M) or I q, (0 : m) for all OM :F m E M. Also, if M is simple and if
a : M -+ N is a nonzero R-homomorphism, th en ker(a) must be equal to {O} .

(15.14) PROPOSITIO N. IfN is a subsemimodule ofa left R-semimodule M then
the R-congruence relations =N and =O/N on M coincide.

PROOF . The proof is essent ially the same as that of Proposition 6.54. 0

If M and N are left R-semimodules th en an R-homomorphism a : M -+ N is an
R-monomorphism if and only if whenever f3 and f3' are distinct R-homomorphisms
M' -+ M for some left R-semimodule M' th en f3a :F f3' a. Dually, 0' is an R­
epimorphism if and only if whenever f3 and f3' are distinct R-homomorphisms
N -+ N ' for some left R-semimodule N ' th en a f3 :F a f3'. A function which is both
an R-epimorphism and an R-monomorphism is an R-isomorphism. If a :M -+ N
is an R-isomorphism th en it is easily verified that so is a- 1 : N -+ M . An R­
isomorphism of left R-semimodules 0': M -+ N induces an isomorphism of semirings
EndR(M) -+ EndR( N) defined by, ....... 0'-1,0' .

A surjective R-homomorphism having kernel {O} is an R-semiisomorphism.
Surely R-isomorphisms are R-semiisomorphisms, but the converse is not th e case.
If M is a simple left R-semimodule then any surj ective R-endomorphism of M is
an R-semiisomorphism. If 0' : M -+ M' and f3 :M' -+ Mil are R-semiisomorphisms
th en so is a f3: M -+ Mil .

(15.15) PROPOSITIO N. If a : M -+ N is an R-homomorphism between left R­
modules then :

(1) 0' is monic if and only if it is an R-monomorphism;
(2) 0' is surjec tive if and only if it is an R-epimorphism and M a is subtractive.

PROOF . (1) Let a: M -+ N be an R-homomorphism of left R-semimodules. If
a is monic, it is clearly an R-monomorphism. If it is not moni c th en th ere exist
elements m :F m' of M satisfying rno = m' a . Define R-homomorphisms (3 and (3'
from R, considered as a left semimodule over itself, to M by set t ing (3: a ....... am
and (3' : a ....... am' . Then (3 :F (3' but f3a = (3' 0', showing that a is not an R­
monomorphism.

(2) If a is surj ective th en it is clearly an R-epimorphism and M a is subtrac­
tive . Conversely, assume that a is an R-epimorphism satisfying th e condition th at
M a is subtractive, but that a is not surj ective. Set N' = NO' . Then we have
R-homomorphisms from N to N/N' given by (3 :n ....... O/N' and (3' :n ....... nfN' ,
Moreover , af3 = af3'. Since a is not surj ective, there exists an element n E N \ N' .
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Then n/N' = 0/N' implies that th ere exist elements ma and m' a of N' with
n + rno = 0 + m' a E N' which , by th e subtractiveness of M a , implies that n EN'.
This is a contradiction and so we conclude that n j3' = ti]N' # 0/N' = nj3 and
hence 13 # 13' , cont radict ing th e assumption that a is an R-epimorphism. 0

(15.16) EXAMPLE . Let R be a semiring and M be a left 1"l-semimodule. Then
(R, +) is also a left 1"l-semimodule. Let M# be the set of all Js-homomorphisms
from R to M, written as acting on th e right. If () and <p are elements of M# and
if r E R then we define () + <p and r() by a«() + <p) = a() + alP and (a)(r()) = (ar)()
for all a E R. It is straightforward to see that , under th e given definitions , M# is
a left R-semimodule. Moreover , if M is a left R-semimodule then we have an R­
homomorphism A: M -+ M# defined by (mA) :a >-+ am for all a E R and all mE M .
Since 1(mA) = m for all m EM , we see that th e function A is monic and hence
an R-monomorphism. If a :M -+ N is an R-homomorphism of left R-semimodules
then a defines an R-homomorphism 0'# : M# -+ N# given by () >-+ ()a.

(15.17) PROPOSITIO N. Let M be a left R-semimodule and let a be a steady
R-endomorphism of M . Th en a sufficient condition for a to be an R -isomorphism is
that it be monic and M satisfy the descending chain condition on subsem im odules
or that it be surjective and M satisfy the ascending chain condition on subsemi­
modules.

PROOF . Assume that a is monic and M satisfy the descending chain condition
on subsemimodules. By Proposition 15.15, a is an R-monomorphism. Moreover ,
Man ~ Man- 1 for all n > 0, where 0'0 is taken to be t he identity map on M ,
and so there exists a natural number t such that Mat = M a t- 1. Pick the smallest
such t . If t = 1 then M a = tv! and so a is surjective , hence an R-epimorphism,
and hence an R-isomorphism If t > 1 and y E M a t- 1 then yo' E Mat = M a t- 1

and so th ere exists an elem er.i m of M such that yo' = mat- 1. Since a is monic ,
this implies that y = mat- 2 E M a t- 2 and so M a t- 2 = M a t- 1, contradicting th e
minimality of t. Hence we must have t = 1 and so a is an R-isomorphism.

Now assume that a is surjective and that M satisfies the ascending chain con­
dition on subsemimodules. By Proposition 15.15, a is an R-epimorphism. Set
f{o = {OJ and, for each i > 0, set K, = k er(a i ) . Then there exists an int eger
n > 0 such that f{n = f{n-1 . Let t be th e smallest such integer . If t = 1 then
ker(a) = {O} and so, by st eadiness, a is monic , hence an R-monomorphism, and
hence an R-isomorphism. Assum e therefore that t > 1. If mE J{t-1 write m = yo' .
Then 0 =mat- 1 = (ya)at- 1 = yat . Hence y E K, = [(t-1 so 0 = yat- 1 =mat- 2.
Therefore m E [(t- 2 and so [(t-1 = J{t-2 , contradicting the minimality of t . Thus
we must have t = 1 and so a is an R-isomorphism. 0

The following result is the analog of Proposition 10.11.

(15.18) PROPOSITIO N. Let R be a semiring and let M be a left R-semimodule.
Th en a subset N of M is a subtractive subsemimodule if and only if there exists
an R-homomorphism a : M -+ M' satisfy ing N = ker(a) .

PROOF . We have already noted that kernels of R-homomorphisms M -+ M'
are subtractive submodules of M . Conversely, assume that N is a subtractive
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subsemimodule of M and let M' = MI N. Let a : M ---> M' be th e surjective R­
homomorphism of left R-semimodules defined by a : m f-+ mlN : Then ker( a) =
{m E M I m =N O} = {m E M I th ere exist n , n' E N satisfying m + n = n'} .
But , since N is subt racti ve, this is just N. 0

(15.19) PROPOSITION. Let R be a sem iring and let a : M ---> N be an R­
homomorphism of left R-semimodules. If N' is a subtractive subsem im odule of
N and if M' = N'a- I ~ M , then :

(1) M' is a subtractive subsem im odule of M containing ker(a) ; and
(2) a induces an R-homomorphism {3: MIM' ---> NIN' having kernel {O} .

PROOF . (1) If m' , mil E M' and if r E R th en (m' + m")a = m'a + mila E N'
and (rm')a = r(m'a) EN' and so M' is a subsemimodule of M. Since ON EN' ,
clearly ker(a) ~ M' . Finally, if m' + mil E M' and mil E M' then m'a + mila and
mila both belong to N ' . Since N' is subtractive, this implies th at m' a E N' and
so m' EM'. Thus M' is also subtractive.

(2) Define {3 by {3: m]M' f-+ malN ', This map is well-defined for if e] M' = ylM'
then x =M' y and so there exist eleme nts m' and mil in M' satisfying x + m' =
y + mil . As a consequence, xa + m'a = (x + m')a = (y + m")a = ya + mila .
But m'cx and mila both belong to N ' and so xa =N' ya , whence xalN' = yalN'.
Moreover , (3 is clearly an R-homomorphism. If xlM' E ker( {3) then x a lN' = 0
and so there exist elements n' and nil of N' satisfying xa + n' = nil . Since N' is
subtractive , this implies that xa E N ' and so x EM' . Thus x[M' = 0IM' , proving
that ker({3) = {O} . 0

(15.20) COROLLARY. Let R be a sem iring and let a : M ---> N be a surj ective
R-homomorphism of left R-semimodules. Th en th ere exists an R-semiisomorphism
Mlker(a) ---> N .

PROO F . This is a dir ect consequence of Proposition 15.19 . 0

(15 .21) C OROLLARY. If R is a semiring and if N' ~ N are subsem im odules of
a left R-semimoduleM then MI N is R-isomorphic to (MIN')/( NIN').

PROOF . Let a : MIN' ---> MIN be the surj ective R-homomorphism defined by
ocmfN' f-+ mfN , Then ker(a) = N IN'. By Corollary 15.20 , th e fun ct ion a
induces an R-semiisomorphism {3: (MIN')/(NIN') ---> MIN . Moreov er , by Corol­
lary 15.10, we see that {3 is st eady and hen ce is monic. Therefore (3 is an R­
isomorphism . 0

The following result is the semimodule equivalent of Proposition 10.19.

(15.22) PROPOSITIO N. Let R be a semiring. If N and N ' are subsem im odules
ofa left R-semimodule M then there exis ts a canonical surjective R-homomorphism
a : N ' I[N n N ' ] ---> [N + N'J/N, which is an R-semiisomorphism if N is subtractive.

PROOF. Define the function a : N ' / [N n N'] ---> [N + N']IN by a :n'/[N n N'] f-+

n' IN . This is clearly a well-defined surj ective R-homomorphism . Now suppose that
N is subtractive and that n'/[N n N'] E ker(a). Then there exist elements m and
m' of N satisfying n' +m = m' and so , by subtractiveness, n' E N . This shows that
n' E NnN' and so n'/[NnN'] =O/[NnN'J, proving th at ker(a) = {O/[NnN']} .
Thus a is an R-sem iisomorphism. 0
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(15.23) PROPOSITION. Let R be a semiring. If M and N are R-isomorphic
left R-semimodules not equal to {OJ then EndR(M) and EndR(N) are isomorphic
semtnngs.

PROOF . If a : M -+ N is an R-isomorphism then it is easy to verify that the func­
tion from EndR(M) to EndR(N) given by ,I--l- a-1,a is a morphism of semirings
which is in fact an isomorphism. 0

An element m of a left R-semimodule M is cancellable if m + m' = m + m"
impli es that m' = m" . The semimodule M is cancellative if and only if every
element of M is cancellable. Clearly any R-module is cancellative. As in the case
of ideals, a left R-semimodule M is cancellative if and only if the subsemimodule
D = {(m , m) I m E M} of M x M is subtractive. It is also easy to verify that if
N is a submodule of a left R-semimodule M such that O[j]N i' M then the Iizuka
factor module M[j]N is cancellative.

(15.24) PROPOSITION. If N is a subsemimodule of a cancellative left R­
semimodule M then both Nand M / N are cancellative.

PROOF. Clearly N is cancellative. If m , m', and m" are elements of M satisfying
m]N + m' / N = m]N + m" / N then there exist elements n' and n" of N such
that m + m' + n' = m + m" + n" . Since M is cancellative, this implies that
m' + n' =m" + n" and so m' / N =m" / N . Thus M / N is cancellative. 0

(15.25) PROPOSITION. For a family {Mi liE D} of left R-semimodules then
following conditions are equivalent:

(1) [liEn M i is cancellative;
(2) UiEn u, is cancellative;
(3) M, i~ cencelleiive for each i E D.

PROOF. (1) :::::} (2) :::::} (3) : This is a direct consequence of Proposition 15.24
since UiEn M, is R-isomorphic to a subsemimodule of [liEn M i and each M, is
R-isomorphic to a subsemimodule of UiEn Mi·

(3) :::::} (1): Let m = (mi), m' = (m~), and m" = (m~') be elements of [liEn M,
satisfying m + m' = m + m". Then for each i E n we have rn, + m~ = m, + m~'

and so, by (3), m~ = m~' . Therefore m' = m". 0

(15.26) EXAMPLE. [Takahashi , 1981] If M is a left R-semimodule and ( is the
R-congruence relation on M defined by m ( m' if and only if there exists an element
m" of M satisfying m+m" = m' +m" then M / ( is a cancellative left R-semimodule.

(15.27) PROPOSITION. If R is a semiring and M is a simple left R-semimodule
not equal to {OM} then precisely one of the following conditions holds:

(1) M is additively idempotent; or
(2) M is cancellative.

PROOF . It is immediate that if a left R-semimodule is both additively idempo­
tent and cancellative then it must equal {OM} since m + m = m = m + 0 implies
in that m = O. Therefore both of these conditions cannot hold simultaneously.
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Let 0': M -+ M be the R-homomorphism defined by 0' : m 1---+ m + m . Sin ce M
is simple, =0' is eit her trivial or universal. If =ais universal then m =a 0 for all
m E M and so , in particular, m + m = 0 for all such m. If m, m' , and mil are
elements of M satis fying m+ m' = m + mil then m' = 0 + m' = m + m+ m' =
m+ m+ mil = 0 + mil = mil . Therefore, in this situation , M is can cellative.

We will assume, therefore , th at =ais th e trivial R-congruence relation on M .
This means that 0' is monic. Moreover , M 0' is can cellative [resp . additively idem­
potent] if and only if M is and so , without loss of generality, we can in fact assume
that 0' is surj ective as well . Define a relation p on M by set t ing x p x' if and only if
there exist elements m and m' of M and an element kEN such that x = m+x'a-k

and x' = m' + xa-k. Clearly p is an equivalence relation . We claim that it is an
R-congruence relation as well. Indeed, if x p z' and if m , m' , and k are as above
then for each r E R we have rx = rm + (r'x)a- k and rx' = rm' + (rx)a- k and
hence r z: p rx' , Moreover , if y p y' as well , then we can write y = ya- ka k. For
k > 0 we have

y = ya-ka1- k + ya- ka 1- k

= ya-ka1- k + ya- ka 2 - k + ya- ka 2 - k

=...=mil + ya- k

for some element mil of M. Therefore x + y = (m + mil) + (x' + y)a- k and
x' + y = (m' + mil) + (x + y)a- k so x + y p x' + y. Similarly, (x' + y) p (x' + y')
and so (x + y) p (x' + y') , establishing the claim.

Since M is simple, this implies that p is eit her trivial or universal. If it is th e
trivial R-congruence relation th en for each m E M we have m = 0 + (ma)a- 1 and
rno = m+m = m+ma-1a = (m+ma-1)+ma-1 so that m p rnc, By triviality,
this implies that m =rno =m+ m for each m EM , proving that M is additively
idempotent.

We are left to consider the case of p universal and we wish to show that , in this
case, M is cancellative. Let m , m' , and mil be eleme nts of M satisfying m + mil =
m' + mil . Set N = {x E M I x+m = x+m'}. This set is nonempty since mil E N .
Ifx E N then (m+xa-1)a = m+m+x = m'+m+x = m'+m'+ x = (m'+xa-1)a
and so , since 0' is monic , we must have m+xa-1 = m' +xa- 1. Thus x E N implies
that xa- 1 E N and so xa- k E N for all kEN . If y is an arbit ra ry element of M
then y p mil sinc e p is universal and so there exists an element y' of M and an
element k of N such that y = y' + mila- k. But mil E N implies that mila- k E N
so m + y = m + y' + m"a-k = m' + y' + m"a-k = m' + y, proving th at yEN.
Thus we have shown that N = M . In particular, this means that both m and m'
belong to N and so we have ma = m+ m = m+ m' = m' + m' = m'o , Since 0' is
monic , we conclude that m = m', proving that M is cancellative. 0

(15.28) PROPOSITION. If R is a commutative semiring then any sim ple can­
cellative left R-semimodule is an R-module.

PROOF . If M is a simple cancellative left R-module then the R-congruence
relation =V(M) is either trivial or universal. If it is universal , then for each
m E M th ere exist elem ents v and v' of V(M) satisfying m + v = 0 + v' and
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so m = V' + (-V) E V(M) . Hence, in this case, M = V(M) and so M is an
R-module . Thus we need only consider the case that =V{M) is trivial. In particu­
lar, we have V(M) :F M . By Proposition 15.13, this implies that V(M) = {OM} '
Let p be the relation on M defined by m p m' if and only if both m and m' are
either zero or nonzero. This is surely an equivalence relation. Moreover, if m p m'
and n p n' in M and if m + n = 0 then m = n = 0 since V(M) = {OJ and so
(m + n) p (m' + n') . Let r E R. Since R is commutative, M' = {m E M I rm = O}
is a subtractive subsemimodule of M and so, by Proposition 15.13, we see that
M' = M or M' = {OJ . This implies that whenever we have m pm', we have
rm p rm' , proving that the relation belongs to R - cong(M) . Since M is not {OJ ,
the relation is not universal and so it must be trivial. Hence M has precisely two
elements, say M = {O, z ] . Since V(M) = {OJ, we must have x + x = x and so M
is additively idempotent, contradicting Proposition 15.27 . Thus this case cannot
happen , proving that M must be an R-module. 0

A complete classification of simple R-modules, for R a commutative semiring, is
given in [Jezek & Kepka, 1983] .

(15.29) PROPOSITION. If M is a cancellative left R-semimodule then Z(R) ~

(0 : M).

PROOF. Let a E Z(R) and let r E R satisfy a + r = r . If m E M then
am + rm = (a + r)m = rm so , by cancellation , am = O. Thus a E (0 : M) . 0

A cancellative left R-semimodule M satisfying the condition that (0 : M) = Z(R)
is faithfully cancellative.

If N is a nonzero subsemimodule of a left R-semimodule M, set P(N, M) =
{m E M I rm + n :F OM for all r E R and OM :F n EN} . Clearly this is z:
subsemimodule of M . Moreover , P(M, M) is the set of all those elements m ~ .·f

.11 satisfying the condition that no nonzero multiple of m has an additive inverse.
Thus we surely have V(M) n P(M, M) = {OM} ' If N :F {OM} and P(N, M) has all
infinite element, then this element must also belong to N . By convention, we set
P( {OM} , M) = M for every left R-semimodule M . We also note that N ~ M if and
only if N is entire and M = P(N, M) . This surely implies that N is zerosumfree
and so we see that an entire left R-semimodule M is an information semimodule if
and only if M ~ M .

(15.30) PROPOSITION. If N, N', M' are subsemimodules of a left R-semi-
module M then:

(1) N ~ P(N, M) if and only if N is zerosumfree;
(2) P(N, P(N, M)) = P(N, M);
(3) If M' is a subsemimodule of M containing N then P(N, M') =

p(N,M)nM';
(4) If {Mi liE rl} is a family of left R-semimodules satifying M = niEnMi

tl:en P(N, M) = n iEnP(N, Mi) '
(5) If {Ni liE rl} is a family of subsemimodules of M satisfying niEnNi = N,

then n iEnP(Ni , M) ~ P(N, M);
(6) If M' is a subsemimodule of P(N, M) then N + M' = N U M' and N =

{OM} U {n+ m'l OM E N,m' EM'};
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(7) If N ~ M and N ~ M' th en N ~ M' ;
(8) If N ~ M' th en N ' ~ P( N , M );
(9) If N is zeros um free th en N ~ P( N , M) ;

(10) If{ N i l iE f2} is afamily ofabsorbing subsemimodulesofM with n iEO N i =
N and U iE O N i = N ' th en N, N ' ~ M ;

(11) If N , N' ~ M th en N n N ' :I {OM} and N + N ' ~ M , where in fact we
have N + N ' = NU N' ;

(12) If N ~ M th en N n M' ~ M' ;
(1 3) If M is en tire and N , N' ~ M th en {n + n' 10M :I n E N; n' E N ' } ~ N nN' ;
(14) If N ~ M th en N U N ' is a subsem im od uJe of M .

PROOF . The proof follows dir ectly from th e definitions. 0

In particular , we see th at if N is an inform ation subsemimodule of a left R­
semimodule M th en P( N , M) is th e largest subsemimodule of M containing N
as an absorbing subsemimodule. Also , we note that th e family of all absorbing
subsemimodules of M is a sublatt ice of th e lattice of all subsemi modules of M , and
th at this sublattice is in fact distribu tive and so forms a semiring .

If M and N are disjoint left R-semimodules th en a Takahashi extension of
M by N is a left R-s emimodule T th e und erlying set of whi ch is M U [N \ {O N}]
and th e operations of addit ion and multiplication on which ar e defined so that
N ~ T . These exte nsions are first considered in [Takahashi , 1984a] . By what we
have alr eady seen , a necessary condi tion for a Takah ashi extension to exist is th at
N be an information semimodule.

A translation of a left R-s emimodule M is a fun ction tjJ from M \ {OM} to its elf
satisfying th e condition that tjJ (m + m') = tjJ (m ) + m' = m + tjJ (m ' ) for all m , m' E
M \ {OM} ' The t rans(l"'I) set of all translations of M is nonempty , since it includes
th e identity map and closed under composit ion offunctions. Indeed , it is easily seen
to be a monoid under composition of functions. If T is a Takahashi extension of
M by N , t hen each eleme nt m of M defines a translation 'Pm E tran s(N) given by
'Pm :n >-+ m+n. Thus we hav e a fun cti on 'PT: M -. iransi N ) given by 'PT : m >-+ 'Pm,
and this is in fact as morphism of monoids since, clearly, 'Pm+m' = 'Pm'Pm' for all
m , m' EM. Moreover , if r E R, mE M , and ON :I n E N th en

r['PT(m)(n)] = 'PT(rm )(rn ).

A morphism of monoids from M to trans(N) with th is propert y is admissible .
Thus, for exa mple, if M is any left R-semimodule and N is an information semi­
module over R disjoint from AI , th en th e morphism e: M --+ t rans( N ) defined by
f(m) : n >-+ n is admissible. The set of all admissibl e morphisms from th e monoid
(M , +) to t rans(N) is denoted by Adm(M, N) . If ED is t he operation on Adm(M, N)
defined by (a ED,8)(m) = a(m){3(m) for all mE M th en (Adm(iVI , N ), ED ) is a monoid
with identity eleme nt f. If N has a nonzero cancellable lelem ent th en this monoid
is abelian.

Let 'P be an admissible morphism of monoids from a left R-semimodule M to
trans(N) , where N is an informat ion semimodule over R disjoint from M . Set
T = M U [N \ {O N}] and define operations of addition and scalar multiplication on
T as follows :

(1) If m , m' E M and r E R th en m + m' and rm are th e same as in M ;
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(2) If n, n' E Nand r E R then n + n' and rn are the same as in N;
(3) If mE M and n E N then m + n = n + m = <p(m)(n) .

These operations turn T into a left R-semimodule having N as an absorbing sub­
semimodule and M as a subtractive subsemimodule; hence T is a Takahashi ex­
tension of M by N. Thus there exists a bijective correspondence between the set
of all Takahashi extensions of M by N and the set of all admissible morphisms of
monoids from M to trans(N) . If <p: M ---+ trans(N) is an admissible morphism of
monoids, we will denote by M e'P N the Takahashi extension of M by N defined by
<p.

Let N be a nontrivial information submodule of a left R-semimodule M (the
existence of which , recall , implies that R is both zerosumfree and entire) . Let M'
be a subsemimodule of P(N, M) properly containing N. Define a relation "'N on
M' by setting m~ "'N m~ if and only if m~ = m~ or {m~, m~} <;;; N \ {OM}. It is
straightforward to check that this is an R-congruence relation on M' . Moreover, we
see that M'I "'N is just [M' \ N] U {OM, w} , where w is a strongly-infinite element
of M'I "'N. If a ---+ M'I "'N is the canonical surjection , then ker(a) = {OM}, but
a is not monic unless N has precisely two elements. For notational convenience,
we will denote M'I '"N by M' II N and will write m' liN instead of m'l '"N. Thus,

m'IIN = { {m'}
{w}

ifm' E M'\N

otherwise

The semimodule M'IIN is the Rees factor semimoduleof M' by N .
If N is an absorbing subsemimodule of a left R-semimodule M , then N' II N is

defined for any R-subsemimodule N' of M containing N, and it is straightforward
to verify that the map N' >-+ N' II N induces a bijective order-preserving correspon­
dence between the family of I'd! subsemimoudles of M containing N and the family
of all subsemimodules of M 1/tv, which in turn restricts to a bijective correspon­
dence between the family of all absorbing subsemimodules of M containing Nand
the family of all absorbing subsemimodules of MilN.

(15.31) PROPOSITION. [Poyatos, 1973a] Let R be an entire zerosumfree sernir­
ing and let Nand N' be absorbing subsemimodules of a left R-semimodule M .
Then :

(1)
(2)
(3)

N ~ NUN' ;
NnN' c n:- ,
N'II(N n N') is R-isomorphic to (N U N')IIN .

PROOF. (1) and (2) are immediate consequences of the definition . As for (3),
the desired R-isomorphism is given by n'II(N n N') >-+ n' II N . 0

It is similarly straightforward to show the following.

(15.32) PROPOSITION. [Poyatos, 1973b] Let R be an entire zerosumfree semir­
ing and let M be a left R-semimodule. If N , N', W, W' are subsemimodules of M
satisfying N' ~ Nand W' ~ W, and if

(i) U=N'U(NnW) ,
(ii) U' = N' U (N n W') ,
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(iii) V = W' U (N n W) , and
(iv) V' = W' U (N' n W)

th en V' ~ V, V' ~ V, and V// V' is R-isomorphic to VI/V' .

PROOF. The proof is essentially th e same as th e corresponding proof for modules
over a ring. 0

(15.33) COROLLARY. Let R be an en tire zerosum free sem iring . If N C N '
are proper absorbing subsem im odules of a left R-semimodule M , then the R­
semimodule (M//N)//(M//N') is R-isomorphic to M//N' .

PROOF. This is an immediate consequence of Proposition 15.31 and Proposition
15.32. 0

A strongly-infinite element w of a left R-semimodule M is primitive in M if
and only if m + m' = w for all m , m' EM \ {OM} ' Thus, for example, if M has a
strongly-infinite element w th en w is a primitive element of cr(M).

(15.34) EXAMPLE . [Goldstern , 1985] Let R = {ao , al , . . . , bo, bi , . . . } on which
we define operations of addition and multiplication as follows:

(1) ai + aj = ai+j for all i ,j EN ;
(2) bi + bj = b» for all i ,j E N;
(3) aj + bi = bi + aj = bk, where k = i - j if i > j and k = 0 otherwise;
(4) aiaj = aij for all i ,j E N;
(5) bibj = bo for all i , j E N;
(6) biaj = ajb i = bo for all i E N and all j > 1;
(7) biao = aObi = ao for all i E N;
(8) b.«, = alb i = b, for all i E N.

These operations turn R into a semiring with additive identity ao and multiplicative
identity al having a scrongly-infinite element bo which is not primitive.

An absorbing subsemimodule N of a left R-semimodule M is quasiminimal if
and only if it prop erly contains cr(M ) and th ere is no absorbing subsemimodule
of M properly containing cr(M ) and prop erly contained in N . Thus, M its elf is
quasiminimal if and only if eit her M has no proper absorbing subsemimodules or
it has precisely one such subsemimodule, namely its crux . A nontrivial left R­
semimodule which is quasiminimal and has no primitive elements is quasisimple.
That is to say, a quasiminimalleft R-semimodule is quasisimple if it either has no
strongly-infini te elements or has one such element which is not primitive. If w is
a strongly-infinite element of an information semimodule Mover R which has no
proper abso rbing subsemimodules other than cr(M ), and if N = M \ {OM} , th en
we know by Proposition 15.30(11) that N + N must either equal N or equa l {w} .
In th e first case, M is quasisimple. In th e second case, w is a primitive element of
M .

(15.35) EXAMPLE. [Poyatos , 1973a] Let T be a nonempty set and let z, w be
distinct elements not in T. Define addition on X = T U {z,w} by setting

(1) t +t' = w for all t ,t' E T;
(2) x + z = z + x = x for all x EX;
(3) x + w = w + x = w for all x EX;
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For each kEN and each x EX , define the element k x of X as follows:

(4) Ox = z;
(5) l z = x ;
(6) kx = w if k > 1 and x =F z;
(7) k z = z for all kE N.

T hen X belonges a left N-semimodule with strongly-infinite element w . If T ' is any
subset of T th en T' U {z ,w} ~ X . Moreover , w is primitive in X .

From th e definitions , we see t hat if N is an absor bing subsemimodule of a left R­
semimodule M and if N' is an absorbing subsemimo dule of M properly contai ning
N, then N ' // N is quasisimple if and only if there is no absor bing subsemimodule
of M properly containing N and properly contained in N ' .

By Proposition 15.30(10), we see that if M is a left R-semimodule having at least
one absorbing subsemimodule, th en M has a unique maximal absorbing subsemi­
module, which we will denote byabs(M) . If abs(M) =F M then surely M//abs(M)
is quasisimple.

Let R be an ent ire zerosumfree semiring and let M be a left R-semimodule. For
OM =F m E M , set T(m) = {OM} U {rm + m' I 0 =F r E R ;m' EM}. This is
surely an R-subsem imodule of M containing Rm. Moreover , it is easily to see that
mE abs(M ) if and only if T(m) ~ M and th at , in that case,

T (m ) = {OM} U {rm + m' 10 =F r E R ;m' E abs(M)} .

Thus, if OM =F m E abs(M) then T (m' ) ~ T (m ) for all OM =F m' E T (m ). Set
T ' (m ) = {OM} U {OM =F m' E T (m ) IT(m') =F T (m )} .

(15.36) P ROPOSITIO N. let R be an en tire zeros um free sem iring and let M be a
left Rssemimocule having an absorbing subsem imod ule. If OM =F mE abs(M) th en
T ' (m ) is a m aximal proper absorb ing subsem imod ule ofT(m ).

PROOF. If rnj , m2 E T (m ) and 0 =F r E R t hen Ttrn, + m 2) ~ T (m d and
T(rmI) ~ T (m ) so T ' (m) is an absorbing sub semimodule ofT(m ), which is proper
since mE T (m ) \ T ' (m ). Fin ally, assume th at T ' (m ) ~ N C T(m) , where N is an
absorbing subsemimodule of M , and let OM =F x E N . Then T( x ) ~ N =F T (m )
and so x E T' (m) , establishing the maximalit y of T' (m) . 0

If w E M is st rongly infinite then w E abs(M) and rm + w = w for all OM =F m E
abs(M) and r E R . T herefore w E T (m ) and so we conclude that cr (M ) ~ T (m )
for each OM =F m E abs(M) .

Let R be an entire zerosumfree semiring and let M be an R-semimodule having
a st rongly-infini te element w. Th en cr (M ) = T( w) , from which it is easy to deduce
that :

(1) L(M) = {OM} U {m E abs(M) I T (m ) = cr (M )} is an absorbing subsemi­
module of M which is the unique maximal subsemimodule N of abs( M)
sat isfying n + m =w for all OM =F n E N and all OM =F m E abs(M) ; and

(2) If m E abs(M ) \ cr (M ) then T (m ) = cr (M ) if and only if T (m ) is quasi­
min imal.
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(15.37) PROPOSITION. Let R be an en tire zerosum free semiring and let M
be a non crucial R-semimodule having a strongly-in fini te element w . Th en M is
quasisimple if and only ifT(m) = M for all mE M \ cr(M) .

PROOF. Assume M is quasisimple . If mE M \ cr(M) then T (m) ~ M and so,
by quasisimplicity, T( m) = M . Conversely, assume that T (m) = M for all m E
M \ cr(M) . Since M is noncrucial , it is quasiminimal and , indeed, quasisimple. 0

Thus we see th at if R is an ent ire zerosumfree semiring and M is a noncrucial
quasisimple information R-semimodule having a st rongly-infinite element w . Then
T'(m) = cr(M) for all m E M \ cr(M). Indeeed, let R be an ent ire zerosumfree
semiring and let M be a noncrucial R-semimodule having a strongly-infinite ele­
ment w . If N is a quasiminimal absorbing subsemimodule of M then either N
has a primitive element or is quasisimple. Thus, in particular, if R is an ent ire
zerosumfree semi ring and M is a left R-semimodule having an absorbing subsemi­
module then , for each m E abs(M) , th e left R-semimodule T(m) = T(m)IIT'(m)
is th e principal factor of M at m. By the comments above, T(m) has a strongly­
infinite element . Indeed, if OM # m E abs(M) then T(m) either has a primitive
element or is quasisimple . Moreover, if R is an enti re zerosumfree semiring, if Mis
a left R-semimodule and if N' is a maximal proper absorbing subsemimodule of a
subsemimodule N of abs(M) then NI I N' ~ T(m) for any mEN \ N' .

If M is a left R-semimodule th en an absorbing series for M is a chain

cr(M ) = n, ~ . . .~ N 1 ~ No = M

of subsemimodules of M . An absorbing quasiseries for M is an absorbing series
for abs(M) . Any chain obtained from a given absorbing series by inserting further
terms is E: refinement of that series. If new subsemimodules are actua lly inserted,
such a r- finement is proper. Two absorbing series

cr(M) = », ~ .. . ~ N 1 ~ N o = M

and
cr(M) = L, ~ .. . ~ L1 ~ La = M

for M are isomorphic if and only if t = s and th ere is a permutation IJ of {I, .. . , t}
such that Ni-dlNi ~ Lo(iJ-tlILo(iJ for each 1 ~ i ~ 1. Given th ese notions ,
Poyatos [1972, 1973a, 1973b] has extended the Jordan-Holder theorem for modules.

(15.38) PROPOSITION. If R is an entire zerosumfree semiring and M is a left R­
sem im odule then any two absorbing quasiseries of M have isomorphic refinements .

The proof is similar to the proof th e th e Jordan-Holder theorem for modules.
See [Poyatos 1973b] for details .



16. SOME CONSTRUCTIONS FOR

SEMIMODULES

In this cha pter we present three basic constructions associated with semimodules.
The first of thes e, th e construction of the module of differences of an R-semimodule,
is based on the corresponding const ruction for semirings. The other two, decom­
position of a semimodule into a direct sum of indecomposable summands and th e
construction of th e tensor product of semimodules, are inspired by the correspond­
ing const ruct ions for modules over a ring . In each case, however, th e result s differ
somewhat from those in module theory due to the allowances we have to make for
being in a semimodule environment .

In Chapter 7 we defined th e ring of differences of a nonzeroic semiring R . We now
show how, given a semiring R, we can define, in an analogous manner, the module
of differences of any left R-semimodule. Indeed , let R be a semiring. If M is a left
R-semimodule and if W is th e subsemimodule of M x M defined by W = {(m, m) I
mE M}, then (M x M)jW is a left R-semimodule which is in fact a left R-module
since for all (m, m') E M x M we have (m, m')jW + (m' , m)jW = (0, O)jW . This
left R-module, denoted by M~, is called th e R-module of differences of M .
We have a canonical R-homomorphism €M from M to M~ defined by €M :m .........
(m,O)jW . This R-homomorphism is not necessarily monic. As in the case of
semirings, it is st raightforward to establish that th e following conditions on Mare
equivalent :

(1) M is cancellative ;
(2) W is subtractive;
(3) €M :M ---- M~ is monic .

(16.1) PROPOSITION . Let M be a left R-semimodule and let N be a left R ­
module. If 0' : M ---- N is an R-homomorphism then there exists a unique R­
homomorphism {3:u» ---- N satisfying ~M{3 = 0' .

PROOF . Define the function {3 from Mt:.. to N as follows: {3: (m, m')jW .........
rno + [-(m'O')], where -(m'O') is the additive inverse of m'O' in the R-module N .
If m , m' , u, and u' are elements of M satisfying (m , m')jW = (u ,u')jW then th ere
exist elements v and v' of M such that m+v =u+v' and m' +v =u'+v' . Therefore
mO'+[-(m'O')] = (m+v)O'+[-(m'+v) O'] = (u+v')O'+[-(u'+ v')O'] = uO'+[-(u'O')].
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Thus the function {3 is well-defined . It is straightforward to establish that f3 is an
R-homomorphism having the desired property. 0

(16.2) PROPOSITION. If M is a left R-semimodule then there exists a canon­
ical surjection from R - cong( M A) to R - cong( M), which is a bijection if M is
cancellative.

PROOF . Any R-congruence relation P on M A induces a corresponding R­
congruence relation p" on M defined by the condition that m p" m' if and only if
m~M P m'~M . We claim that every R-congruence relation on M is of this form.
Indeed , let ( be an R-congruence relation on M and consider the R-congruence re­
lation P on M A defined by (m , m')jW P (n, n')jW if and only if (m+n') ( (m' +n)
in M . This relation is well-defined since for any m, m' , mil E M we have

(m,m')jW P (m+m" ,m' +m")jW.

Moreover , if m, m' E M then m~M P m'~M if and only if m ( m' so ( is just p" .
Thus the map p ...... p" is a surjection from R - cong( M A) to R - cong( M) .

Now assume that M is cancellative and that Pi and P2 are R-congruence relations
on M A satisfying (pd· = (p2)*' That is to say, if m and m' are elements of M
then m~M Pi m'~M if and only ifm~M P2 m'~M . If (m ,m')jW and (n ,n')jW are
arbitrary elements of M A then (m ,m')jW = X~M + (-m'~M) and (n,n')jW =
n~M + (-n'~M) and so

(m, m')jW Pi (n , n')jW

{:} (m , m')jW + [m'~M + n'~M] Pi (n , n')jW + [m'~M + n'~M]

{:} (m + n')~M Pi (n + m')~M

{:} (m + n')~M P2 (n + m')~M

{:} (m , m')jW P2 (n , n')jW

and so th e relations Pi and P2 coincide. Thus, in this case, th e map P ...... p" is
bijective. 0

As a direct consequence of this result, we see that a left R-semimodule M is
simple whenever M A is simple, and that th e converse is also true if Mis cancellat ive.

(16.3) PROPOSITION. If a :M --+ N is an R-homomorphism of R-semimodules
then there exists a unique R-homomorphism a A : M A --+ N A of R-modules satis­
fying ~MaA = aLN. Moreover, if a is surjective or is an isomorphism then so is
a A .

PROOF . Set {3 = aLN. By Proposition 16.1, there exists a unique R-homomor­
phism a A : M A --+ N A extending f3 . Indeed, it is easy to see th at if W = {em, m) I
m E M} and W' = {en ,n) I n E N} th en a A is defined by (m , m')jW ......
(rno , m'a)jW' . From this and uniqueness, th e second assertion is immediate. 0

If a :M --+ M' and {3: M' --+ Mil are R-homomorphisms of left R-semimodules
th en, by uniqueness, we have (a{3)A = a A{3A . Also, if a :M --+ M is the identity
map then a A : M A --+ M A is also the identity map . Thus we note that if R is a
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semi ring th en (_)Ll. is a fun ct or from th e category of all left R- semimodules to the
category of all left R-modules .

Let R be a nonzeroic semiring and let S = RLl. be th e ring of differenc es of R.
For notation al convenience, we will denote an eleme nt (a,a' )j D of S by (a, a') . If
N is a left R-module th en for each (a, a' ) E S and n E N set (a, a')n = an +(-a' n ).
This is well-defined sin ce if (a, a') = (b,b') in S t hen there exists an ele ment d of R
sat isfy ing a+b'+d =a' +b+d. Hen ce an +b'n +dn =a'n +bn+dn and so , adding
-(a'n+b'n+dn) to each side, we see that an+(-a'n) = bn+( -b'n) . It is now eas y
to see that with the given addition in N and with th e scalar multiplication defin ed
as above, N is a left S-module. Mor eover , if 0': N --> N ' is an R-homomorphism of
left R-modules th en it is als o an S-homomorphism of left S-modules.

Combining bo th of the above const ruc t ions , we see t hat , given a nonzeroic
semiring R , R , t here exists a ca nonical fun ctor from the ca tegory of all left R­
semimodules to the category of all RLl.-modules . The proper ties of t his functor are
work ed out in detail in [Poyatos, 1971] . In particular, if M is a left R-semimodule
then MLl. is a left RLl.-module with addition and scal ar multiplication defin ed by
(711 ,711') + (n , n') = (711 + n, 711' + n') and (a,b)(m , 711') = (am + bm' , bm + am')
where (711 ,711') = (m ,m')jW and (n , n') = (n , n')jW ar e eleme nts of MLl. and
(a,b) = (a,b)jD is an eleme nt of RLl. .

Let R be a nonzeroic semiring and let M be a nonzero left R-semimodule having
R-endomorphism semiring S . As above, we will denote eleme nts of RLl. by (a, b) and
eleme nts of MLl. by (711 ,711') . To each pair (0', {3) of elements of S define a fun cti on
<1>(0' , {3): MLl. --> MLl. by setting <1>(0' , {3): (711, 711') f--+ (7110' + 711'{3, m{3 + 711'0') . This
fun ction is well-defined sin ce if (711 ,711') = (u , u') in MLl. th en th ere exist elements
nand n' of M sa tisfying (711 + n , 711' + n) = (u + n', u' + n'). Therefore

(7110' + m' B, m{3 + 711' 0') = (7110' + 711'{3 + nO'+ n{3, n{3 + 711' 0' + no + nj3)

=([711 + n]O' + [711' + n]{3 , [711 + n]{3 + [711' + n]O')

=([u+ n']O' + [u' + n']{3 , [u + n']{3 + [u'+ n']O')

= (uO' + u'{3 + n'0' + n'{3, u{3 + u'{3 + n'0' + n'{3)

=(uO'+u' {3 ,u{3+u'O').

Indeed, it is straighforward to show that <1>(0' , {3) is in fact an RLl.-endomorphism
of MLl..

Now assume th at , in addition , the semiring S is also nonzeroic . Let G = {(a, 0') I
0' E S} and let SLl. = (S x S)jG. In lin e with our pr evious notation , we will denote
th e eleme nt (0' , j3) j G of SLl. by (0' , {3) . If (0' , j3) = (0" , {3' ) in S Ll. th en there exist
elem en ts B and B' in S su ch that (0' + B,{3 + B) = (0" + B' , {3' + B'). For each eleme nt
(711 ,711') of MLl. we then have

(711 ,711')<1>(0', {3) = (7110' + 711'{3, m{3 + 711' 0')

= (7110' + m' {3 + mB + m'B, m{3 + 711'0' + mB + m'B)

= (711[0' + B] + m'[{3 + BJ, m [{3 + B] + m'[O' + B])

= (m[O" + B'] + m'[{3' + B'] , m[{3' + B'] + m'[O" + B'])

= (m, m')<1>(O" , {3' ).
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This shows that <1> induces a function <1>' from the ring Sf:>. to the ring of all Rf:>._
endomorphisms of M f:>. defined by <1>' : (a, {3} 1-+ <1>(0', {3). It is again straightforward
(and rather tedious) to verify that <1>' is in fact a ring homomorphism.

(16.4) PROPOSITION. Let R be a nonzeroic semiring and let M be a nonzero
left R-semimodule having nonzeroic R-endomorphism semiring S. Then then kernel
of the ring homomorphism <1>' from Sf:>. to the ring ofall Rf:>. -endomorphisms of M f:>.

is {(a, {3} I for each m E M there exists an element n E M such that ma + n =
m{3 + n} . In particular, a sufficient condition for <1>' to be monic is that M be
cancellati ve.

PROOF . Suppose that (a, {3} E ker(<1>'). Then for each mE M we have (O,O) =
(m,O}<1>'((a ,{3}) = (ma ,m{3) and so there exists an element n of M such that
ma + n = m{3 + n . Conversely, assume that this condition holds for (a, {3} E Sf:>. .
Then if (m, m') EMf:>. there exist elements nand n' of M such that ma+n = m{3+n
and m' a + n' = m' {3 + n'. Therefore

(ma + m'{3,m'a + m{3) = (ma + m'{3+ n + n', m'a + m{3 + n + n') = (0, O)

so (a, {3} E ker(<1>') .
If Mis cancellative and (a, {3} E ker(<1>') then the above result shows that ma =

m{3 for all m E M and so a = {3. Thus (a ,{3} = (0, O) , proving that <1>' is monic. 0

Let R be a semiring. If {Mi liE n} is a family of nonempty subsemimodules of
a left R-semimodule M and if {3i : M, --+ M is the inclusion map for each i E n, then
we have a unique R-homomorphism {3: UiEO M, --+ M satisfying {3i =>'i{3 for each
i E n. Indeed , {3 is defined by (mi) 1-+ L:iEO mi (where this sum is well-defined
since only finitely-many of the mi are nonzero) . If {3 is an R-isomorphism, then M
is the dn-ect sum of the submodules M, and we write M = EDiEOMi . As in the
case of modules over a ring , it is straightforward to establish that M = EDiEOMi if
and only if each element m of M can be written in a unique way as L: mi, where
mi E M, for each i E n and only finitely-many of the mi are nonzero.

A subsemimodule N of a left R-semimodule M is a direct summand of M
if and only if there exists a subsemimodule N' of M satisfying M = N ED N'. In
particular, every element m of M can be written in a unique manner as n + n',
where n E Nand n' EN', and we have a surjective R-homomorphism 1rN : M --+ N
defined by m 1-+ n, called the projection of M onto N . Similarly, we have the
projection 1r~ of M onto N' the kernel of which is precisely N. Thus, in particular ,
any direct summand of M is subtractive.

The set of all nonzero direct summands of a left R-semimodule M will be denoted
by summ(M) . This set is nonempty since M E summ(M).

(16.5) EXAMPLE. Let R be a zerosumfree entire semiring and let M be a left R­
semimodule. If a : M --+ R is an R-homomorphism having kernel I< and if m , m' E
M \ I< then (m + m')a = rno + m'o: # °and so m + m' rf:. I<. Moreover , if
0# r E R then (rm)a = r(ma) # °and so rm rf:. I<. Thus N = (M \ I<) U {O} is
an R-submodule of M and clearly M = NED I<.
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(16.6) PROPOSITIO N. Let R be a semiring and let M be a left R-sem im odule
having endomorphism sem iring S . T hen the following conditions on a subsem imod­
ule N of M are equiva lent:

(1) N is a direct sum mand of M ;
(2) N = M 0:' for some 0:' E comp(S);
(3) T here is a subsem imodule N ' of M such that M = N + N ' and such that

the res triction of = N to N and the restriction of = N to N' are trivial.

PROO F . (1) <=> (2): If N is a direct summand of M and if )" :N ---+ M is the
inclusion map then N = M 'lrN where 'lrN is considered as an endomorphism of
M. Moreover , if M = N EEl N ' then 'lrN + 'lrN ' = Is and 'lrN'lrN' = 'lrN,'lrN = Os
so 'lrN E comp(S). Conversely, assume that N = M 0:' for some 0:' E com p(S). If
N' = M 0:'1. th en it is st ra ightforward to verify th at M = N EEl N '.

(1) => (3): Assume (1) an d let N ' be a subsemimodule of M satisfying M =
N EEl N' . Then surely M = N + N ' . If x, x' E N satisfy x = N' z ' th en th ere exist
y , y' E N ' such that x + y = x' + y' . By uniqueness of repr esent ation , this implies
tha t x = x' and y = y' so, in particular , th e restricti on of = N' to N is trivial.
Sim ilarly, the restriction of = N to N ' is trivial.

(3) => (1): Assume (3) . Then any element of M can be wri t ten as x + y, where
x E N and Y EN' . Let x,x' E Nand y ,y' E N ' sa t isfy x + y = x' + y' . Then
x = N ' z' and so x = x '. Sim ilarly y = N y' and so y = y' . Thus such representations
are unique, proving that M = N EEl N ' . 0

(16.7) P ROP OSIT ION . Let R be a semiring and let M be a left R- semimodule.
If N2 ~ N I are direct sum mands of M then N2 is a direct sum mand of N I .

PROO F . By assumption, th ere exist subsemimo dules M I and M 2 of M satisfying
M = N I EEl M I = N2 EEl M 2 . In pa rticular, if x E N I then we can write x = n 2 + m 2

for some elements n2 of N2 and m2 of M2 . Furthermore, m 2 = n i + m i for some
n i E N I and mi E MI. Thus x = (ni + n2) + m i for ni + n2 E N I and mi E MI .
By the uni queness of repr esentat ion , we must have mi = 0 and x = n i + n 2 , where
ni = m 2 E N I nM2 . Therefore N I = N2 +(NI n M 2 ) . Moreover , any representa tion
of an element of N I as a sum of an element of N 2 and an eleme nt of N I n M 2 is
uni que, and so N 2 is a dir ect summand of N I . 0

A nonzero left R-semimodule M is indecomposable if and only if th ere do
not exist nonzero subsemimodules N and N' of M satisfying M = N EEl N' . An
R-semimodule which is not indecomposabl e is decomposable.

(16.8) E XAM PLE . Let R be a semiring considered as a left semimodule over
itself. If e E com p( R ) \ {O , I} then R = R e + R el. . If ae + bel. =0 then

and sim ilarly bel. = O. Therefore this sum is direct. Thus we see th at if R is
ind ecomposabl e as a left semi module over itse lf then it is integral.
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(16.9) PROPOSITION . If R is a sem iring and M is a left R-semimodule sat­
isfying th e descending chain condition on subtractive submod ules th en M has a
decomposition as a direct sum of finit ely-many indecomposable subsem im od ules.

PROOF . Let M be a left R-semimodule. By hyp othesis , summ(M) has a min­
imal eleme nt N 1 , which is sur ely ind ecomposabl e. Write M = N 1 Ef) Y1 . If Y1 is
indecomposabl e, we ar e done. If not , sum m(Y 1 ) has a minimal eleme nt N 2 and we
can write Y1 = N 2 Ef) Y2 and so M = N 1 Ef) N 2$ Y2. Cont inue in this manner . Since
Y1 :::> Y2 J . .. is a properly descending chain of subt ract ive submo dules of M ,
it must terminate aft er a finit e number of steps, and so th ere exists some natural
number t such that M = N1 Ef) . • . Ef) N, Ef) Yt , where all of the direct summands are
indecomposable. 0

(16 .10) PROPOS ITION . Let R be a semiring. If M is a zerosumfree left R­
semimodule and if N 1 , •• • , Nk , Y1 , . . . , Y; are indecomposable subm od ules of M
satisfying M = N 1 Ef) Ef) N k = Y1 Ef) . .. Ef) Yt th en k = t and th ere exists a
p ermutation (T of {I , , k} with N, = Yq(i) for all i .

PROOF. If x E N 1 we can write x = Yl + + Yt , where th e Yi E Yi for each i .
In turn , each Yi can be written as Yi = nil + + nik wit h nij E Nj for each j .
Therefore

where »s = 2::=1nij E N j for each 1 ~ j ~ k . By uniqueness of repr esentation , we
have n j = 0 for all j > 1 and so, by zerosumfreeness, nij = 0 for all i and all j > 1.
Thus Yi = nil E Y; n N 1 for each i. Moreover , x = n ll + .. .+ ntl and so w(~ see
that N] + (Y1 n Nr) + ...+ (Y; n N 1 ) , where this sum is in fact direct. Since 1\'1 is
indecomposable, this means that Yi n N 1 = {O} for all i except one. Renumbering
th e Yi if necessary , we can assume that Y1 n N 1 # {O} . Thus N = Y1 n N 1 ~ Y1 •

A reversal of this argument shows th at Y1 ~ N 1 and thus we have equality. Thus
M = N 1 Ef) Y2 Ef) •. . Ef) Yt . Con tinuing in this manner , we show tha t we must have
k = t and th at th e Yi are just a (possibl e) rear rangement of th e N] , 0

(16 .11) PROPOSITION . [Fit ting ' s Lemma] Let M be a cancellati ve left R ­
sem im od ule satisfying both th e ascending chain condition and the descending chain
condition on subsemimodules and let 0' : M -+ M be a s teady R-endomorphism of
M sa tis fy ing the condition that M = Mat + ker(O't) for some positive integer t .
T hen there exis ts a positive integer h for which M = M O'h Ef) ker(O'h).

PROOF . Since k er(0') ~ ker(a2 ) ~ . . . and M 0' :2 M 0' 2 :2 . .. we know that
th ere exist positive int ergers u and v such that ker(aU) = k er(O'u+i) for all i E N
and M O'v = MO'v+i for all i E N. Set h = max{t ,u , v} and let <p = a t . Then , by
const ruction, <p = <p2.

If m E M then there exist elements x of M and Y of k er(a t ) satisfying m = xO't+
y . Sim ilarly , th ere exist elements x ' of M and y' of k el'(at ) such that x = x ' at + y' .
Hence xO't = x ' 0' 2t + yO' t = x'0'2 t . Cont inuing in this mann er , we can find an
eleme nt z " of M and an int eger n such th at nt > h and m = x" ant + Y = XO' h + y ,
where y E k er (at) ~ k er(O'h ). Thus M = M <p + k er(<p) .
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Suppose that m and m' are elements of M satisfyin g m<p =ker(cp ) m' <po Then
th ere exist elements x and x' of ker( <p ) satisfying m<p + x = m' <p + x' so trup =
m <p2 = (m<p +x )<p = (m' <p + x')<p = m'<p2 = m'<p and thus the restri ct ion of =ker(cp)

to M<p is trivial. Now s[j]{O}uppose that x , x' E ker(<p) sat isfy x =Mcp x' . Then
th ere exist elements m and m' of M such t ha t x + m<p = x' + m' <po As above, thi s
implies that m ip = m'<p and so x = x' since M is cancellative. Thus the restriction
of =Mcp to ker(<p) is t rivial. The result now follows from Proposit ion 16.6 and its
proof. D

The notion of th e tensor produ ct of semimodules over a semiring was defined in
[Takahashi , 1982a]. For the application of this construction to th e st udy of iterative
nond eterministic algebr as , see [Wechler, 1988].

Let R be a semiring, let M be a right R-semimodule, and let N be a left R­
semimo dule. Let A be th e set M x N and let U be th e N-semimodule R (A) x R (A ) .

Then every element of th e R-semimodule R (A) can be written in a unique manner
as a linear combination of th e elements of the set {f[m ,n] I (m,n) E M x N},
where f[m, n] is th e function from M x N to R defined by

[
"{ 1 if (m',n') = (m ,n)

fm ,n] :(m ,n)1-> . .o otherwise

Let W be the subse t of U consist ing of all elements of the following forms:

(1) (f[m+m' ,n]'f[m,n]+f[m' ,n]) ,
(2) (f[m , n] + f[m' , n], f[m + m' , n]),
(3) (f[m , n + n'], f[m , n]+ f[ m , n']) ,
(4) (f[m , n]+ f[m , n'],J[m , n + n']) ,
(5) (f[mr , n], f [m, rn]),
(6) (f[m , rn ], f [mr, n])

for m , m' EM, n , n' E N , and r E R. Let U' be the N-subsemimodule of U
genera ted by W . Then every element of U' can be written (not necessaril y uniquely)
as a finite sum ,,£ki(g j ,h j) = ("£ kjgj , ,,£kjh j) for kj EN and gj ,hj E W . We also
note that 's ,g) E U' for all 9 E R (A ) . We can th erefore define an R-congruence
relation p on R (A ) by setting f p f' if and only if th ere exists an element (g , h)
of U' such that f + 9 = f' + h . The factor N-semimodule R (A ) j p will be denoted
by M 0 R N, and is called th e t ensor product of M and N over R . If m E M
and n E N th en th e element f[m , n]j p will be denoted by m 0 n. Since R(A ) is
genera ted by th e elements of the form f[m , n], we see that M 0 R N is generated by
the elements of th e form m 0n and so every element of M 0 R N can be written (not
necessarily uniquely) as a finit e sum ,,£(mi 0n j) for mj EM and nj E N. Moreover ,
by the above const ruction we see that for all m, m' E M , for all n , n' E N , all r E R,
and all kE N, we have:

(1) (m + m') 0 n = m 0 n + m' 0 n;
(2) m 0 (n + n') = m 0 n + m 0 n' ;
(3) mr 0n = m 0rn;
(4) k(m 0n)=km 0n= m 0kn ;
(5) 0 0 n = m 0 0 = O.
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Moreover , if 5 is a semiring th en, as in th e case of tensor products of modules
over rings , it is straightforward to verify that if M is an (5, R)-bisemimodule th en
M 0 R N is a left 5-semimodule with scalar multiplication defined by s(m 0 n) =
(sm) 0 n . Simil arly, if N is an (R ,5)-bisemimodule then M 0 R N is a right 5­
bisemimodule with scalar multiplication defined by (m 0 n)s = m 0 (ns) .

(16.12) PROPOSITION. Let R be a semiring. If M is a right R-semimodule and
N is a left R-semimodule th en th e sem im odule M 0 R N is cancellative.

PROOF . Let A = M x N and suppose that I, I' , and I" are elements of RCA)
satisfying 1/p+ f" /p = f' /p+ I" /p. Then there exists a pair (g, h) E V' satisfying
I + I" + 9 = I + I" + h . But , by construction, (1" ,1") also belongs to V' and
hence so does (I" +g, I" + h). This implies that 1/p = f' /p, proving that M 0 R N
is cancellative. 0

Let R be a semiring. If M is a right R-semimodule, if N is a left R-semimodule,
and if T is an N-semimodule, then a function (J: M x N --+ T is R-balanced if and
only if, for all m, m' E M , for all n , n' E N, and for all r E R we have:

(1) (J(m+m',n)=(J(m,n)+(J(~',n) ;
(2) (J(m, n + n') = (J(m , n) + (J(m , n') ;
(3) (J(mr,n) = (J(m , rn).

(16.13) EXAMPLE . If N is a left R-semimodule and T is an N-semimodule, then
th e set H om(N ,T) of all N-homomorphisms from N to T has th e structure of a
right R-semimodule , when we define (a + {3)n = an + {3n and (ar)n = 0'(rn) . If
M is a right R-semimodule and '1' :M --+ H om(N ,T) is an R-homomorphism th en
we have an R-balanced function (J : M x N --+ T defined by (J : (m, n) 1-+ ('1'(m»(n).
Conversely, if B:M x TV --+ T is an R-balanced function then we can define an
R-homomorphism '1' :AI --+ Hom(N,T) by ('P(m»(n) = (J(m, n) .

We now note the universal property of the tensor product . First , however , we
recall from Example 15.4 that if R is a semiring and M is a left R-semimodule th en
we have a relation [=]{o} on M defined by m[=]{O}m' if and only if th ere exists
an element mil of M satisfying m + mil = m' + mil . The equivalence class of an
element m with respect to this relation is denoted by m[/]{O} .

(16.14) PROPOSITION. Let R be a semiring, let M be a right R-semimodule,
let N be a left R-semimodule, and let T be an N-semimodule. If (J : M x N --+ T is
an R-balanced fun ction then there exists a unique N-homomorphism ~) : M 0 R N --+

T[/]{O} satisfying the condition that 'ljJ (m 0 n) = (J(m, n)[/]{O} for all mE M and
nE N .

PROOF . Set A = M x N . The function (J : A --+ T can be uniquely extended to an
N-homomorphism (J* : RCA) --+ T satisfying (J* (I[m, n]) = (J( m , n) for all m E M and
n E N . Indeed , for each 9 E RCA) we have (J*(g) = L::{g(m , n)(J(m,n) I (m, n) E
supp(g)}.

Let p be the equivalence relation used in defining M 0 R N , i.e. th e relation such
that M 0 R N = RCA) / p. Similarly, let V' and W be as above. We define a function
'ljJ : M 0 R N --+ T' = T[/]{O} by setting 'ljJ (I / p) = (J*(I)[/]{O} . This function is
well-defined since if I p f' in RCA) then there exists a pair (g, h) E V' such that
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f + g = f' + h. It follows that B*(/) + B*(g) = B*(/') + B*(h). By definition
of V ' , we know th at (g, h) can be written as (I: kjgj, I: kjh j), where kj E r::l and
gj,h j E W for each i . Then B*(g) = I:kjB*(gj) = I:k jB*(hj) = B*(h). Since
T[j]{O} is cancellative by Example 15.26, we see that B*(/)[j]{O} = B*(/')[j]{O}
and so 1/;(/1p) = 1/;(/' I p).

We now claim that 1/; is an r::l-homomorphism . Indeed , if I, g E RCA) then
1/;(f l p + glp) = 1/;([f + g]lp) = B*(f + g)[/]{O} = B*(f)[/]{O} + B*(g)[j]{O} =
1/;(/I p) + 1/;(gl p). Now suppose that f E RCA) sat isfies the condition th at f p O.
Th en th ere exists a pair (g, h) in V' such that f +g = h and so B* (f) +B* (g) = B* (h) .
Since B*(g) = B*(h) and T[j]{O} is cancellat ive, we have B*(f) = 0[j]{0} . Thus
1/; (01p) = 0[j]{0} , proving that 1/; is an r::l-homomorphism.

Finally, we note that 1/; clearly has the desired property, and uniqueness is
straightforward to check. 0

In particular , we note that if 1'.1 is a right R-semimodule , N is a left R-semi ­
module, and if T is a cancellative r::l-semimodule then for any R-balanced function
B:1'.1 x N --+ T there exists a unique r::l-homomorphism 1/;: 1'.1 0 R N --+ T satisfying
1/; (m 0 n) = B(m, n) for all m E 1'.1 and all n E N.

(16.15) PROPOSITION . Let R be a semiring, left 1'.1 be a right R-semimodule,
left N be a left R-semimodule, and let T be a cancellative r::l-semimodule. Then
there exists a canonical isomorphism of r::l -semimodules 1/; : H om(M 0 R N ,T) --+

HomR(M, Hom(N, T» .

PROOF . If 0' is an r::l-homomorphism from 1'.1 0 R N to T , let 0'* be th e function
from 1'.1 to Hom(N,T) given by 0'* :n ~ a(m0n) . Then 0'* is an R-homomorphism
of right R-semimodules. That is to say, 0'* E HomR(M, HomiN, T» . Let

1/':Hom(M 0 R N ,T) --+ HomR(M, Hom(N,T»

be the function defined by 1/; : 0' ~ 0'* . It is straightforward to verify that this is an
N-homomorphism.

If 0'* = 13* th en a(m 0 n) = f3(m 0 n) for all m E 1'.1 and n E N and so we must
have 0' = 13 . Thus 1/; is monic . To show that it is surj ective as well, let fJ be an
R-homomorphism from 1'.1 to Hom( N ,T) and let B be the function from 1'.1 x N
to T defined by B(m, n) = fJ(m)(n) . Then B is R-balanced and so, by the remark
after Proposition 16.14, th ere exists a unique r::l-homomorphism 0' : 1'.1 0 R N --+ T
satisfying B(m, n) = 0'(m 0 n) for all m E 1'.1 and all n EN . By definition , 0'* = fJ,
proving that 1/; is surjective and hence an r::l-isomorphism. 0

(16.16) PROPOSITION . If1'.1 is a left R-semimodule then R 0R 1'.1 is isomorphic
to M[j]{O}.

PROOF . Let B:R x 1'.1 --+ M[j]{O} be the function defined by B:(r, m) ~
rm[j]{O} . Then B is R-balanced and so, by Proposition 16.14, there exists a unique
r::l-homomorphism 1/; : R 0R 1'.1 --+ M[j]{O} satisfying 1/; (r0 m ) = B(rm) for all r E R
an m EM . Indeed , 1/; is an R-homomorphism of left R-modules. On th e other
hand , we have a function <p:M[j]{O} --+ R 0 R 1'.1 given by <p:m[j]{O} ~ 1 x m.
It is easy to verify that this function is indeed well-defined and that it in fact is
an R-homomorphism. Since <p1/;(r 0 m) = <p(rm[j]O) = 1 0 rm = r 0 m and
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1/Itp(m(/ ]O) = 1/1(1 0 m) = m(/ ]{O} for all r E Rand mE M , we see that 1/1 must be
both surjective and monic and so it is an R- isomorphism. 0



17. FREE, PROJECTIVE, AND

INJECTIVE SEMIMODULES

Let R be a semiring and let M be a left R-semimodule. If A is a nonempty
subset of M th en th ere exists an R-homomorphism a : R(A) ---+ M defined by a : f I--->

I:mE A f( m )m. T he set A is a set of generators for M precisely when this R­
homomorphism is surj ective. Moreover, a induces an R-congruence rela tion =0' on
R(A) as defined in Example 15.1. Th e set A is linearly independent if and only if
=0" is th e trivial relation , i.e. if and only if I:mEA f(m)m = I:mEA g(m)m implies
th at f = g. If A is not linearly independent th en it is linearly dependent. A
linearly- ind ependent set of gener ators for M is a basis of Mover R. We not e that
if A is linearly dependent and if B C A th en th e subsemimodules of M generated
by B and A \ B have no nozero element in common.

The set A is weakly linearly independent if and only if k er(a) = {O} . Lin­
early ind ependent sub sets of M are surely weakly linearly ind ependent . If A is not
weakly linearly independ ent then it is weakly linearly dependent . Any subset
of M containing a [weakly] linearly dependent set is again [weakly] linearly depen­
dent . If m is an element of a semimodul e M which is a linear combinat ion of a
subset A of M th en A U {m} is linearly dependent but not necessarily weakly lin­
early dependent. A weakly linearly-independent set of generators for M is a weak
basis of Mover R. A nonempty subset A of a left R-semimodule M is linearly
attached if and only if th ere exists a partition A = B U C of A into a union of
disjoint subsets , together with nonzero functions f E R(B) and 9 E R(C ) such that

L f(m')m' = L g(m")m" .
m 'EB m"EC

(By convention , the sum taken over an empty set equals OM ') Every linearly at­
tached subset of M is linearly dependent , but the converse need not be true if M
is not an R-module.

(17.1) EXAMPLE. Let R be a semiring and let A be a nonempty set . For each
a E A , let f a E R(A) be th e characteristic function on {a}. Clearly {fa I a E A} is a
basis for R(A). In particular, if R is a semi ring and n is a positive integer, then Rn,
on which we have componentwise addition and scalar multipliction, has a basis .
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(17.2) EXAMPLE . [Kim & Roush, 1980] It is easy to verify that , for each positive
integer n , every finitely-generated subsemimodule of Nn has a unique basis and
every finitely-generated subsemimodule of (~+)n has a basis unique up to nonzero
multiples.

(17.2h) EXAMPLE . [Dudnikov & Samborskif , 1991] Let R be an ent ire zero­
sumfree semiring and let n be a positive integer. Then clearly

B = HI , 0, . .. ,0], [0,1 ,0 , . . . , 0], . . . , [0, ... , 0, I])

is a basis for th e left R-semimodule M = R" , Conversely, assume th at B' =
{VI , . .. , vn } be a set of generators for M having n elements. If aI , . .. , a n are
elements of R satisfying [1 ,0 , . . . , 0] = 2:7=1 a jVj then, by zerosumfreeness, we see
that a; = °unless Vj is of th e form [c, 0, .. . , 0]. A similar argument can be made
for each element of B and so we see that B' must be of th e form

HCl ' 0, ... , 0], [0, C2, 0, . . . , 0], . . . , [0, . . . , 0, cn ]} ,

where the Cj are nonzero elements of R. Moreover, this is th en a basis for M .

(17.3) EXAMPLE. [Zhao, 1990] Let R = {O, a, b, I} be partially-ordered by th e
relations °~ a ~ 1 and °~ b ~ 1. Then R is a bounded distributive lattice and
hence a semiring. We see that {I} and {a ,b} are both bases for R , considered as a
left semimodule over itself.

(17.4) EXAMPLE. A nonempty subset M of ;zn is a polyhedral monoid if
[0, . . . ,0] E M and there exists an m x n matrix A over ;:z; such th at

M = {x E ;Zn I AxT ~ [0, ... ,Of }.

Every polyhedr al monoid is surely a left N-semimodule. Hilbert [1890] showed that
every polyhedral monoid has a finit e basis . For a constructive method of finding
such a basis , see [Bachem, 1978] .

(17.5) PROPOSITION. Let R be a semiring and let M be a left R-semimodule.
Any basis for Mover R is a minimal set of generators for Mover R .

PROOF. Let A be a basis for Mover R and suppose that A properly contains
a set of generators B for Mover R . Pick x E A \ B and let f E R(B) satisfy th e
condition that x = 2:mEB f(m)m . Extend f to a function f' E R (A) by setting
f'(m) =0 if mEA \ B . Then surely x = 2:mEB f'(m)m . But on the other hand ,
x = 2:mEB g(m)m, where 9 E R(A) is defined by

{
I if m = x

g: m 1-+ •o otherwise

Since 9 i= f, this contradicts the assumption that A is a basis for Mover R . 0
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(17.6) PROPOSITION. Let R be an entire zerosumfree sim ple semiring satisfying
the condition that a + b -:P 1 unless a = 1 or b = 1. If M is a left R-semimodule
having a finite basis then that basis is unique.

PROOF. Let B = {Xl, ... , Xk} and B' = {Yl, ... ,Yn} be bases for M . Without
loss of generality, we can assume that k 2: n . Then there exist elements aij and
bj i (1 ~ i ~ k ;1 ~ j ~ n) of Rsuch that Xi = 2::1=laijYj for all i ~ i ~ k and

Yj = 2:::=1 bjiXi for all 1 ~ j ~ n. Thus Xi = 2::~=1 (2::1=1 aijbjh)Xh . Since B is
a basis, this implies that 2::1=1 aijbj i = 1 for all 1 ~ i ~ k and 2::j=l aijbj h = 0
when 1 ~ i -:P h ~ k. Since R is ent ire and zerosumfree, this means that aij = 0
or bj h = 0 if i -:P hand 1 ~ j ~ n and that there is an index 1 ~ j ~ n for which
aijbj i = 1, which , by th e 'simplicity of R, implies that aij = bj i = 1. Thus bjh = 0
for h -:P i and so for each 1 ~ i ~ k there exists a 1 ~ j ~ n such that Xi = Yj .
Thus B ~ B' and , since we assumed that k 2: n , we must in fact have equality. 0

If A is set of generators for a left R-semimodule M and if x E A , it does not nec­
essarily follow that x = 2::mEA f( m)m implies that f( x)x = x . A set of generators
having this property is standard.

(17.7) EXAMPLE . If M = II3 then {(~,~,~),(0,1,~) ,(0,~,1)} is a standard
basis for M over II but g, 1, ~) , (0, 1, ~), (O,~, I)} is a basis which is not standard
since (~, 1 ,~) = ~(~ , 1,~) + (0, 1 ,~) in M . For each nEIll', the left II-semimodule
lin has a unique standard basis . See [Kim & Roush, 1980] for details .

Note that B = {(~ , 130,~),(t,~,~),(~,~ ,~) ,(t,~ , /o)} is a linearly-inde-
pendent subset of M having more than three elements while, for any element
t ~ b ~ 1, the set {(b, 1

30'
1
70)

' (t,~,~)} is a basis for the subsemimodule of M
generated by B . Refer to [Guo et al. , 1988].

(17.8) EXAMPLE . [Takahashi, 1985] If M is a left J::l-semimodule and m E M
then {m} is weakly linearly independent if and only if am -:P 0 for all a E IIl'. It
is linearly dependent if and only if there exist integers 0 < a < b in J::l such that
am = bm . In this case, there exists a unique pair of integers (a', b') in J::l such that
0< a' < b', a'm = b'rn, and J::lm = {O, m , . . . , (b' - l)m} .

(17.9) PROPOSITION. Let R be a semiring and let M be a left R-semimodule
having a finite set of generators A = {Xl, ... , x n } satisfying the condition that
for each 1 ~ h ~ n there exist ah1 , . . . , ahn in R with ahh is left absorbing and
Xh = 2::7=1 ahixi · Then {al1x1," " annxn} is a standard set of generators for M .

PROOF . Set Y1 = al1x1. If m E M then there exist b1, . . . , bn E R such that

m = b1X1 + ...+ bnxn

= b1 (Y1 + ~a1hXh) +~ bhXh

n

= b1Y1 + ~(b1a1h +bh)Xh
h=2
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and so {YI, X2 , .. . , x n } is a set of generators for M . Moreover, if YI = CIYI +CZX z +
... + CnXn th en , by assumption , CIYl = clallxl = allxl = Yl . Now repeat this
procedure for y z = a ZZX2 , etc . 0

(17.10) PROPOSITION. Let R be an entire zerosumfree semiring. Then a left
R-semimodule M is an information semimodule over R if and only if it 'has a weak
basis.

PROOF. Assume that M is an information semimodule over R. Set A = M \
{OM} and let 0' : R CA) --+ M be defined by 0' : f f-+ LmE A f(m)m. If f is not the
O-map then f(m)m f:. OM whenever f(m) f:. 0 since M is ent ire, and so f(m) f:. OM
since M is zerosumfree. Therefore ker( 0') = {O}, showing that A is a weak basis
for M. Conversely, assume th at M has a weak basis A and let 0' be as before.
If m , m' E M \ {OM} th en th ere exists nonzero fun ctions I, g E R CA) satisfying
m = 0'(1) and m' = O'(g). Since R is ent ire and zerosumfree, we know that
f + g f:. 0 and so m + m' = 0'(1 + g) f:. OM . Similarly, if 0 f:. t: E R then rf f:. 0
and so rm = O'(rf) f:. OM . Thus M is an information semimodule. 0

A left R-semimodule having a basis over R is called a free R-semimodule. If R
is a ring and M is a left R-module, this reduces to th e usual definition of a free
module. Since not every module over a ring is free, certainly not every semimodule
over a semiring is free . As a consequence of the definitions, we not e that for any
nonempty set A th e left R-semimodule R CA) is free, and that every free left R ­

semimodule is R-isomorphic to R (A ) for some suitabl e nonempty set A . For th e use
of free semimodules in defining automata over semirings, refer to [Peeva , 1991].

(17.11) PROPOSITION. If R is a semiring and M is a left R-semimodule then
there exists a free R-semimodule N and a surjective R-homomorphism from N to
M .

PROOF. Let M be a left R-module. Since th e result is trivial for the case of
M = {OJ , we can assume th at M f:. {OJ. Let M' = M \ {OJ and let N = RU'f').
Let 0' : N --+ M be defined by 0' : f f-+ L mEsuPp(J ) f(m). This is clearly a surj ective
R-homomorphism. 0

(17.12) PROPOSITION. Let M be a free left R-semimodule having a basis U
and let N be an arbitrary left R-semimodule. For each function gENU there is a
unique R-homomorphism 0': M --+ N satisfying UO' = g(u) for all u E U.

PROOF. We know that each element m of M can be written uniquely in the form
L UEU ruu, where the r u are elements of R only finitely-m any of which are nonzero.
Define th e function 0' : M --+ N by L ruu f-+ L rug(u) . It is straightforward to
verify that 0' is indeed an R-homomorphism having th e desired property. Moreover ,
if {3: M --+ N is an R-homomorphism satisfying u{3 = g(u) for all u E U th en
(Lruu ){3 = Lru(u{3) = Lrug(u) = LruuO' = (Lruu)O' and so {3 = 0' . This
shows that 0' is unique. 0

Note th at we have alr eady implicitly made use of thi s result in th e proof of
Proposition 16.14.

By combining Example 17.1 and Proposition 17.12, we see that if M is a left
R-semimodule, if A is a nonempty set , and if g is a function from A to M , th en
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th ere exists a unique R-h omomorphism 0' : R CA) --T M sat isfying 0' : fa ...... g(a) for
all a E A .

Let M be a free left R-semimodule with basis U and let N be a free left R­
semimo dule with basis V. If 0' : M --T N is an R-h omomorphism then , by Proposi­
tion 17.12, the acti on of 0' is comp letely determined by its action on U . For each
u E U we have UO' = 2:vEv auvv , where the auv are elements of R only finitely­
many of which are nonzero. T hus o is effectively represented by th e column-finite
matrix [auv] E RUx v . Note that if M and N are free left R-semimodules and if
0' is represent ed by a matrix A in terms of given fixed bases of M and N , then in
t rying to determine nn- 1 we are t rying to solve the equat ion X A = B , where B is
the vector of coefficients of th e representation of n in terms of the given basi s for
N .

(17.13) EXAMPLE . Solu tion of equat ions of th e form X A = B , where B is an
element of a finit ely-generated free lI-semimodule was first considered in [Sanchez,
1976]. This was extended to considera t ion of equa t ions of thi s form for free semi­
modules over a totally-ordered lattice in [Di Nola , 1985], over a com plete and
completely distributive lattice in [Zhao, 1987, 1990], and over a fram e in [Di Nola
& Lettieri , 1989].

A left R-semimodule P is projective if and only if th e following condit ion
holds: if '1' : M --T N is a surj ecti ve R-homomorphism of left R-semimodules and if
o: P --T N is an R-homomorphism th en there exists an R-homomorphism .8: P --T M
satisfying .8'1' = o , In other word s, P is proj ecti ve if and only if

H am(P, '1' ): H amR(P, M ) --T H amR(P, N )

is a surjective N-homomorphism for every surject ive R-homomorphism '1' :M --T N .

(17.14) PROPOSITIO N. Every free left R-semirn odule is projecti ve.

PROO F . Let P be a free left R-semimodule wit h basis A. Let '1': M --T N be
a surject ive R-h omomorphism of left R-semimodules and let o : P --T N be an R­
homomorphism . Since 'I' is surject ive, we see that for each element a of A th ere
exists an element m a of M such that m a<p = an . By Proposition 17.12, we see
tha t th ere is a unique R-h omomorphism .8:P --T M sat isfying a.8 = m a. Then
a.8<p = m a<p = an for all a E A and so , by th e uniqueness part of Proposition 17.12,
we must have 0' = .8'1' . 0

A left R-semimodule N is a r etract of a left R-semimodule M if and only if
there exist a surj ective R-homomorphism () : M --T N and an R-homomorphism
'ljJ : N --T M sa t isfying th e condit ion that 'ljJ (} is th e identi ty map on N . If N is a
direct summand of a left R-semimodule M then surely N is a retr act of M . Also,
if N is a retract of M and M is a retract of M ' th en N is immediately seen to be
a retract of M '.

(17.15) E XAM PL E . If R is a semiring and n is a positive integer then any matrix
A = [ajj ] in M n(R) defines an R-endomorphism 0' of the left R-semimodule R"
given by 0' : (rl ' . . . , r n) ...... (Sl ' ... , sn ) where, for each 1 :S h :S n , Sh = 2:~ 1 r ja jh .

If the mat rix A is mul ti plicati vely regular then there exists a matri x B in Mn(R )
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satisfying ABA = A and this matrix similarly defines an R-endomorphism {3 of R" ,
Let N = Rna and let {3' be the restriction of {3 to N . Then for each mE R" we
have rno = ma{3a = (rno){3' a and so {3'a is th e identity map on N . Thus N is a
retract of R" ,

(17.16) PROPOSITION. A left R-semimodule is projective if and otily if it is a
retract of a free left R-semimodule.

PROOF . If P is a proj ective left R-semimodule th en , by Proposition 17.11, there
exists a free R-semimodule F and a surjective R-homomorphism 0:F -+ P. By
definition of projectivity, th ere exists an R-homomorphism 1/; : P -+ F such that 1/;0
is th e identity map on P .

Conversely , assume that P is a retract of a free left R- semimoduleF and let
0: F -+ P and 1/; : P -+ F be R-homomorphisms such that 0 is surj ective and 1/;0
is th e identity map on P. Let <p:M -+ N be a surjective R-homomorphism of left
R-semimodules and let a :P -+ N be an R-homomorphism. Since F is projective by
Proposition 17.14, there exists an R-homomorphism {3: F -+ M such th at {3<p = Oa.
Therefore 1/;{3<p = 1/;Oa = a, and so 1/;{3: P -+ M is a map having the property we
seek in order to prove projectivity. 0

(17.17) COROLLARY. Any retract of a projective left R-semimodule is projec­
tive.

PROOF . This is a direct consequence of Proposition 17.16. 0

(17.18) EXAMPLE . If R is a semiring th en ]+(R) is an idempotent subsemi­
module of R, considered as a left semimodule over itself. If th e semiring R is
additively regular then, from remarks in Chapter 12, we note that the function
a : R -+ ]+(R) defined by a :a ~ a O = a + a# is a surjective R-homomorphism of
left R-semimodules. Furthermore , th e restriction of a to ]+(R) is the identity map .
Therefore ]+(R) is a retract of R . Since R is proj ective as a left semimodule over
itself by Proposition 17.14, we see that ]+(R) is also proj ective .

(17.19) PROPOSITIO N. If {Pj liE n} is a family of left R-semimodules then
P = UjEn P; is projective if and only if each P j is projective.

PROOF . If P is projective then each P, is a retract of P and hence is projective
by Corollary 17.17. Conversely, assume that each Pj is projective. For each i E n,
let OJ:P -+ Pj be th e surj ective R-homomorphism (Ph) ~ pj and let 1/;j: Pj -+ P be
th e inclusion map .

Let <p:M -+ N be a surj ective R-homomorphism of left R-modules and let
a : P -+ N be an R-homomorphism. Then, by proj ectivity, for each i E n there
exists an R-homomorphism {3j: P, -+ M satisfying {3j <p = 1/; ja. Define the R­
homomorphism {3: P -+ M by j3:P~ EjEn pOjj3j. Then for pEP we have

pj3<p = ~ pOjj3j<p = ~ pOj 1/;j a = pa
jEn jEn

and so j3<p = a . 0



_____FREE, PROJECTIVE, INJECTIVE _ 197

(17.20) ApPLICATION . The algebraic formulation of linear systems th eory over
a field is given in [Kalman , Falb & Arbib , 1969] and was ext ended to systems over
rings in [Eilenberg, 1974], [Sontag, 1976], and [Naud e & Nolte, 1982]. It is easily
extended to th e case of systems over semirings. This is often desirable, since it is
useful to consid er syst ems over !'l or over the schedule algebra. If R is a semiring
then a (discrete-time, constant, linear dynamical) system over R is a sextuple
(U, X ,Y , tp , 'I/J, 8) where U is a left R-semimodule, called the input semimodule of
the syst em , X is a left R-semimodule, called th e state semimodule of th e syst em ,
Y is a left R-semimodule, called the output semimodule of th e system, tp :U --+ X
is an R-homomorphism called th e input homomorphism of the syst em , 'I/J is an R­
endomorphism of X called the state updating homomorphism, and 8: X --+ Y
is an R-homomorphism called the output homomorphism of th e system . The
R-semimodules U, X, and Yare often taken to be free. If (U,X,Y, tp , 'I/J ,8) and
(U' , X' ,Y", tp', 'I/J' ,8') are systems, th en a system morphism from th e first to th e
second consists of a triple (a, /3, ,) of R-homomorphisms a: U --+ U' , /3:X --+ X' ,
and T Y --+ Y ' such that the diagram

U
!a
U'

<p
--+

<p '
--+

X
! /3
X' t/J '

--+

X
! /3
X'

8
--+

8'
--+

Y
! ,
Y'

commutes. Many of th e results in [Sontag , 1976] are easily transferable to this
context .

Let R[t] be th e semiring of polynomials in an indeterminate t over a semiring R
and let S be the subsemiring of M 3(R[t]) consist ing of all matrices [Pij(t)] satisfying
th e following conditions:

(1) P1 2(t) = pdt) = P23(t) = 0;
(2) Pll(t) and P33(t) have degree at most 0 (i.e. th ey are elements of R) .

If U and Yare (R, R)-bisemimodules (and so, in particular , if they are free or if R
is commutative) th en we can consider the left R-semimodule U x X x Y as a right
S-semimodule by defining

Moreover, any system morphism canonically becomes an S-homomorphism of thes e
semimodules. Conversely, each such S-semimodule defines an syst em and each S­
homomorphism defines a system morphism between such systems .

Somet imes it is int eresting to consider a weaker version of proj ectivity. A left R­
semimodule P is steady projective if and only if th e following condition holds : if
tp :M -+ N is a surjective R-homomorphism of left R-semimodules and if a : P -+ N
is an R-homomorphism th en there exists an R-homomorphism /3:P -+ M satisfying
/3tp = a . For the properties of such semimodules, see [AI-Thani , 1995, 1996].

Let R be a semiring. A left R-semimodule E is injective if and only if, given
a left R-semimodule M and a subsemimodule N, any R-homomorphism from N
to E can be extended to an R-homomorphism from M to E. In other words , E is
injective if and only if

Homio», E) :HomR(M, E) -+ HomR(N, E)
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is a surj ective N-homomorphism for all monic R-homomorphisms 'P: N ----> M .
We know that if R is a ring then any left R-module is contained in an injective

left R-module. However, for arbitrary semirings this may be far from the case. The
following result was communicated privately to th e author by B. Banaschewski .

(17.21) PROPOSITION. If R is an entire, cancelJative, zerosumfree sem iring then
the only injective left R-semimodule is {O} .

PROOF . Let E be an injective left R-semimodule and , for e E E, let Q'e : R ----> E
be th e R-homomorphism defined by r I--> re o By injectivity, th ere exists an R­
homomorphism {3e: R tl ----> E ext ending Q' e. Then e + (-1) {3e = 1{3e + (-1) {3e =
O{3e = 0 and so e has an additive inverse in E . Thus E is an R-module.

Now let E' = E {oo} as defined in Example 14.8. Then th e identity map on E
can be ext ended to an R-homomorphism (3 from E' to E . Set u = 00(3. For each
e E E we have e + u =e(3 + 00(3 = (e + (0)(3 =00(3=U. This contradicts th e fact
that u , like every element of E , has an additive inverse unless u = O. But in that
case we must have E = {O} . 0

In particular , th ere are no nonzero injective N-semimodules. This does not mean,
of course, that th e situation is similarly bleak for semimodules over all semirings,
even those far from being rings . For example, if R is a frame th en every left
R-semimodule can be embedded in an injective R-semimodule (Joyal & Tierney,
1984].

(17.22) EXAMPLE . [H. Wang, 1994] We claim that Iffi is injective as a left semi­
module over itself. To see this, let N be a subsemimodule of a left l$-semimodule
M and let Q': N ----> Iffi be a l$-homomorphism. Define the function (3: M ----> Iffi by
setting m(3 = 0 if th ere exists an element x E M such th at rn + x E ker( Q') and
x(3 = 1 oth erwise. We claim th at (3 is a l$-homomorphism. Ind eed , suppose that
m j , m 2 E M . If (ml + m2) (3 = 0 then th ere exists an element x of M such that
ml + m2 + x E ker(Q'). Then (ml + [m2 + x ])Q' = 0 = (rn2 + [ml + x])Q' and
so ml{3 + m2 {3 = 0 + 0 = 0 = (ml + m 2){3. If (ml + m 2){3 = 1 th en either
ml (3 = 1 or m2(3 = 1 for otherwise, if both of th ese were equa l to 0, there would
exist elements Xl and X2 of M satisfying (ml + xt}Q' = 0 = (m 2 + X2)Q' and so
(ml + m2 + [Xl + X2 ])Q' = 0, implying that (ml + m2) (3 = O. Therefore, again,
ml (3+ m l(3 = (ml + m2)(3.

(17.23) PROPOSITION. Let R be a semiring and let E be an injective left R­
semimodule. Th en

(1) E A is an injective left R-semimodule for every nonempty set A ;
(2) Any direct sum m and of E is injective.

PROOF. (1) By Example 14.4 , E A is then a left R-semimodule. If N is a sub­
semimodule of a left R-sem imodule M and if Q' is an R-homomorphism from N
to E A then for each a in A we have an R-homomorphism Q'a : N ----> E defined by
nQ'a = (nQ')(a). Since E is injective, we know th at for each a E A th ere exists
an R-homomorphism (3a:M ----> E extending Q'a ' Define a function (3: M ----> E A by
(m(3)(a) = m{3a for all m E M and all a E A. Then (3 is an R-homomorphism
extending Q' . Thus E A is injective.
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(2) Let E' be a direct summand of E and let E" be a subsemimodule of E
satisfying E = E'$E" . Th en th ere exists a surj ective R-homomorphism 11" : E --+ E',
th e kernel of which is precisely E". Let A:E ' --+ E be the inclusion map . If N is a
subsemimodule of a left R-semimodule M and if a : N --+ E' is an R-homomorphism
th en , by injectiv ity , th ere exists an R-homomorphism (3: M --+ E extending aA . In
particular , if x E N th en x(3 E E' and so x (311" = xa A11" =zo , Therefore (3 11" :M --+ E'
extends a , prov ing th at E' is injective. 0

(17.24) C OROL L A RY . If A is a nonempty set the lEA is injective as a left lE­
semimodule.

PROOF . This is an immediat e consequence of Example 17.22 and Proposition
17.23. 0

Let T S --+ R be a semiring homomorphism. If R is canonically a left S­
semimodule if we define scalar multplication by s -r = ,(s)r for all s E S and r E R.
Let M be a left S-semimodule. Then Homei R , M) is a left R-semimodule with re­
spect to componentwise addition and scalar multiplication given by r'o: r ........ (rr')a
for all a E Homs(R,M) and r.r' E R .

(17.25) PROPOSITION. Let T S --+ R be a semiring homomorphism. If M is an
injective left S -sem imodule then H oms (R , M) is injective as a left R-semimodule.

PROOF . Set M be an injective left S-semimodule and set Y = Homei R , M) .
Let N ' be a subsemimodule of a left R-semimodule N and let a : N ' --+ Y be an
R-homomorphism. Note that N is also a left S-semimodule, with scalar multi­
plication defined by s . x = ,(s)x for all s E S and x EN. Moreover, N ' is an
S-subsemimodule of N . Define a function ip : N ' --+ M by setting <p:n ........ (1)(n a).
Th en <p is an S-homomorphism, as can easily be verified. Therefore, by inject ivity,
th ere exists an S-homomorphism () : N --+ M extending 'I' . We claim that th e func­
tion (3: N --+ Y defined by n(3: r ........ (rn)() is an R-hom omorphism. Indeed , for all
n l , n2 E N and all r E R we have

(r)[(nl + n2)(3] =(r[nl + n2])() =(rnl + rn 2)()

= (rnt)()( rn2)() = (r)[(3(nt)] + (r)[(3(n2)]

= (r)[(3(nt) + (3(n2)]

and for all n E Nand r , r' E R we have (r)[(3(r'n)] = (r[r'n])() = ([rr']n)B =
(rr')(3( n) = (r)[r' (3(n)]. This establishes th e claim . Moreover , (3 extends a since
for any n' E N' and r E R we have (r)[(3(n)] = (rn)() = (rn)<p = (1)[(rn)a] =
(1)«n)ra) = (r)[na] . 0

In particular, if M is a left R-semimodule which is injective as a left N-semi­
module th en the semimodule M# defined in Example 15.16 is injective as a left
R-semimodule.

An R-monomorphism a : M --+ N of left R-semimodules is essential if and only
if, for any R-homomorphism (3: N --+ N' , th e map a (3 is an R-monomorphism only
when (3 is an R-monomorphism. A subsemimodule M' of a left R-semimodule
M is large in M if and only if th e inclusion map M' --+ M is an essent ial R­
homomorphism. Equivalently, a : M --+ N is an essential R-homomorphism if and
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only if M a is a large subsemimodule of N . It is immedi ately evident th at a sub­
semimodule M' of a left R-semimodule M is large in M if and only if every sub­
semimo dule of M containing M' is large in M.

(17.26) PROPOSITION. If N is a subsem im odule of a left R-semimodule M then
the following condi tion s are equivalent:

(1) N is large in M ;
(2) If p is a nontrivial R -congruence relation on M then the restriction of p to

N is also nontrivial;
(3) Ifm and m' are distinct elements of M then th ere exist distin ct elements n

and n' of N satisfy ing n P(m,m' ) n'.

PROOF. (1) => (2): Let P be a nontrivial R-congruence relation on M and let
{3: M ---+ M / P be th e R-homomorphism defined by m 1---+ m]p. Then {3 is not an
R-monomorphism and hence, by (1), neith er is its restricti on to N. This implies
that th ere are elements n "# n' of N satisfying n p n', proving that the restriction of
p to N is nontrivial. (2) => (3): This is immediate. (3) => (1) : Let {3: M ---+ M' be
an R-homomorphism, th e restriction of which to N is an R-monomorphism. If {3 is
not injective th en th ere exist distinct eleme nts m and m' of M satisfying m p m' {3.
By (3) , th ere exist distinct elem ents nand n' of N satisfying np(m ,m' )n ' and hence
n P n'{3, which is a cont radict ion . Thus {3 mu st be an R-m onomorphism, proving
(1). 0

(17.27) EXAMPLE . Let R be th e semiring (I , max , min) and let H = R \ {I} ,
which is a left ideal of R and so is a left R-s emimodule. If p is a nontrivial R­
congrue nce relation on R which restricts to the trivial R-congruence relation on H
t hen there mu st exist an eleme nt a E H sat isfying a p 1. If b E H sa ti sfies a < b < 1
then a = ba p bl = b, which is a cont radict ior. Thus we see that every nontrivial
R-con gruence relation on R restricts .to a non tr ivial relation on H , proving that H
is large in R by Proposi tion 17.26.

(17.28) PROPOSITION. Let N be a subsem im odule of a left R-semimodule M
and let p be th e largest R- congruence relation on M th e restriction of which to N
is trivial. Then the canonical R-monomorphism a : N ---+ M / p is essential.

PROOF. Let ( be a nontrivial R-con gru en ce relation on M / p and let (* be th e
R-con gruence relation on M defined by th e condition that m (* m' if and only if
m]p ( m' / p . Then (* 2 p and , ind eed , (* and p are not equal. By th e definition
of p, t his means that th ere exist elements n "# n' of N satisfying n (* n' and so
na ( n'a. Thus ( restricts to a nontrivial relation on N a , proving that N a is large
in M/p. 0

(17.29) PROPOSITION. If E is an injective left R-semimodule th en every essen­
tial R-monomorphism a: E ---+ E' is an R-isomorphism .

PROOF. Let E be injective and let a : E ---+ E' be an essent ial R-monomorphism.
Then there exists an R-homomorphism {3: E ' --+ E such th at a{3 is th e identity map
on E . Assume that x E E ' \ E a . Then x {3 E E so x {3a "# x . Sin ce x{3a = fJ x , this
means that = fJ is a nontrivial R-con gru en ce relation on E' and so, by Proposit ion
17.26, it restricts to a non trivial R-con gru enc e relation on Ea . In particular , th ere
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exist elements e :{; e' of E satisfying eet{3 = e' a{3, contradicting the choice of {3.
Therefore we must have E' = Eo and so a is an R-isomorphism . 0

Let M be a left R-semimodule. If there exists an injective left R-semimodule
E and an essential R-monomorphism a : M ---+ E then E is an injective hull of
M . As we have seen in Proposition 17.21, inje ctive hulls of nonzero R-semimodules
need not exist for every semiring R.

(17,30) EXAMPLE . If R is an additively-regular semiring then any left R­
semimodule has an injective hull. See [Katsov , 1997] for details . In particular,
any semilattice (i .e. left lR-semimodule) has an injective hull. These hulls are
completely characterized in [Bruns & Lakser , 1975].

It is well-known , however, that they do always exist if R is a ring . If injective
hulls exist, they are unique, as the next result shows .

(17,31) PROPOSITION. If a: M ---+ E and a' :M ---+ E' are injective hulls of a
left R-semimodule M then there exists an R-isomorphism from E to E' .

PROOF. By injectivity, there exists an R-homomorphism () : E ---+ E' satisfying
a() = a' . We claim that this is the isomorphism we seek. Indeed, since a' = a()
is an R-monomorphism, we see by essentiality that () is also an R-monomorphism.
Assume that {3: E' ---+ N is an R-homomorphism satisfying the condition that (){3
is an R-monomorphism. Then a(){3 = a' (3 is also an R-monomorphism. But a' is
essential and so f3 is an R-monomorphism. Thus () is essential and so, by Proposition
17.29, it is an R-isomorphism, as claimed . 0

Let R be an an additively-idempotent semiring. Then B(R) = {OR, lR} and so ,
as we have alr eady noted, R can be considered as a left lR-semimodule. For any
nonempty set A , we can then set I(A) ,_: Home ( R, JRA ) and it is straightforward
to show that I(A) is a left R-semimodule with addition and scalar multiplication
defined by (17 + 17')(r)(a) = 17(r)(a) + 17'(r)(a) and (sf)(r)(a) = f(rs)(a) for all
17,17' E I(A), r,s E R, and a E A. As a consequence of Proposition 17.25, we see
that if R is an additively-idempotent semiring and M is a left R-semimodule then
I(M) is an injective left R-semimodule.

We can now extend Joyal and Tierney 's result .

(17.33) PROPOSITION. [Wang, 1994] IfR is an additively-idempotent semiring
then every left R-semimodule can be em bedded in an injective left R-semimodule.

PROOF. Let M be a left R-module. For mE M set U(m) = M \ {m+m' 1m' E
M} . Define the function () : M ---+ I( M) as follows: if m E M and r E R then (r) [m()]
is the characteristic function on U(m). Thus, in particular, (OM)() :r 1-+ 0 for all
r E R . If rl, r2 E R then U«rl + r2)m) =U(rlm + r2m) = [U(r1m) n U(r2m)] =
U(rlm)UU(r2 m) we see that (r. +r2)(m()) = (rt}(m())+(r2)(m()) for all rl, r2 E R.
Thus m() is a lR-homomorphism and so belongs to I(M) .

Suppose that m() = m'(). Then U(rm) = U(rm') for all r E R and so, in
particular, U(m) = U(m') Since m rt. U(m) , this means that m rt. U(m') and so
there exists an element x of M satisfying m = m' + x . Similarly there exists an
element y of M satisfying m' = m + y. Since M is additively idempotent , we have
m =m+m =m+m' +x = m+m' +m' +x =m+m+y+m' +x =m+m' +x+y.
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Simil arl y, m' =m + m' + x + y and so m =m' . T hus e is moni c. The proof tha t (J

is an R-homomorphism is straightforward. 0

(17.34) C OROL L ARY . If R is an additively-idempotent semiring then every left
R-semimodule has an injective hull.

PROOF . By Proposition 17.32 we know th at every left R-semimodule can be
embedded in an inject ive one. We are left to show th at in th is case every such
semi module has maxim al essent ial extension which too is inject ive. This is a con­
sequence of genera l results in universal algebra. See page 261 of [Cohn , 1965]. 0

Let R be as semiring and let C is a nonempty class of left R-semimodules. A left
R-semimodule E is C-injective if and only if, given an R-sub semimodule M of a
left R-semimodule N such th at both M and N are in C, th en any R-h om omorphism
from M to E can be extended to an R-homomorphism from N to E . It is easily
seen that if {Ei l iE D} is a family of left R-semimodules, th en [LEn E, is C­
injec t ive if and only if each E, is C-inj ective. If C is th e class of all cancellat ive
left R-semi mod ules, this sit ua t ion has been studied by Hall and Pianskool [1996].
We will say th at a left R-semimodule is c-injective if and only if it is C-injective ,
where C is th e class of all cancella t ive left R-semimodules.

(17.35) E X A M PLE . [Hall and Pi anskool , 1996] If (D ,+) is a divisible abelian
group, for example Q / 71" th en D# = H om N(R , D) is a left R-module which, by
the same reasoning as above, can be shown to be c-injec t ive. Using vari ants of th e
above arguments and the st andard arguments from the th eory of modules over a
ring , one can show th at if R is a semiring th en any cancellat ive left R-semimodule
can be embedded in a c-injective left R-module.



18. LOCALIZATION OF

SEMIMODULES

In Chapter 10 we constructed semirings of fraction s of certain semirings. We
now subsume that construction in the more general construction of localizations of
semimodules over semirings. Our method follows th e method for modules over rings
given in [Golan , 1986]. If R is a semiring then a nonempty subset I', of lideal(R) is
a topologizing filter if and only if the following condit ions are satisfied:

(1) If I ~ H are left ideals of R with I E I', th en HE 1', ;
(2) If I , H E I', then In HE 1', ;
(3) If I E I', and a E R th en (I : a) E K .

The family of all topologizing filters of left ideals of R will be denoted by R - fil.
Note th at REI', for all I', E R - fil .

(18.1) E XA M PL E . If IE ideal(R) th en 7][1] = {H E lideal(R) I I ~ H} belongs
to R - fil .

It is clear that th e intersection of an arbitrary family of elements of R - f il
again belongs to R - fil . Thus R - f il is a complete lattice. Moreover , if I', and 1','
are elements of R - fil th en we set 1',1',' equal to the set of all thos e elements I of
lideal(R) satisfying th e condition that th ere exists an element H in 1',' containing I
for which (I : a) E I', for all a E H . It is straightforward to verify that this is again
an element of R - f il .

(18.2) E X A M PL E . If I', E R - fil and if I is an ideal of R , th en 1',7][1] equals
{I' E lideal(R) I th ere exists an element H of I', satisfying I H ~ I' ~ H} .

By a straightforward translation of th e proofs in Chapter 3 of [Golan , 1987] one
can show that (R - fil ,n, ·) is a zerosumfree simple semiring for any semiring R ,
thus extending Example 1.7.

If R is a semiring, then a nonempty subset I', of lideal(R) is a Gabriel filter if
and only if th e following condit ions are satisfied :

(1) If H,I E I', and if 0:' E HomR(H,R) then 10:'-1 E 1', ;
(2) If J{ is a left ideal of R and I E I', satisfies th e condition that for each a E I

th ere exists an element Ha of I', with Haa ~ J{, th en J{ E K .
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The set of all Gabriel filters of left ideals of R will be denoted by R - gab. Note
that if K, E R - gab and if I , H are elements of K, then for each a E H we have
(IH : a) ={r E R I ra E IH} "2 I and so (IH : a) E K, for each a E H . Moreover,
(I H : a)a ~ I H for each such a . Therefore I H E K, .

Clearly 1][{O}] = lidea!(R) belongs to R - gab and , indeed, this filter contains
all other elements of R - gab.

Gabriel filters of ideals of bounded distributive lattices are considered in
[Georgescu, 1988].

(18.3) EXAMPLE. [Huq, 1983] An ideal I of a commutative semiring R is sep­
arating if and only if for each pair r :F r' of distinct elements of R there exists an
element a of I such that ar :F ar' : Then th e family of all separating ideals of R
is a Gabriel filter of ideals of R. This is the filter used in [Schmid , 1983] for th e
construction of lattices of fractions of bounded distributive lattices.

(18.4) PROPOSITION. If R is a semiring then R - gab = IX (R - fit) .

PROOF . Let K, E R - gab. Assume that I ~ H are left ideals of R with I E K, . If
a E I then Ia ~ I ~ H and so, by condition (2) of the definition of a Gabriel filter ,
we have H E K, . Let I and H be elements of K, and let a : I --;. R be the inclusion
map , which is an R-homomorphism . Then In H = Ha- 1 E K, . Let I E K" let
a E R, and let a : R --;. R be the R-homomorphism of left R-semimodules defined
by a : r 1-+ ra , Then (I : a) = 10'-1 E K, . Thus K, E R - [il ,

It is easy to see that K, ~ K,2 for any K, E R - fit . If K, E R - gab, then condition
(2) in the definition of a Gabriel filter implies that th e reverse containment is also
true and so we have equality. Therefore R- gab ~ IX (R- fil) . Conversely, assume
that K, E IX(R-fil). If H ,I E K, and a E HomR(H,R) then for each a E H we
have (Ia- 1 : a) = {r E R I ra E Ia- 1 } = {r E R I raa E I} = (! : aa) E K, and
so 10'-1 E K,2 = K,. Furthermore, if K is a left ideal of R and I E K, satisfies the
condi tion that for each a E I there exists an element Ha of K, satisfying Haa ~ K
then , as an imm ediate consequence of the definition, K E K,2 = K, . Thus K, E R- gab,
proving that R - gab = IX (R - fi/) . 0

(18.5) PROPOSITION. Let R be a semiring and let M be a left R-semimodule.
Then any K, E R- fit defines an R-congruence relation =" on M by setting m =" m'
if and only if there exists an element I of K, such that am = am' for all a E I .

PROOF . Clearly m =" m for each m E M and if m =" m' then surely m' =" m.
If m =" m' and m' =" mil then there exist elements I and H of K, such that
am = am' for all a E I and bm' = bm" for all b E H . Therefore em = em" for all
e E In H E K, and so m =" m". Similarly, if m =" m' and n =" n' then there exist
elements I and H of K, such that am =am' for all a E I and bn =bn' for all b E H .
Hence e(m+n) = e(m' +n') for all e E InH E K, and so m+n =" m' +n' . Finally,
if m =" m' and r E R then there exists an ideal I in K, such that am = am' for all
a E I and so b(rm) = b(rm') for all se (I : r) E K, . Thus rm =" rm', proving that
=" is an R-congruence relation on M . 0

The relation =" defined in Proposition 18.5 is called the x-t.or'sion congruence
on M . A left R-semimodule M is x-torsion if and only if the R-congruence relation
=" is universal on M . To show that this holds , it is necessary and sufficient to show
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that m =K OM for every element m of M. The left R-semimodule M is strongly
x-torsionfree if and only if th en R-congruence =K on M is trivial.

(18.6) PROPOSITION. Let R be a semiring and let I\: E R - fil . Th en R ,
considered as a left semimodule over itself, is n-torsion if and only if I\: = 1][{O}) .

PROOF. If I\: = 1][{O}) then surely R is x-torsion since Oa = Ob for all a,b E R .
Conversely, assume that R is x-torsion. Then 0 =K 1 and so th ere exists an element
I of I\: satisfying 0 = Oa = la = a for all a E I . But th is means that 1= {O} and
so {O} E 1\:, proving that I\: = 1][{O}] . 0

(18.7) PROPOSITIO N. Let I\: E R - fil for some semiring R .

(1) If 0' : M -+ N is an R-homomorphism of R-semimodules and if m =K m' in
M then mO' =K m'r» in N .

(2) If N is a submodule of a left R-module M then n =K n' in N if and only if
n =K n' in M .

(3) If M is a left R-semimodule then N = M I =K is strongly «-torsioniree.
(4) If 0' : M -+ N is an essential R-monomorphism of left R-semimodules then

N is strongly «-totsioniree if Mis.

PROOF . (1) - (3) are immediate consequences of the definitions; (4) is an imme­
diate consequence of the definitions and of Proposition 17.26. 0

In particular, we see that any subsemimodule of a x-torsion left R-semimodule
is again x-torsion and a subsemimodule of a strongly x-torsionfree R-semimodule
is again strongly x-torsionfree.

Let I\: be a topologizing filter of left ideals of a semiring R . A subsemimodule
N of a left R-semimodule M is x-dense in M if and only if (N : m) E I\: for all
mEM.

(18.8) PROPOSITION. If R is a sem iring and I\: E R - gab then the following
conditions on a subtractive left ideal I of R are equivalent :

(1) lEI\: ;
(2) RII is a s-torsion left R-semimodule;
(3) I is «-deuse in R .

PROOF . (1) => (2): If a E R th en (I : a) E I\: and (I : a)a ~ I . Therefore
a] I =K 011, whence RI I is a x-torsion left R-semimodule.

(2) => (3) : By (2) we know that for each a in R there exists a left ideal H in
I\: such that for each h E H there is an element b of I with ha + i e i . Since I
is subtractive, this means that ha E I for each h E H and so H ~ (I : a) . Hence
(I : a) E I\: for all a E R, proving (3) .

(3) => (1): If a E R then Ha = (I : a) E I\: satisfies Haa ~ I . Since REI\:, th is
implies th at lEI\: . 0

(18.9) PROPOSITION. Let R be a semiring and let I\: E R - gab. If N is a
subsem im odule of a left R-semimodule M then N is «-dense in M if and only if
MIN is «-toreion .

PROOF . Assum e that N is x-dense in M . If m E M th en (N : m) E I\: and
amfN = OIN for all a E (N : m) . Therefore mfN =K0IN for each m E M ,
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proving that MIN is x-torsion . Conversely, if MIN is x-torsion and if m E M then
m j N =" OIN and so there exists an element I of K satisfying amfN = 0IN for all
a E I . Therefore I ~ (N : m) and so (N : m) E K, proving that N is x-dense in
M . D

(18.10) COROLLARY. Let K E R - gab for some semiring R. If 0': M ----> N
is an R-homomorphism of left R -semimodules then the following conditions are
equivalent:

(1) A subsemimodule N' of N is s-dense in N if and only if N'0'-1 is s-dease
in M ;

(2) If N is «-torsion and ker(O') = {O} then M is «-torsion .

PROOF. (I):::} (2) : If N is x-torsion then, by Proposition 18.9, we see that {ON}
is K-dense in M and so {OM} = {ON }O'-1 is x-dense in M by (1) . Therefore, by
Proposition 18.9, we conclude that M is x-torsion .

(2) :::} (1) : Let N' be a x-dense submodule of N . Then, by Proposition 18.9,
N IN' is x-torsion . Moreover , by Proposition 15.19, the map 0' induces an R­
homomorphism MIN,O'- 1 ----> NIN' with kernel {O} and so MIN'O' - 1 is x-torsion .
Hence, by Proposition 18.9, N,O'- 1 is x-dense in M . D

(18.11) PROPOSITION. Let K E R - gab for some semiring R and let M be a
strongly s-torsioniree left R-semimodule. If N' is a «-denee subsemimodule of a
left R-semimodule N and if 0' : N' ----> M is an R-homomorphism then there is at
most one R-homomorphism ;3: N ----> M extending O' .

PROOF. Assume that ;3 =j:. 13' are R-homomorphisms from N to M extending 0'

and let N be an element of N satisfying n;3 =j:. nf3'. The left ideal I = (N' : n) of
R belongs to K and a(nf3) = (an)O' =a(nf3') for all a E J. Therefore nf3 =" nf3' in
M and so, by strong x-torsionfreeness, n;3 = nf3', which is a contradiction . D

If K E R-gab for some semiring R and if M is a left R-semimodule, set T,,(M) =
{m E M I (0 : m) E K}. We call T,,(M) the x-tor-sion subsemimodule of M .
This terminology is justified by the following result .

(18.12) PROPOSITION. If K E R - gab for some semiring R and if M is a left
R-semimodule then :

(1) T" (M) is a subsemimodule of M ;
(2) T"(M) is s-torsion;
(3) T,,(T,,(M)) = T,,(M);
(4) T,,(MIT,,(M)) = {O};
(5) If 0': M ----> N is an R-homomorphism ofleft R-semimodules then T" (M)O' ~

T,,(N) ;
(6) If M' is a subsemimodule of M then T,,(M') = T,,(M) n M'.

PROOF . (1) If m , m' E M and if r E R then (0 : m + m') 2 (0 : m) n (0 : m')
and so, by Proposition 18.4 , (0 : m + m') E K. Moreover , (0 : rm) = «0 : m) : r)
and so, by Proposition 18.4 , (0 : rm) E K. Thus m + m' and rm both belong to
T,,(M) and so T,,(M) is a subsemimodule of M .

(2) If m E T,,(M) th en am = aO for all a E (0 : m) E K and so m =" O. Thus
=" is universal on T,,(M) and so T,,(M) is x-torsion .
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(3) This is an immediat e consequence of th e definition .
(4) Assum e th at m/T,,(M) E T,,(M / T,, (M ». Then (T,,(M) : m) E K . For each

a E (T,,(M) : m) th ere exists an element Ha of K with Haam = {O}. T herefore , by
the definition of a Gabriel filter,I{ = U{ Haa Ia E (T" (M) : m) } E K and J{ m = {O}
so m E T,,(M ). Hence m/T,,(M) = o.

(5) If x E T ,,(M) th en (0 : rno ) 2 (0 : m) so (0 : rno-) E K . Thus rno E T,,(N) .

(6) This is an immediate consequence of th e definitions. 0

If K E R-gab and if M is a left R-semimodule satisfying T,,(M) = {O} th en Mis
K-torsionfree. Strongly x-torsionfree left R-semimodules are surely x-torsionfree.

/medskip If K E R - gab for some semiring R th en a left R-semimodule E is K­

injective if and only if, given a left R-semimodule M and a x-dense submodule N
of M , any R-homomorphism from N to E can be extended to an R-homomorphism
from M to E . Such an extension may be not be uniqu e. However , we do have th e
following result .

(18.13) PROPOSITION. Let R be a semiring. The following conditions on a left
R-semimodule E are equi valen t:

(1) Given a left R -semimodule and a n-dense subsemimodule N of M , any R­
homomorphism from N to E can be uniquely ex tended to an R-homomor­
ph ism from M to E;

(2) E is «-injective and strongly «-torsionitee.

PROOF . (1) ::::} (2): Surely (1) implies that E is x-inj ective. If x and yare
elements of E satisfying x =" y then there exists an element I of K satisfying
ax = ay for all a E I . By Proposition 18.8, I is x-dense in R . Let a : I -..;. E be
th en R-homomorphism of left R-semimodules defined by a. a ax = ay . Th en
the R-homomorphisms from R to E defined by r ....... rs: and r ry both extend
a and so, by (1) , th ey must be equa l. Hence x = Ix = ly = y , proving th at E is
strongly x-torsionfree.

(2) ::::} (1): The existence of such an extension follows from the x-inj ectivity of E ,
and its uniqueness follows from strong x-torsionfreeness by Proposition 18.11. 0

(18.14) PROPOSITION. Let K E R - gab for some semiring R and let E be
a «-injective left R-semimodule. Let E' be a subsemimodule of E satisfying th e
con di tion th at E / E ' is s-torsioniree. Then E' is also n-iujective.

PROOF. Let N be a x-dense subsemimodule of a left R- semimodule M and
let a : N -..;. E' be an R-homomorphism. Then th ere exist s an R-homomorphism
13:M -..;. E extending a . If m E M th en I = (N : m) E K so I(m j3) = (Im) j3 ~

N 13 ~ E ' . If m j3 rf:. E ' th en m {3/E' is a nonzero element of T,,(E/ E ' ), which is a
contradiction. Thus we mus t have m j3 E E', proving that E ' is also x-inj ective. 0

We would now like to construct "semimodule of quotients" of a left R-semimodule
with respect to a Gabriel filter K . We are hampered in emula ting th e construction
in module th eory [Golan , 1986] by th e possible lack of sufficiently-many injective
semimodules, as demonstrated in Proposition 17.21.
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(18.15) PROPOSITION. Let", E R - gab for some semiring R and let M be a
strongly «-torsioniree left R-semimodule. Then there exists a strongly n-torsionlree
left R-semimodule Q,,(M) and an R-monomorphism 'PM :M --+ Q,,(M) such that:

(1) M'PM is a s-detise subsemimodule ofQ,,(M);
(2) If N is a strongly s-torsioniree left R-semimodule and 0': M --+ N is an

R-monomorphism such that M 0' is a s-deuse subsemimodule of N, then
there exists a unique R-monomorphism 13: N --+ Q,,(M) extending 'PM.

PROOF . Let M be a strongly x-torsionfree left R-semimodule and let W,,(M) =
{(I, 0') I IE'" and 0' E HomR(I,M)}. Define a relation (on W,,(M) by setting
(I , 0') ( (I', 0") if and only if there exists an I" E '" satisfying I" ~ I n I' while the
restrictions of 0' and 0" to I" coincide. Then ( is clearly an equivalence relation .
Let Q,,(M) = W,,(M)/( and denote the equivalence class (I,O')/( by 1110' . Define
an operation + on Q,,(M) by setting IIIO'+Hllj3 = (In H)II(O'+13). This is well­
defined since if I110' = 1'110" and HI113 = H' 1113' then there exist elements I" and
H" of", satisfying I" ~ InI' and H" ~ HnH' such that 0' and 0" agree on I" while
13 and 13' agree on H" . Hence I" n H" E '" and I" n H" ~ (I n H) n (I' n H') while
0'+13 and 0"+13' agree on I"nH", proving that (InH)II(O'+j3) = (I'nH')II(O"+j3') .
Moreover , as an immediate consequence of the definition we see that (Q,,(M),+)
is a commutative monoid with additive identity RllfJ, where fJ: R --+ M is the
R-homomorphism defined by fJ: r 1--+ OM for all r E R.

If 1110' E Q,,(M) and r E R, let r(IIIO') = (I : r)llm, where m : (I : r) --+ M
is the R-homomorphism defined by a 1--+ (ar)O'. Again, this is well-defined since if
I110' = 1'110" then there exists an element I" of", such that I" ~ In I' while 0' and
0" coincide on I". But then (I" : r ) ~ (I : r ) n (I' : r ) while m and ro' coincide
on (I" : r). Hence r(IIIO') = r(I'IIO") ·

Given these definitions, it is a straightforward computation to show that Q,,(M)
is in fact a left R-semimodule. Moreover , for each m E M we have an R-homomor­
phism fJm:R -+ M defined by fJm:r 1--+ rm and so RllfJm is an element of Q,,(M) .
If m , m' E M then fJm+ml = fJm + fJ:" while if m E M and a E R then fJam = afJm.
Thus, if 'PM :M -+ Q,,(M) is the function given by m 1--+ RllfJm then 'PM is an R­
homomorphism of left R-semimodules. Indeed, it is injective since if m'PM = m' 'PM
then RllfJm = RllfJ:" and so there exists an element I of", such that am = am' for
all a E I . But M was assumed to be strongly x-torsionfree, and so this implies that
m = m' . Thus, by Proposition 15.15, 'PM is an R-monomorphism. Next, we claim
that M'PM is x-dense in Q,,(M) . Indeed , if 1110' belongs to Q,,(M) then for each
a E I we have a(IIIO') = RllfJm, where m = (a)O' E M . Thus (M'PM:1110') E «.
If I110' and 1'110" are elements of Q" (M) for which there exists an element I" of
'" such that a(I II0') = a(I' II 0") for all a E I" then for each a E I" there exists an
element Ha of '" contained in (I : a) n (I' : a) such that aO' and aO" coincide on
n. . Set H = I:aEIII u; Then HE"', H ~ In 1', while 0' and 0" coincide on H.
Therefore I 110' = 1'110" . This shows that Q" (M) is strongly "'-torsionfree.

Now assume that 0': M -+ N is an R-monomorphism such that N is strongly
x-torsionfree and such that M 0' is x-dense in N. If n E N then (M0' : n) E s:

Define the function 13:N -+ Q,,(M) by 13:n 1--+ (MO' : n)ll¢n , where ¢n is the
R-homomorphism defined by a 1--+ (an )0'-1 . If n = mO' for some m EM, then
(M 0' : n) = Rand ¢n: r 1--+ rm. In other words, ¢n = fJm, proving that 0'13 = 'PM.
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We are left to show that f3 is in fact an R-monomorphism . If n, n' E N th en
H = (M ex : n) n (M ex : n') belongs to K , while th e restrictions of 7fn+nl and 7fn+ 7f~

coincide on H . Therefore nf3 + n' f3 = (n + n') f3 . Simil arly r( n(3) = (rn) f3 for all
t: E Rand n E N . Thus f3 is an R-homomorphism. If n,n' E N satisfy nf3 = n' f3
then there exists an element H of K satisfying H nex- 1 = H n'ex- 1 and so H n = H n'
since ex is inject ive. But M is strongly x-torsionfree, and so thi s implies that n = n' .
Thus f3 is an R-monomorphism. It is unique by Proposition 18.11. 0

(18.16) PROPOSITION. Let K E R - gab for some semiring R and let M be a
strongly n-torsiouiree left R-semimodule having an injective hull ex :M --+ E . Th en
Q",(M) is x-iujective.

PROOF. Let E' be the sub module of E containing M ex and defined by E' 1M ex =
T",(EIMex) . Then Mex is x-d ense in E' and E I E' is x-torsionfree by Proposition
18.12(4) . By Proposition 18.14, E' is x-inj ective. By Proposition 18.7(4) , E is
strongly x-torsionfree and so E ' is also strongly x-torsionfree.

Since E' is x-injec tive, th ere exists an R-homomorphism () : Q",(M) --+ E' sat­
isfying ex = <PM(} . On th e other hand , by Proposition 18.15, th ere exists an R­
homomorphism 7f : E' --+ Q",(M) sat isfying <PM = ex7f. Therefore ex = ex(7f(}) and
<PM = <PM((}7f) . By Proposition 18.11, we see th at (} 7f must be the identity map on
Q",(M) and 7f(} must be th e identity map on E' . Therefore E' is R-isomorphic to
Q",(M) , proving th at Q",(M) is x-injective. 0

Let K E R - gab for some semi ring R. If M is a left R-semimodule then M I =", is
strongly x-torsionfree by Proposition 18.7(3) . We th en set Q",(M) = Q",(MI =",) .
This strongly x-tcrsionfree left R-semimodule is called the semimodule of K­

quotients of M .
Now let us look at R, consid ered as a left semimodule over itself. If 1][{O}] =f.

K E R - gab th en , 'by Proposition 14.36, R", = EndR(Q,,(R)) is a semiring, called
th e semiring of x-quotients of R. This terminology is justified by the following
result.

(18.17) PROPOSITION. If R is a semiring and 1][{O}] i- K E R - gab then R" is
canonically a left R-semimodule R-isomorphic to Q,,(R) .

PROOF. Each element q of Q" (R) defines an R-homomorphism f3q from R, con­
sidered as a left semimodule over itself, to Q,,(R) , given by a f--+ aq. If a =" b
in R then aq =" bq. But Q,,(R) is strongly x-torsionfree and so we must have
aq = bq. Therefore f3q induces an R-homomorphism from R' = RI =" to Q,,(R)
which , by Proposition 18.15, can be uniquely extended to an R-endomorphism (}q of
the left R-semimodule Q,,(R). For r E R, set r' = r] ="E R' . Then we can define
the structure of a left R-semimodule on R" by setting rex = (}~ex for each r E R
and ex E R", . (The proof th at this indeed does turn R" into a left R-semimodule
is straightforward , relying on the uniqueness of (}q .) Let () : Q,,(R) --+ R" be the
fun ction defined by q f--+ (}q . We claim that this is an R-homomorphism of left
R-semimodules. Ind eed , if x , y E Q", (R) th en x(} + y(} and (x + y)(} both ext end th e
map from R' to Q,,(R) induced by f3x+ f3y and so must be equal. Similarly, if r E R
and x E Q" (R) then r( x(}) and (rx)(} are equal. This establishes th e claim. We not e
that , in fact , () is surj ective since if ex E R", then ex is the image of (II =,,)ex under ().
Similarly, () is injective since if x =f. yin Q",(R) th en (II =,,)(}x = x =f. y = (II =,,)(}y
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and so xB f. yB. Thus, by Proposition 15.15, B is an R-m onomorphism and so is
the R-isomorphism we seek. 0

The isom orphism B defined in Proposition 18.17, composed with th e R­
homomorphism from R to Q,,(R) defines an R-homomorphi sm A" from R to R" .
Indeed , A" is a morphism of rings for if a , s e R then A"(ab) and A" (a)A"(b) are
both R-end omorphisms of Q,,(R) which extend th e R-hom omorphism from R/ ="
to Q,,(R) defined by r] =,,1-+ rab] =" and so, by Proposition 18.15, they mus t be
equal.

(18. 18) PROPOSITION . If R is a sem iring and 1][{O}] f. /\, E R - gab then any
strongly «-torsioniree left R-semimodule has the structure of a left R,,-semimodule
which naturally ex tends its structure as an R-semimodule.

PROOF . If N is a strongly x-t orsionfree left R-semimodule th en any element
x of N defines an R- homom orphi sm from R to N given by a 1-+ ax . If a =" b
in R th en ax =" bx in N and so ax = bx . Therefore this R-homomorphism
induces an R-homomorphism from R/ =" to N which , by Proposit ion 18.15, can
be uniquely extened to an R-homomo rphism 1/Jx:Q,,(R) ---> N . If 0' E R" define
0' . x to be (1 )O"/Px EN . This defines on N th e structure of a left Rcsemimodule.
Fur therm ore, if 0' = A"(r ) for some eleme nt r of R th en 0' . x = rx and so th e
R ,,-semimodule structure on N naturaIly extends its R-sem im odule structure. 0

Further results on th e nature of semimodules of quotient s can be developed along
the lines of th e corresponding results for modules present ed in [Golan , 1986].



19. LINEAR ALGEBRA OVER

A SEMIRING

T he techniques of linear algebra over a semi ring have important applicat ions in
optimization theory , models of discrete event networks, and graph theo ry, partic­
ularly if the semi ring is in fact a semifield . For further examples, see [Baccelli &
Mairesse, 1998] and [Gaujal & Jean-Marie, 1998].

If A and B are nonemp ty sets and if R is a semiring then R AxB can be turned
into an (R , R)-bisemimodule by defining addition and scalar mul tipli cation com­
ponentwise. We denote thi s bisemimodu le by M AxB(R) . If th e set A is either
finit e or count ably-infinite then MA xB(R) can be turned into a left MA ,r(R)­
sem imodule by defining addi tio n comp onentwise and scalar mul t iplicat ion as fol­
lows: if u E MAxB(R) and f E M A,r(R ) then f u:(i ,j) t-+ L:kEA f (i , k )u(k , j ) for
all (i,j) E A x B. (Note that the sum is well-defined since , for each i E A, only
finite ly-many values of f (i , k) are nonzero.) As in the case of elements of M A(R ),
we often use mat rix notation rather than functional notation to denot e the elements
of MA xB(R). If the set A [resp. B ) is finit e and has order n, we will sometimes
writ e Mn xB(R) [resp . M Axn(R)] instead of M AxB(R).

If u E MA xB(R) and v E MB xc(R) sat isfy the condit ion that either u is
row finite or v is column finite, th en we can define the m atrix product uv to
be the element of MA xc(R) defined by uv:(i ,j) t-+ L: kE B u(i , k)v(k ,j) for all
(i,j) E A x C . If v is a fixed column-finite element of MB xc(R) , then it is
st raig htforward to see that for all u, u' E MA xB(R) and for all f E MA ,r(R) we
have (u+ ul)v =uv+u1v and (Ju )v = f (uv). T hus we see that the funct ion u t-+ U V

is an M A,r (R)-homomorphism from M AxB(R ) to M Axc(R) . Moreover , if A and
Bare nonempty sets and if n E ITD th en we have a function

defined by On: (u , v) t-+ uv. If S = M n(R) then MA xn(R) is a righ t S-semimo dule
and Mn xB(R) is a left S-semimodule. Moreover, the map On is S-balanced. T here­
fore, by Propositio n 16.14, th ere exists a uniqu e N-homomorphism
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satisfying the condition that 'IjJ (u 0 v) = uv[j]{O} .
A matrix u E MAxB(R) defines a function Ui* E RB for each i E A by setting

Ui* : j ,...... u(u , j) . Similarly , for each j E B th e matrix u defines a fun ction u*j E RA

by set t ing u*j : i ,...... u( i, j). The row semimodule of U is th e subsemimodule of RB

generated by {U i * li E A} and the column semimoduleof U is th e subsemimodule
of RA generated by {u *j I j E B}. The row rank [resp. column rank] ofu is the
rank of its row [resp. column] semimodule. If th ese two values coincide, and th ey
may not, th eir common value is the rank of u.

Other definitions of rank abound in th e literature. Following a defintion origi­
nally given for semiring th eory [Schein , 1976], one can define th e Schein rank of
a matrix u to be th e card inality of th e smallest set of matrices having rank 1 the
sum of which is u.

(19.1) EXAMPLE . [Kim & Roush, 1980] Let R = (IT, V , A) and let

u = [0~8 ~ :~ ~] .
0.7 0.6 0

Then th e column rank and Schein rank of u equal 2, while its row rank is 3.

Another notion of rank is the following: an element of MAXB(R) belonging to
th e image of On but not to th e image of Ok for any k < n has factor rank equal to
n .

(19.2) EXAMPLE . [Beasley & Pullman , 1988b] The matrix

[

1 0 1 1]
u= 1 1 0 0

o 1 1 0

in M 3 x 4(lffi) has column rank 4 bu t factor rank 3.

Matrices of factor rank 1 over subsemirings of IT are discussed by Scully [1991,
1993].

If u E MA XB(R) then th e transpose of u is th e matrix uT E MB xA(R) defined
by uT : (j, i) ,...... u(i ,j) for all i E A and j E B. Clearly (u + vf = uT + vT and
uTT = u for all matrices u and v in MAxB.

Let A be a nonempty set which is either finit e or countably-infinite and let B be
an arbitrary nonempty set . Each morphism of semirings T R ---> S defines a function
MAxBCy):MAXB(R) ---> MAxB(S) by u,...... ,U.This function is surj ective when,
is. Moreover , if u E MAxB(R) and v E MBx C(R) satisfy th e condition th at either
u is row finite or v is column finite, th en ,(uv) = (,u)( , v) .

We begin by looking at some more prop erties of semirings of matrices over certain
semirings.

(19.3) PROPOSITIO N. Let R be a zerosumfree semiring and n a positive int eger.
An element A = [aij] of Mn(R) is a unit jf and only if the following conditions are
sati sfied:

(1) For each 1 ~ i ,j ~ n there exist elements bij , Xij , and Yij of R satisfying
aijbji +Xij = bjiaij +Yij = I and bjiXij = aijYij = Xij aij = Yi jbj i = 0;
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(2) For each 1 :::; i :::; n we have anbu + .. .+ ainbni = 1 and aijbjiaikhi = 0
for all 1 :::; j =P k :::; n ;

(3) For each 1 :::; j :::; n we have bj1alj + .. .+ bjnanj = 1 and bj iaijbjkakj = 0
for all 1 :::; i =P k :::; n.

PROOF . Since R is zerosumfree, A is a unit of M n (R) if and only ifthere exists
a matrix [b i j ] E Mn(R) such that the conditions

(*) I:~=l aikbki = 1 = I:~=l bikaki for all 1 :::; i :::; n ; and
(**) aikbkj = 0 = bikakj for all 1 :::; i =P j :::; n and all 1 :::; k :::; n

are satisfied.
If these conditions are satisfied, then for each 1 :::; i , j :::; n define Xij =

I:k;tj aikbkj and Yij = I:k;ti bj kakj , and it is straightforward to verify that condi­
tions (1) - (3) hold .

Conversely , assume that these conditions hold. Then (*) is satisfied. By (2) and
(3) we see that for all 1 :::; i =P j :::; n and all 1 :::; k :::; n we have

aikbkj = (aikbkiaik)(bkjajkhj) = aik(bkiaikbkjajk)bkj = 0

and similarly bikakj = 0, showing that (**) is satisfied as well. 0

(19.4) PROPOSITION. Let R be a commutative zerosumfree semiring and n a
positive integer. Let A = [aij) be an element of M n and let B = [bi j] be a matrix
satisfying AB = I , where I is the multiplicative identity of Mn(R) . Then :

(1) a ijaik = ajiaki = bijbik = bjibki = 0 for all 1 :::; i :::; nand all 1 :::; j =P k :::; n ;
(2) aikbkj = akibj k =0 for all 1 :::; k :::; n and all 1 :::; i =P j :::; n;
(3) [I:~=l aik][I::=l bmj] = [I:~=l aki][I::=l bjm] = 1 for all 1 :::; i , j :::; n;
(4) aiJbj i E JX(R) for all 1 :::; i,j:::; n ;
(5) If P.'7 = TI7=1 (li ,l7(i)b17(i),i for each permutation (1 of{I , .. . , n } then {e 17 } is

a complete set of orthogonal central idempotents of R .

PROOF . (1) Since AB = I and since R is zerosumfree, we have aikbkj = 0
for all 1 :::; i =P j :::; nand 1 = TI7=1 [I:~=l aikbkj) . By commutativity, all terms
of the form a ikbkiajkbkj with i =P j are equal to 0 and so this product reduces to
I: 17[TI ai ,l7(i)b17(i),i], where the product ranges over all permutations (1 of {I , .. . , n} .
If j =P k then aikajk = aikajk(I:I7[TI ai ,I7(i)b17(i),i)) and this is 0, since each summand
contains a factor of the form aikajkbk ,"(k) with either (1(k) =P i or (1(k) =P j . By
similar arguments we obtain the rest of (1) .

(2) We have already noted that aikbkj = 0 if i =P j . Also,

since each term has a factor of the form ajibjkbi,l7(i)a17(j),j = akibi ,l7(i)a17(j) ,jbjk and
either k =P (1( i) or k =P (1(j).

(3) By the above,

n

= 2.= a ikbki = 1.
k=l
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The other equality is proven analogously.
(4) If 1::; i, j ::; n th en

(5) By (4) and th e commutat ivity of R, we see that each eq is a cent ral idem­
potent . Moreover , I:qeq = I:qD7:1 ai,q(i)bq(i),i = 1. If (J" "# T th en there exist
1 ::; i "# j ::; n such th at (J"(i) = T(j ) and so eq eT = 0 since it has a factor
ai,q(i)bq(i),j = O. 0

If n is a positive integer then Sn denot es the symmetric group on {I , ... , n} and
A n denotes th e alternating group on {I , . . . , n}. If R is a semiring, if n is a positive
int eger and if A E M n(R), we define th e positive determinant IAI+ and the
negative determinant IAI- of A as follows :

IAI+ = '2:{a1 ,q(1 )· .. . · an,q(n) I (J" E An}

and

The pair IAI± = (IAI-, IAI+) is th e bideterminant of A. If R is a nonzeroic semir­
ing wit h ring of differences R A and if v : R ---+ RA is the canonical mo rphism, then
the determinant of A is defined to be IAI = v(IAI+)v(IAI-) . For an ap plicat ion
of bideterminants in graph theory, see [Kuntzmann 1972].

Let A E M n(R) . If the matrix B E Mn (R) is formed by mul tiplying all of the
entries of one row or one column of A by an element r of R, then IBI± = rIAI±. In
par ticular , if one column or one row of A consists ent irely of O's th en IAI± = (0,0).
If one column [resp. row] of A is a linear combinat ion of th e ot her columns [resp .
rows] of A then IAI+= IAI-. The converse of this statement is false, as the following
exa mple shows.

(19.5) EXA MPLE . [Gondran & Minoux , 1984b] Let R be th e semiring
(lR+ U {oo} , max , min) and let A be the matrix

[

12
11
6

~: ~] .
8 10

Then IAI+ = IAI- = 10 but no column [resp . row] is a linear combination of the
ot her columns [resp . rows].

IfT R ---+ 5 is a morphism of semirings then for each positi ve integer n we have an
induced morphismofsemiringSfn:M n(R) ---+ M n(S ) defined bY"fn: [rij] >-+ [i(rij)] .
As an immediate consequence of the definitions, we see that for each A E M n(R )
we have i(IAI+) = lin(A)I+ and simi larly i( IAI-) = lin(A)I-·
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(19.6) PROPOSITION. lfn is a positive integer and if R is a commutativesemir­
ing then for A = [a ij] and B = [bij] in Mn(R) we have :

(1) There exists an element r of R satisfying IABI+ = IAI+IBI+ + IAI-IBI- + r
and IABI- = IAI+IBI- + IAI-IBI+ + r.

(2) IABI+ + IAI+IBI- + IAI-IBI+ = IABI- + IAI+IBI+ + IAI-IBI- ·

PROOF . (1) By Proposition 9.42, we know that there exists a cancellative sernir­
ing S and a surjective morphism -y: S --+ R . By the above remarks , it therefore
suffices to assume that R is cancellative and thus is a subsemiring of RA . Since R
is commutative, so is R A .

By definition, IABI+ = I:U17=1 ai1 bi,o(1) + ... + ainbn,o(n) I (J E An} . If
we expand this product of a sum of monomials, we obtain n! terms of the form
TI7=1 ai,T(i)bT(i) ,o(i) , for T E Sn , as well as various other terms, the sum of which
we will denote by r'. For fixed (J E An , let T' = (JT- 1. Then T' E An if and only if
T E An. Moreover , we have

Thus

n

II ai,T(i)bT(i),o(i)=
i=1 (IT ai'T(i») (IT bi'TI(i») .

t=1 t=1

jABI+ =L { (g ai'T(i») (g bi'TI(i») I(J E An, T E Sn; T' = (JT-
1
} + r'

=L { (g ai,T(i») (g bi,p(i») IT,P E An}

+ L { (g ai'T( i») (g bi,p(i») IT,P E s: \An} + r'

= IAI+IBI+ + IAnBI- + r' .

A similar computation shows that there exists an elementr" of R such that
IABI- = IAI+IBI- + IAI-IBI+ + r" , We are left to show that r' = r" , But R is a
subsemiring of th e commutative ring RA and there we have

[IAI+ - IAn[lBI+ -IBn
= IAIIBI = IABI = IABI+ - IABI-
= [IAI+IBI+ + IAnBI- + r'] - [IAI+IBI- + IAnBI+ + rl!]

=[IAI+ -IAn[IBI+ - IBr] + (r' - r") ,

implying that r' = r" :
(2) This is an immediate consequence of (1). 0

If R is a semiring, if n is an integer greater than 1, and if A E Mn(R) then
for each 1 :::; i,j :::; n we can define the (i ,j)-positive minor pmi ,j(A) of A to be
IA'I+, where A' is the matrix in M n - 1(R) obtained by deleting the ith row and
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jth column of A . Similarly, we define th e (i ,j)-negative minor nmi j (A ) of A to
be IA'I-. We then define th e positive comatrix A+ of A to be th e matrix [b ij]
defined by the condition that bi j =pmij (A) when i + j is even and bi j = nmij (A)
when i + j is odd. Similarly, we define th e negative comatrix A-of A to be th e
matrix [Cij] defined by th e condition that Cij = nmij(A ) when i + j is even and
Cij = pmij(A) when i + j is odd .

(19.7) PROPOSITION. If n is an int eger greater than 1, if R is a commutative
semiring, and if A = [aij] E Mn(R) then for each 1 ~ j ~ n we have:

(1) IAI+ = a1jpmij(A) + a2jnm2j (A) + aSjpmsj( A) + and
IAI- = a1jnm1j(A) + a2jpm2j(A) + aSjnmsj(A) + whenever j is odd;

(2) IAI+ = a1jnm1j(A) + a2jpm2j(A) + aSjnmsj(A) + and
IAI- = a1jpm1j(A) + a2jnm2j(A) + aSjpmsj(A) + whenever j is even.

PROOF. Let S be th e cancellat ive semi ring l':l [{Xij 11 ~ i ,j ~ n}] in n2 com­
muting ind eterminates Xij . Then there exists a canonical morphism of semirings
-y: M n(S) -+ M n(R) which takes th e matrix X = [Xij] to A . Since, by the above
remarks, IAI+ = ,(IXI+) and IAI- = ,(IXI-) , it suffices to prove th en proposi­
tion for the case R = S and A = X . We see that R is a subsemiring of the rin g
R A = Z[Xij ] . There, we have

n

IAI+ - IAI- = IAI = 2:(_1)i+ j Xij [pmij (A ) - nmij(A)] .
i=l

If we assume that j is odd , we obtain the equation

Note th at the left-hand side of th is equa tio n is the sum of n monomials in the
Xij . There is no cancellation of terms in IAI+ and IAI- since these are all distinct .
Since each of th e two sums on th e right-hand side of the equa tion is the sum of
n!/2 monomials , th ere can be no cancella t ion here either. Thus we can identity th e
positive and negative parts of the two sides of the equat ion, and (1) follows. The
proof of (2) is analogous. 0

(19.8) PROPOSITION . Let n > 1 be an int eger, let R be a commutative semiring,
and let A = [aij] E Mn(R) . Th en

(1) A+ A = [Cij], where

{
IAI+ ifi = j

Cij = IGijl+ ifi =F j ,

where Gi j is the matrix obtained from A by replacing the i th column of A
by its jth column.

(2) A-A = [dij] where

d.. _ { IAI-
' ) -

Cij

if i = j

if i =F j
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PROO F. (1) If i is odd the n

21 7

If i = i , this is ju st IAI+, by Pr opositi on 19.7. If i "# j then , by Proposition 19.7, it
equals ICijl+. (Sin ce Cij has two equal columns, thi s is t he same as ICijl- .) The
reasoning is ana logous of i is even .

(2) The proof of thi s is similar . 0

(19.9) PROPOSITION. Let n > 1 be an integer, let R be a comm utat ivesemiring,
and let A = [aij] and B = [bij ] be elements of M n(R ) sat isfying AB = I , where
I is the multiplicative identi ty of M n(R ). Let C = [Cij ] be the m atrix defined by
the condit ion that Cij = 0 if i = j while Cij = ICij 1+ otherwise, where Cij is the
matrix obtained from A by replacing the i th column by the jth column. Th en the
matrices IBI+ and IBI - C have additive inverses in M n(R) .

PROOF. Since AB = I , we have L:~= l aikbkj =0 for all i "# j. Therefore aikbkj
has an addit ive inverse in R for all 1 ::::; i, i ,k ::::; n with i "# j .

If i = j , then th e (i , j )-entry in IBI+ is 0, which cert ainly has an additive inverse.
If i "# j then the (i , j)-entry is

!BI+ Cij = [L b1,l1 ( 1) · . . . · bn,l1(n)] [L Ur(l) , l .... . ur (n),n]
l1EA n rEA n

=L {g bk,l1(k)Ur(k),k I(1 , T E An} ,

where
ifm"# i

ifm = i

for all 1 ::::; k ::::; n . For each of the permutat ions (1 and T in A n, eit her (1(j) "# T(j )
or (1 (j) "# T(i) . In eit her case , each term in the above sum cont ains a factor of the
form ar. b.! , with r "# t . Thus each term has an addit ive inverse in R and so IBI+Cij
has an addit ive inverse in R. Thus IBI+ has an addit ive inverse in M n(R) . Th e
proof th at the same is true for IB 1- C is similar . 0

(19.10) PROPOSITION. Ifn is a positive integer, if R is a comm utativesemiring,
and if A = [aij] and B = [bij ] are elements of Mn(R) satisfying AB = I , where I
is the multiplicative identity of M n(R), then BA = I .

PROOF. If n = 1 the resul t follows directly from th e commutativity of R. Hence
we can assume that n > 1. Let C be the matrix obtained from A as in the statement
of Proposition 19.9. Then by Proposit ion 19.8 we see th at AB = I impli es that
A+A = A+(AB )A = IAI+ BA + CBA and A- A = A-(AB )A = IAI-BA + CBA.
If we mul ti ply th e first of these equat ions by IBI+ and the second by IBI- and then
add , we obtain IBI+ A+ A + IBI-A- A = [IAI+IB!+ + IAI-IBI-]BA + IBI+ CBA +
IBI - CBA.
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We now apply Proposition 19.8 again and obtain IAI+IBI+ + IAI-IBI- + IBI+ +
IBI- C = [IAI+IBI+ + IAI-IBI-]BA + IBI+CBA + IBI- CBA. Since AB = I , we
know by Proposition 19.6(2) that

We apply this and Proposition 19.8 to th e above equa tion, obtaining

1 + IAI+IBI- + IAI-IBI+ + IBI+ + IBI-C

= BA + [I AI+IBI- + IAI-IBI+]BA + IBI+CBA + IBI- CB A

=BA + IBI+[iAr1+ C]BA + IBI- [I AI+1+ C]BA

=BA + IBI+A- ABA + IBI-A+ABA

= BA + IB I+A- A + IBI- A+A

=BA + IBI+ [IAI- 1+ C] + IBI- [IAI+1+ C]

=BA + IAI+IBI-:+ IArIBI+ + IBI+ + IBI- C.

By Proposit ion 19.9, IBI+ and IBI-C have additive inverses in M n(R) . From
Proposition 19.6(1) and th e fact th at IABI - = 111- = 0, we conclude tha t r =
IAI+IBI- + IAI-IBI+ has an add itive inverse in R and so R has an addit ive inverse
in Mn(R) . Hence we can conclude that 1= BA, as desired . 0

If R is a semiring, n a positive int eger , and A E M n(R) then perm(A) =
IAI+ + IAI- is the p ermanent of A. T his is an element of R and so we do not
need to avail ourselves of the map u : R -+ R A . For the th eory of permanents over
rings, see [Mine, 1978]. Permanents of matrices in M n(JE) play an important role
in the ana lysis of swit ching circuits and have been exte nsively studied. Permanents
of matrices in M n( R) , where R is a bounded totally-ordered set on which addition
is max asnd multipiication is min , are st udied in [Cechlarova & Pl avka , 1996]. For
th e special case of perm anent s of matrices in M n(ll) ,see [J. B. Kim , 1984] and [Kim ,
Baartmans & Sahadin , 1989]. For permanents of matr ices over th e schedule algebra,
see [Olsder & Roos, 1988]. For perm anent s of mat rices of bounded dist ributi ve
lat t ices, see [Zhang, 1994].

(19.11) EXAMPL E . Permanent s do not have the nice proper ti es of determi­
nants. For example, perm(AB) is not necessarily equa l to perm(A)perm(B). Thus,

for example, in M 2(ll), we not e that if A = [ ~ :~ ~ ~ : ~~] and B = [ ~ : ~OO '136] th en

perm(A)perm(B) = 0.14 # 0.16 =perm(AB) . See [Kim , Baartmans & Sahadin,
1989].

(19.12) E X AMP LE . T he fact that perm(A) # 0 does not necessarily im ply that
A is invertible or even mul ti plicat ively cancellable. For example, if R is the schedul e
algebra (~ U {-oo} , max, +) and if A E M 3 ( R) is th e matrix
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then perm(A) =I -00 bu t
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-00 -00] [2 -00 -00]o -00 = A 2 0 -00 .-00 0 3 -00 0

If A is a matrix in M mxn(R ) and if hE N then we define rheA) by setting
ro(A) = 1 and , for h > 0, setting rheA ) as the sum of all submatrices of A in
M h(R). The polyn omial rA(t ) = L:>h(A )th in R[t] is t he rook polynomial of
A. For the importance of this polynomial in th e an alysis of matrices over certain
semi rings, see [Beasl ey & Pullman , 1988a] .

(19.13) EXAMPLE. If R is a simple semiring and A = [aij] E Mn (R) is a matrix
sat isfying aii = 1 for all 1 :S i :S n th en perm(A) = 1.

Let Rand 5 be semirings and let M be an (R,S)-bi semimodule. If s E 5, th en
an eleme nt m of M is an R-eigenelement of s in M if and only if th ere exists an
eleme nt t: of R satisfying rm = m s. Such an eleme nt r is called an R-eigenvalue of
s assoc ia ted with the eleme nt m . Given an element r of R, we denot e the (possibly
empty !) set of all element s m of M for which R is an assoc iated eigenvalue of s by
eigM(r, s). If t his set is nonempty, it is a sub semigroup of (M, +). If M is also a
right R'-semimodule for some semi ring R' , th en eigM(r, s) is a right R'- semimodule
of M .

In par ti cular , if R is a semiring and 5 = M n(R) , th en R" is an (R , 5) ­
bisemimod ule and we will consider the eigeneleme nts of matrices in 5 as being
in R" and the assoc iated eigenvalues as being in R . If M is a left R-semimodule
and 0' is an R-endomor ph ism of M t hen the eigenelements of 0' belo ng to M and
the associa ted eigenvalues are in R.

(19.14)F-~XAMPLE . In the "classical" example, M = R" for some posit ive inte­
ger nand 5 = M n(R). For the case of R being th e semiring (~U{00,- oo} , max ,+) ,
th is sit uation is considered in [Cuninghame-Green , 1979], [Cuninghame-Green &
Burkar d , 1984] and [Cuninghame-Green & Huisman , 1982]. If A = [aij] E 5 and
r E R . t hen m = (bI , . .. , bn) E eigM(r, s) if and only if

r + b. = max{a.. + b· 11< J' < n}1 I) ) __

for each 1 :S i :S n . In the case of R being th e semiring (~+, max , .) or the semiring
(J~+ U {oo}, min , .), this situat ion is considered in [Vorobjev, 1963]. Refer also to
[Gondran & Minoux, 1978], especia lly for th e case of R a division semiring. For the
case of R being the schedul e algebra (IR U {-oo} ,max , + ), refer to [Cochet-Terrason
et al. , 1998] for spec ific com putat iona l algorithms.

For the general relat ion between eigenvalue probl ems and probl ems in graph
theory and combinatorics , see [Zimmermann , 1981].

(19.15) EXAMPLE. [Gauber t , 1996a ; Olsder , 1992] Consider the schedule alge­
bra R =(IR U {-oo}, max , + ). A matrix A = [aij ] E M n(R) is irreducible if and
on ly ifno permutati on matrix P exists such that p- I AP has upper-triangular block
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structure. Any such matrix admits a unique eigenvalue peA) = 2::~=1 tr(Ak ) l f k ,

where tr(B) denotes the trace of a matrix M . Moreover , peA) ~ 2::7=12::.7=1 aij ,
with equality in the case A is symmetric. Furthermore, if c E R then there exists
an element u E R" satisfying AuT + cuT = cuT if and only if peA) ~ c and there
exists an element u E R" satisfying AuT + cuT = AuT if and only if c ~ peA).

If the matrix A is not irreducible, it may have more than one eigenvalue. Thus,

for example, the matrix [_~ -r;;] has eigenvalues 1 and 2, associated respectively

with eigenelements [0, -ooV and [-00, oV. On the other hand, it is straightforward

to check that the matix [_~ ~] has a unique eigenvalue, 1, even though it is not

irreducible. See [Baccelli et al. , 1992] for details . Also refer to [Mairesse, 1997].

The matrix A = [~-r;;] E M 2(R) has two distinct eigenvalues, 0 and 2, cor­

responding to eigenelements [0, -ooV and [O,oV . Nonetheless, A is not a unit of
M 2(R) . See [Wagneur, 1991].

We can consider a matrix A = [aij] E Mn(R) as representing a weighted directed
graph with nodes {I, . . . , n}, where aij is the weight on the arc i ---> j (if this weight
is -00 then the arc doesn't exist) . The condition that the matrix A be irreducible
corresponds to the condition that this graph be strongly connected . In that case,
the unique eigenvalue is equal to the maximum cycle mean of the graph.

For the importance of eigenvalue problems over the schedule algebra in graph
theory and the theory of discrete-event dynamical systems, refer also to [Baccelli
et al., 1992], [Braker & Olsder, 1993], and [Braker & Resing , 1993].

(19.15h) ApPLICATION . [Gaubert & Max Plus, 1997] In statistical physics one
considers the asymptotics , as h ---> 0+, of the spectrum of n x n matrices with
nonnegative real entries of the form A h = [exp(h-1aij»), where aij E IR? for 1 ~

i, j S n. The Perron eigenvalue pCB) of a matrix B with nonnegative entries is
th e maximal eigenvalu e associated with a nonnegative eigenvector, which is equal
to the spectral radius of B . Then one can show that limh_o+ log p(Ah) is just the
maximal eigenvalue of A = [aij] over the schedule algebra. For related results, see
[Akian, Bapat & Gaubert, 1998].

(19.15m) EXAMPLE . [Lesin & Sambourskii, 1992] Let S be a closed subsemiring
of the schedule algebra R = (~U {-oo} , max, +) and let <p :~ ---> ~ be a concave
differentiable function satisfying the condition that limr _ oo <pC r) = O. (For example,
we can take <p : x 1-+ eX.) Then <p defines a metric on R given by

dCa, b) = l<p(a) - <p(b)l,

which in turn restricts to a metric on S. Let X be a totally-bounded metric
space and let C(X, S) be the S-semimodule of all continuous bounded functions
from X to S. Each S-valued relation B: X x X ---> S on X defines a function
0'(1 : C(X, S) ---> C(X, S) given by

(O'(I)(f) :XI-+ V B(x,y)+f(y)·
VEX



______LINEAR ALGEBRA _ 221

If B is a bounded function uniformly continuous in th e first argument and equicon­
t inuous in th e second, then alJ is an S-endomorphism of C(X, S) . Moreover , there
exists a non zero subsemimodule N of C(X,S) and an element s of S such that s is
an eigenvalue of alJ and N ~ eigC(x ,s )( s , Bcr) . T his result has important applica­
tions in dynamic programming.

It is natural at this stage to try to define th e notion of the characteristic polyno­
mial of a matrix over a commutative semiring. 1ft is an ind eterminate over Mn(R)
and if I is th e multiplicative identity of Mn(R) then we can consider th e polyno­
mial perm(A + tf) E R[t). Such polynomials over the schedule algebra are studied
in [Cuningham e-Green , 1983) in connection with th eir application to problems in
optimization theory.

Another approach is given in [Straubing, 1983a) . If R is a semiring, n is a
positive integer , and t is an ind eterminate over Mn(R) , then for each matrix A in

Mn(R) we can construct th e matrix A*(t) in M zn(R[t]) defined by A*(t) = [~ If] ,
where I is the multiplicative identity of Mn(R) . Note that an element R of R
is an R-eigenvalue of A associated with some element m of R" if and only if th e
columns of this matrix ar e linearly dep end ent over R. The positive characteristic
polynomial p+(t) of A is now defined to be p!(t) = IA*(t)l+ and the negative
characteristic polynomial of A is defined to be P:4 (t) = IA* (t)I- .

If R is a commutative semiring, if A is a matrix in Mn(R) and if g E R[t] is a
polynomial over R in an indeterminate t then we can define g(A) to be E iEN g(i)Ai .
This is well-defined since M n(R) is a left R-semimodule and since only finitely­
many of th e values g(i) are nonzero.

(19.16) PROPOSITIO N. (Cayley-Hamilton Theorem) If R is a commutative
sem iring and if A E Mn(R) for some positive integer n then p!(A) = p:4(A) .

PROOF . Let A = [aij) . If X = {tll," . , tnn} is a set of n Z distinct dements
th en we have a fun ction <p : X -+ R defined by <p : ti j .-. aij . As in Example 9.19 ,
this fun ction induces a <p-evaluation morphism i = f<p : N(X) -+ R which , in turn ,
induces a morphism in :Mn(N(X}) -+ Mn(R) hav ing th e property that in(T) = A,
where T is the matrix [tij) . By the remarks before Proposition 19.6, it th erefore
suffices to prove th e result for the case of R = N (X) . But N (X) is a commutative
can cellative semi ring and so can be embedd ed in a commutative ring of differences.
Here the result follows by th e usual Cayley-Hamilton Theorem for commutat ive
rings . 0

(19.17) EXAMPLE . [Baccelli et al. , 1992] Let R= (~U {-oo},max,+) . If

A= [~ !-H
th en p! (t) = max{3t ,4 + t ,9} and P:4 (t) =max{3 + 2t ,6 + t , 12} and, indeed ,

p!(A) =p:4(A) = [~~ ~; 1
90].

12 11 12



20. PARTIALLY-ORDERED

SEMIRINGS

Many of th e semirings originally studied , such as l':l and ideal(R), have a partial­
order structure in addit ion to their algebraic structure and, indeed, th e most in­
teresting th eorems concerning th em make use of th e interplay between th ese two
structures. In is therefore natural for us to st udy semirings, and semimodules over
th em , on which a partial order is defined . A hemiring (R, + , .) is partially-ordered
if and only if th ere exists a partial ord er relation :S on R sat isfying th e following
conditions for elements r , r', and r" of R:

(1) If r :S r' th en r + r" :S r' + r";
(2) If r:S r' and r" 2 0 th en rr" :S r'r" and r''r : r"r' ,

If th e relation :S is in fact a total order , then R is totally-ordered.
An element a of a partially-ordered hemiring R is positive if and only if a 2 O.

Clearly, this condit ion is equivalent to the condit ion that a+r 2 r for all r E R. The
set R+ of all posi tive elements of R, called the positive cone of R, is nonempty
since 0 E R+ . It is also easy to verify that this set is closed und er finit e sums and
products. Thus it is a subhemiring of R , which is a subsemiring if R is a semiring
satisfying 1 > O. Th e partially-ordered hemiring R is positive when R+ = R. The
nonzero elements of R+ are said to be strictly positive.

(20.1) EXAMPLE . [Acharyy a , Chattopadhyay & Ray, 1993] Th e positive cone
of a par tially-ordered semiring R does not det ermine R, even if R is a ring. Ind eed ,
let define a partial order on ~ by setting a :S b if and only if b - a E l':l. Then
~+ = l':l. But !Z+ is also l':l, where !Z is ordered with th e usual order .

Note th at if a is a positive infinite element of a semiring R th en a = a + r 2 r
so a is th e unique maximal element of R+. In particular, if R is a positive simple
semiring then 1 2 r 2 0 for all r E R.

(20.2) EXAMPLE . Any frame (R, V, 1\) is a partially-ordered semiring.

(20.3) EXAMPLE. The semiring l':l with the usual order is a totally-ordered
semiring. Similarly, th e schedul e algebra (~U {-oo} , max , +) with the usual order
is a totally-ordered semiring, as is (~+ U {oo},min ,+), with the reverse of the
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usual order. If R = (lR U {-oo} , max, +) then we can define the structure of a
totally-ordered semiring on R2 by setting

()( ) ( )
_ { (a, b) ifa>cora=candb2:d

1 a, b + c, d - .
(c, d) otherwise

(2) (a,b) ·(c,d)=(ac,bd) .

for all (a, b), (c,d) E R2 • The order on this semiring is just the lexicographic
order. Obviously, this construction can be iterated.

Wagneur [1991] has considered the problems of linear independence and bases
for semimodules over certain classes of totally-ordered semirings.

We know that if R is a hem iring then R can be embedded in its Dorroh extension
S = R x N, which is a semiring. If R is partially-ordered by a relation ~, then
we can define a relation ~' on S by setting (a, n) ~' (a' , n') if and only if n ~ n'
and a ~ a' . This relation restricts to ~ on the image R x {O} of R in S and it
is straightforward to check that S is a partially-ordered semiring under ~'. Georg
Karner , in a private communication , has pointed out that the lexicographic order on
S defined by setting (a, n) ~' (a'n') if and only if n < n' or n = n' and a ~ a' does
not work . Indeed, if R = 2N then we would have (10, 1) <' (1,2) and (0,0) <' (2,0)
but (10,1) . (2,0) = (22,0) 1:' (6,0) = (1,2) . (2,0) .

(20.4) EXAMPLE . [Janowitz , 1976] A ring R having no nonzero nilpotent ele­
ments is a Rickart ring [Maeda, 1960] if and only if for each a E R there exists
a (necessarily unique) idempotent ea of R satisfying ab = 0 if and only b = eab.
Thus, for example, any integral domain R is a Rickart ring with ea = 0 for a # 0
and eo = 1. On a Rickart ring there is a natural partial order defined by a ~ b if
and only if ab = a2 (or , equivalently, if and only if ba = a2 ) . Note that 0 ~ a for
each a E R. If we set a 1\ b = ea-ba for all a, bE R then (R ,I\) is a meet semilattice
in which multiplication distributes over meets from either side . Moreover, a ~ b if
and only if a = eb for some idempotent e of R.

Let R be a Rickart ring and let 00 be an element not in R . Set S = R U {(X)}
and extend th e definitions of . and 1\ to S by setting s . 00 = 00 . s = 00 and
s 1\ 00 = 00 1\ s = s for each s E S. Then (S,1\, .) is a partially-ordered semiring in
which Os = 00 and Is = In. Moreover , S+ = {oo}.

(20.5) EXAMPLE . If A is a nonempty set and R = sub(A)A is the semi ring
defined in Example 6.3, then we can define a partial order on R by setting f ~ g

if and only if f(a) ~ g(a) for all a E A. This partial order turns R into a positive
partially-ordered semiring.

(20.6) EXAMPLE . A subsemiring of a partially-ordered semmng is itself
partially-ordered under the induced partial order. However, a given semiring may be
a subsemiring of many other semirings, and inherit different partial orders from each
of them. Consider the following example [Karner, 1992]: Let R = (lR U {oo},+,.).
This semiring is surely totally-ordered under the restriction of the usual relation
~ . For each 1 ~ a E R, the subset s; = N U {r E R I r 2: a} of R is in fact a
subsemiring and it has a partial order ~a defined by r ~a 1" if and only if there
exists an sERa satisfying r + s = 1" . If a ~ b, then Rb is a subsemiring of R a
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and th e restriction of ~a to Rb is also a partial order on Ri ; which is different from
~b . Therefore, for each a > 1, th ere are uncountably-many different partial orders
definable on R a .

(20.7) EXAMPLE . If R is a cancellat ive partially-ordered semiring having ring
of differences RA and if v : R --+ R A is the canonical morphism, th en th e partial
order on R can be extended to a partial order on RA by setting v(a)v(b) ~ v(c)v(d)
if and only if a + d ~ b+ c. Ind eed , this is the only possible way of ext ending th e
par tial order on R to one on R A .

(20.8) EXAMPLE . If {Ri liE Q} is a family of partially-ordered semirings
then th e product semi ring R = XiEORi is also partially-ordered when we define
(ai) ~ (bi ) if and only if ai ~ b, for all i E Q . Indeed, R is just the product of th e
R, in the category of all partially-ordered semirings. Conversely, if R = XiEORi is
partially-ordered th en each R; is partially-ordered by restriction .

If each R; is positive th en so is R and conversely. In particular, a semi ring R is
partially-ordered if and only if R A is partially-ordered for some (and hence every)
nonzero set A , and it is positive if and only if some (and hence every) RA is positive.
Thus, for example, since l'l {oo} is a partially-ordered semiring, so is the semiring
of multisets on any nonempty set A. Similarly, R is partially-ordered if and only if
Mn(R) is partially-ordered for some (and hence every) natural number n.

(20.9) EXAMPLE . [Wechler , 1977) Let {Ri liE Q} be a family of disjoint
positive partially-ordered hemirings and , for each i E n, let O, be th e additive
identity of Ri , Denote the operations on R; by +i and 'i and the order relation on
R, by ~ i . Let u , z be elements not in any of the R; and let S = U{[Ri\{Od) I i E Q}.
Define addition , multiplication , and order on R = S U {u, z} as follows:

(1) If a, b ::J z th en a + b equa ls a +i b if a and b both belong to R i , and equals
u otherwise ;

(2) If a, b :f=. z then a . b equals a ' i b if a and b both belong to Ri , and equals u
oth erwise;

(3) If a, bE S th en a ~ b if and only if a ~ i b for some i;
(4) z + a = a + z = a and z . a = a . z = z for all a E R , while z ~ a for all

a E R ;
(5) u + a = a + u = u and u . a = a . u = u for all z ::J a E R , while a ~ z for

all a E R .

Th en (R , + , .) is a hem iring and , in fact, is the coproduct of the R; in the category
of all hemirings.

A subsemiring S of a partially-ordered semiring R is full in R if and only if
a ~ b E S implies that a E S .

(20.10) EXAMPLE . [Wongseelashote, 1979] Let R = l'l{oo}A be the semiring
of multisets of elements of a nonempty set A. Then the subsemirings {f E R I
I:aEA f( a) ::J oo} and {f E R I supp(J ) is countable} of R are full .
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(20.11) EXAMPLE . Ifn is a positive integer and R is a partially-ordered semiring
then the matrix semiring Mn(R) can be partially ordered by [aij] :::; [bij] if and only
if aij :::; bij for all 1 :::; i, j :::; n . If n 2: 2, this order cannot be total. Similarly, if A
is a nonempty set and R is a partially-ordered semiring then the semirings R((A))
and R(A) are partially-ordered by the order f :::; 9 if and only if f( w):::; g(w) for
all wE A*. If R is positive then so are R((A)) and R(A) .

(20.12) EXAMPLE. [Bleicher & Bourne, 1965] Let 1 < c E N and define a new
partial order:::; on N by setting a :::; b if and only if a:::; b and a =b (mod c). Call
this new semi ring R. Then R+ = {a E N I a =0 (mod c)} so R is not positive.

(20.13) EXAMPLE. Let T R -+ S be a morphism of 3 semirings and assume that
S is a partially-ordered semiring with respect to the relation :::; . Define a relation
:::; on R by setting r :::; 1" if and only if ,(1') :::; ,(1"). Then it is straightforward to
verify that R is partially ordered by the relation :::; .

(20.14) EXAMPLE. Let R be a semiring and let {:::;il i E D} be a family of
partial-order relations on R each of which turns R into a partially-ordered semiring.
Then R is a partially-ordered semiring with respect to the relation j; defined by
r :::; 1" if and only if r :::;i 1" for all i E D.

(20.15) PROPOSITION. If a is an element of a partially-ordered semiring R
satisfying a :::; b for all b E R then a E 1+(R) .

PROOF. By hypothesis we have a :::; 0 and so a :::; a + a :::; a + 0 = a. Thus
a = a --;- a . 0

(20.16) PROPOSITION. Positive partiaJJy-ordered semirings are zerosumfree.

PROOF . Let R be a positive partially-ordered semiring. If a, b E R then b 2: 0
so a + b 2: a + 0 = a 2: O. Hence a + b = 0 implies that 0 2: a 2: 0 and thus a = O.
Similarly b = O. 0

An element a of a partially-ordered semiring R is transitive if and only if a2
:::; a.

Clearly 0 is transitive, as is every element a of R satisfying 0 :::; a :::; 1. If R is a
commutative semiring then the set of all transitive elements of R is closed under
taking products. The transitive elements of semirings of the form Mn(R) , where
R is an additively idempotent semiring, are studied in [Hashimoto, 1985].

(20.17) PROPOSITION. If R is a positive partially-ordered Gel 'fand semiring
then for each a, bE R there exist units u, v E U(R) such that ab :::; au and ab :::; vb.

PROOF. Since R is Gel'fand we know that if a, i « R then u = l+b and v = l+a
are units of R. Moreover , since R is positive we have a :::; a + 1 and b :::; b+ 1. The
result then follows from the definition of a partially-ordered semiring. 0

Note that if R is a simple semiring then ab :::; a and ba :::; a for all a , b E R, by
Proposition 4.3.
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(20.18) PROPOSITION . If a l , " " an are elements of a positive simple semiring
R and if 1 :::; h < k :::; n are indices such that aha k = 0 th en al ... . . an = O.

PROOF . Let b =al . . ... ah and let c =ah+l . ... ' ak . Then , by Proposition 4.3,
o :::; b :::; ah and 0 :::; c :::; ak . This implies that 0 :::; be :::; ahak = 0 and so be = O.
Hence al . . .. . an = bcak+l . .... an =O. 0

(20.19) PROPOSITIO N. If R is an addi tively-idempotent semiring then R is
partially-ordered by th e relation a :::; b if and only if a + b = b. Under this relation ,
R is positive and, indeed , R is a join semilattice with a V b = a + b. Moreover, if
a , bE U(R) then a ~ b if and only if a-I:::; b- 1 .

PROOF . That R is partially-ordered by th e above-defined relation is an imme­
diate consequence of th e 'definit ion and of th e additive idem potence of R. Clearly
o :::; a for every element a of R , so R is positive. Moreover , since R is additively
idempotent we have a, b :::; a +b for all a, b E R . Now let c be an element of R satis­
fying a, b :::; c. Then a+c =c and b+c =c so (a+b)+c =a+(b+ c) =a+c =c and
hence a+b :::; c. Thus we have a+b = aVb. Finally, we note that if a, s« U(R) th en
a:::; b {::} a+b = b {::} a-I =a- 1bb- 1 =a- 1(a+b)b- 1 =b- 1 +a- 1 {::} b- 1 :::; a- I . 0

From now on , whenever we consider additively idempot ent semirings we will
assume that they are partially-ordered by th e relation given in Proposition 20.19.
In particular, this will be true of simple semirings.

(20.20) PROPOSITION . If R is an multiplicatively-cancellative eddiiively­
idempotent commutative semiring and ifai, . . . , an E R then al ' .. . ' an :::; 2:7=1 a?

PROOF . By th e remark aft er Proposition 4.43 we see that

n ( n)nLai= La; =al · . . · · an + b
;=1 ;=1

for som e b E R, and so the result follows. 0

(20.21) EXAMPLE . [Shubin , 1992] Proposition 20.20 is not true if multiplicative
cancellation is not assumed . For exam ple, let M =(l':l2 , +) and let R =8ub(M ), th e
operati ons on which are given in Example 1.10. Then R is additively-id empotent
but not multiplicatively-can cellative. If a = {l0, 0], [0, 1J} and b = {l0, 0], [1 , OJ}
th en ab = {l0, 0], [1 , 0],[0, 1], [1 , IJ} while a2 + b2 = {l0, 0], [1 ,0], [0 , IJ}.

(20.23) PROPOSITION. If R is a simple ring then

(1) a:::; b<lc:::; din R implies that a a d.

Moreover, if R is positive then

(2) a <I b and c <I d in R imply that ac + ca <I bd; and
(3) a , C <I b implies a + C <I b.

In particular, if R is positive and a E R then I ={r E R I r <Ia} is an ideal of R .

PROOF . (1) By hypothesis , there exists an element e of R satisfying be =0 = eb
and e +c = 1. Since a:::; b we have a+b = b. By Proposition 4.3, we have b =ab+b
and so a + b = ab+ b. Thus ae =ae + be =abe +be =O. A similar argument shows



228 _______CHAPTER 20 _

that ea = O. Since c :s d we have c + d = d. Hence e + d = e + c + d = 1+ d = 1
by simplicity. Therefore a <l d.

(2) By hypothesis th ere exist elements rand s of R sati sfying ar = ra = 0 = cs =
sc and r + b = 1 = s + d. Set e = bs + r . Then e(ac + ca ) = bsac + bsca + rae + rca
and this equals 0 by Proposition 20.18 . Similarly, (ac + ca) e = O. . Moreover ,
e + bd = b(d + s) + r = b + r = 1. Therefore ac + ca <l bd.

(3) Since a , c <l b we know there exist elements rand s of R satisfying ar = ra =
o= cs = sc and r + b = 1 = s + b. Set d = rs . Then , since R is positive, we have
o :s d(a + c) = r sa + r sc :s ra + sc = 0, implying th at d(a + c) = O. Simil arly ,
(a + c)d = O. Moreover , d + b = d + 1b = d + (r + l )b = rs + rb + b = r(s + b) + b =
rl + b =r + b= 1. Therefore a + c <l b.

Finally, if rEI and r' E R then r'r :s r <l a and so, by (1) , r'r <l a. Similarly
r r' <l a. Thus r'r , rr' E I . If r , r' <l a th en r + r' <l a by (3). Thus r + r' E I . 0

A partially-ordered semiring R is [uniquely] difference ordered if and only if
a :s b in R when and only when th ere exists an element [resp . a unique element]
c of R such that a + c = b. Difference-ordered semirings are clearly positive and
hence zerosumfree.

(20.23) PROPOSITION. A difference-ordered semiring R is uniquely difference­
ordered if and only if it is cancellati ve.

PROOF. Cancellat ive difference-ord ered semi rings are surely uniquely difference­
ordered. Conversely, assume that R is uniquely difference-ordered and that a + b =
a + c for elements a , b, and c of R. If thi s common value is d th en we have d ~ a
and so, by uniqueness, we must have b = c. 0

A difference-ordered semiring is totally ordered precisely when it is a yoked
semiring. A semiring R is extremal if and only if a + b E {a , b} for ali a , b E R .
The bool ean semiring $ and th e semirings in Example 1.8 and Example 1.22 are
ext remal. The ext remal semirings R are precisely the addit ively-idernpc tent yoked
difference-ord ered semirings. Simple extremal semirings are called Dijkstra sernir­
ings. The semirings $ , (IT , max , ') , (l':lU{oo}, min , + ), and (~U{oo}, m ax , min) are
examples of Dijkstra semi rings . Determinan ts of matri ces over ext remal semirings
are st udied in [Gondran & Minoux, 1978]. In particular , it is shown there th at if
R is an ext remal divi sion semiring and if A E M n (R) sa t isfies the condit ion that
IAI+ = IAI- then th e columns (and rows) of A ar e linearl y depend ent .

(20.24) EXAMPLE. The semi ring l':l is uniquely difference ord ered in its usual
ordering.

(20.25) EXAMPLE. If R is a sermnng th en id ea/(R) IS a simple difference­
ordered semiring with infinite element R .

(20.26) EXAMPLE. The ord er on an addit ively-idempotent semi ring defined in
Proposition 20.19 is just th e difference order. Ind eed , if a + b = b th en surely a :s b
in the difference order . Conversely, assume that a :s b in th e difference orde r. Then
th ere exists an eleme nt c of R such that a + c = b so b = a + c = a + c + c = b+ c.
This implies that a + b = a + b+ c = b + b = b.
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(20.27) EXAMPLE . If R is a difference-ordered semiring and A is a nonempty
set then the partially-ordered semiring R A (see Example 20.8) is difference-ordered .
Indeed, if I, 9 E R A satisfy f ~ 9 then f(a) ~ g(a) for each a E A and so for each
a E A there exists an element h(a) E R such that f( a) + h(a) = g(a) . Therefore
f + h = 9 in RA . Similarly, th e partially-ordered semirings Mn(R) , R«A)) and
R(A) (see Example 20.11), are difference ordered .

A difference-ordered semiring R is a weakly uniquely difference-ordered
semiring (WUDO-semiring) if and only if a < b implies that th ere is a unique
element c of R satisfying a + c = b. We will denote this unique element c by be a.
We also set a e a = OR for all a E R. WUDO-semirings were first introduced and
studied in [Wu, 1998].

(20.28) EXAMPLE . Surely every uniquely difference-ordered semiring is a
WUDO-semiring. The following are examples of totally-ordered semirings which
are weakly uniquely difference ordered but not uniquely difference ordered:

(1) lE;
(2) (IT, max , rn, where n is any triangular norm on IT ;
(3) (IT , min , U), where U is any triangular conorm on IT ;
(4) (IRU {-oo},max,+);
(5) (IRU{oo},min,+)

In particular , if R is a WUDO-semiring and a ~ b are elements of R then
a e OR =a and b = (b e a) + a. Since R is positive, one also sees that b 2: be a for
all a ~ b in R and that if a ~ b ~ c in R then c e a ~ c e b.

(20.29) PROPOSITION. Let R be a WUDO-semiring

(1) Ifa ~ c and b S c then c ea 2: band c eb 2: a imply that (c eb) ea =
(c ea)eb;

(2) a + b = a + c > a then b =c.
(3) Ifb 2: a and c > OR then (b+ c) e a = (b ea) + c if and only ifb+c > a .

PROOF . (1) The result is obvious if a = OR or b = OR, so we may assume that
that is not the case . By definition , we then see that (c e b) e a =OR if c e b = a
and, otherwise, (c e b) e a is th e unique element d of R satisfying c e b = a + d.
On the other hand, if c e b = a then c =b + a, which implies that c e a =b (since
c e a 2: b > OR implies that c > a) . Hence c e a) e b = OR . If c e b > a then
c = (c eb) +b = a+d+b. Again , since c ea 2: b ;» OR we have c > a and so
c e a = b + d. If c e a = b then c = a + band c e b = a, which contradicts the
fact that c e b > a. Thus we must have c e a> band (c e a) e b = d. Therefore
(c e a) e b = OR if c e b = a and (c e a) e b = d if c e b > a , proving that
(c eb) ea=(c ea) eb.

(2) Let d = a + b = a + c. Then both d > a and so, by uniqueness , b =c.
(3) Assume b+ c > a then

«b + c) e a) + a = b + c =«b e a) + a) + c = «b e a) + c) + a

and so (b+c) ea = (bea)+c by (2). Conversely , assume that (b+c)ea = (bea)+c .
Then (b ea)+c 2: c> OR and so (b+c) ea > OR, which implies that b+c > a. 0
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If R is uniquely differenc e-ordered th en it is straightforward to check that th e
following cond itions are equivalent for a , b, c E R:

(1) a2:b+ c;
(2) a e b 2: c;
(3) a e c 2: b.

Also, if a, b, c E R and a 2: b then a e (a e b) = b and (a e b) + c = (a + c) e b.

A nonempty subset A of a par ti ally-ordered semiring R is convex if and only if
a, b E A and a ~ r ~ b imply th at rEA.

(20.30) PROPOSITIO N. Every zerosum free division semiring R is difference or­
dered. Moreover, if T R ----> S is a m orphism of sem irings then mker(-y) is convex
with resp ect to thi s order.

PROOF . If a and b are elements of a division semiring R we will writ e a ~ b if
and only if th ere exists an element c of R satisfying a + c = b. Clearly a ~ a for
all a E R and a ~ b ~ c implies that a ~ c. Moreover , it is also clear that if we
complete showing that ~ is indeed a par ti al ord er relation on R th en, relative to
th at relat ion , R is a partially-ordered semiring. Wh at we are left to show is th at if
a ~ band b ~ a in R th en a = b.

Fir st , however, we will prove the second part of the proposition . Let J( =
mker(,) for some morphism of semirings T R ----> S and let a and b be eleme nts of
J( . Let r be an eleme nt of R satisfying a ~ r ~ b. We can clearly assume that
r # a, b. Then th ere exist nonz ero elements u and v of R satisfying a + u = r and
r + v = b. Since R is zerosumfree, we also see that u + v # O. Set w = (u + v)- l .
Then wv + wu = 1 and so, by Proposition 10.24 , awv + bwu E J( . But

awv + bwu = awv + (a + u + v)wu = aw(u + v) + (u + v)wu =a + u = r ,

prov ing th at r E J(.

Now suppose that a ~ b and b ~ a in R. If both a and b equa l 0, we are done.
Hence we ( an assume that a # O. Then 1 ~ a- 1b ~ 1. Since {I} = mker(t) , where
t is th e ident ity morphism from R to itself, we see th at a- 1b = 1 and so a = b, as
required. 0

(20.31) PROPOSITION. If R is an additi vely-idem poten t sem ifield then every
pair of elem ents of R has an infimum in R .

PROOF. Let a, b E R . If a =0 or b =0 th en 0 is the infimum of {a , b} since R is
difference ord ered . Hence we can assume th at a , bE R \ {O} . Since R is additively
idempotent and hence zerosumfree, this implies th at a +b # O. Set c = ab(a +b)-1 .
Then (c + a)(a + b) = ab+ a2 + ab = ab + a2 =a(a + b) and so c + a = a , proving
that c ~ a. Simil arly c ~ b. Now suppose th at d ~ a and d ~ b. Then d + a = a
and d + b = b so

d(a + b) + ab = da + db + (d + a)( d + b) =da + db + d2 + da + db+ ab

=d2 + da + db + ab = (d + a)(d + b) = ab

an d hence d(a + b) ~ ab, implying d ~ c. T herefore c is th e infimum of {a ,b} in
R. 0

As a consequence of Proposition 20.30, we can char acterize th e morphisms from
Q+ to other semirings.
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(20.32) PROPOSITION. If , :Q + ....... R is a m orphism of semirings then either
im(l) is isom orphic to Iffi or, is m onic.

PROOF. If mker(l) = Q + \ {OJ then, is t he morphism whi ch sends 0 to OR and
every non zero element of Q + to l R so that im(l) is isomor ph ic to Iffi. Oth erwise, we
can ass ume that mker(l) is properly contained in Q +\ {OJ . By P roposit ion 10.25, ,
is inj ecti ve if we can show that mker(l) = {1} . Assu me that t his is not the case and
let a be an eleme nt of mker(l ) not equa l to 1. T hen a-I a lso be longs to mker(l)
and so , wit ho ut loss of generality , we can assume that 0 < a < 1. Simila rly, let
oi- b E Q + \ mker(l ). T hen b- 1 rf. mker(,) and so we ca n ass ume th at 0 < b < 1
as well. Bu t then t here exists a natural number k such that ak < b < 1. Sin ce
ak E mker(l ), t his contra dicts t he convexity of mker(,) . T hus I is injecti ve. 0

(20.33) C OROL LA RY . If there exists a m orphism [rom Q + to a sem iring R then
it is uniqu e.

PROOF. Assume th ere exists a morphism ,:Q+ ....... R. If im(, ) = {O, I} th en R
is additively idempotent sin ce lR = 1(1) =,(2) =1(1) + , (1) = lR + lR . Hence
it cannot hav e a subsemiring isom orphic to Q + and so, by Prop osition 20.32, th ere
is no ot her morphism from Q + to R. Therefore we can assume that, is inj ecti ve.
If fJ is another morphism from Q + to R t hen it too mu st be inj ectiv e by th e ab ove
reasoning . For each n E N we th erefore have fJ(n) = nfJ(1) =n · l R =n,(1) = , (n)
an d so for each pjq E Q + we have fJ( q)fJ(pj q) = fJ (p) = I (P) = , (qh(pj q) so
fJ(p j q) = I (pj q). Thus fJ = I ' 0

If R is a zerosumfree di vision semiring then t here does exist indeed exist a
morphism of semi rings from Q + to R, namely th e map 10 defined by ,0: pjq f--+

(p lR)(qlR)-I . For such a semiring R , let L(R ) be the set of all t hose eleme nts
r E H for which t here exist eleme nts a and b of Q + satisfying ,o(a) :S r:S 90(b).

(20 .34) PROPOSITION. If R is a zerosum free division sem iring then L(R) =
mkcT'(fJ) [or some m orphism fJ: R ....... S.

PROOF. Let r , r' E L(R ). T hen t here exist a , a' , b, b' E Q + satisfying ,o(a) :S
r :S ,o(b) and lo(a' ) :S r' :S 'o W ). As an immedi ate consequence of the defini tion
of a par ti al order we then hav e ,o(aa') :S rr ' :S lo( bb') , lo (b)- l :S r- 1 :S ,o(a) - l,
and ,o (a) = u-1 / o(a )u :S u- 1ru :S u -1,0(b)u = lo (b) for any 0 i- u E R . Thus
L(R ) is a normal divisor of R . Moreover , if u and v are eleme nts of R sat isfying
u + v = 1, if a" =minia , a' } , and if b" =maxib, b'} then

l o(a") = ,o(a")u + ,o(a" )v :S T'U + r' v :S lo(b") u + 10W ' )V = lOW ' )

so th at ru + r' » E L(R) . The result now follows from Proposition 10.24. 0

(20.35) PROPOSITION. IfR is an additively-idempotent partially-ordered sem ir­
ing satisfy ing 0 < 1 then 5 ={r E RIO :S r :S I} is a subsemiring of R.

PROOF. Clea rly {O, I} ~ S . If s, s' E 5 then 0 :S s + s' :S 1 + 1 = 1 and
0= sO:S ss ' :S sl = s :S 1 so both s + s' and ss' belong to S. 0

Note that if Rand 5 are difference-ord ered semirings and if ,: R ....... 5 is a
morphism of semirings t hen, preserves partial ord er. Indeed , if a :S b in R t hen
t here exists an eleme nt c of R satisfying a + c = b so ,(a) + ,(c) = ,(b) , which
implies that I (a) :S I (b).
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(20.36) PROPOSITION. If R is an arbitrary semmng then there exists a
difference-ordered semiring S and a surjective morphism of semirings S --+ R.

PROOF. Let A = {ar IrE R} be a set bijectively corresponding to R and let
A:A --+ R be this bijection . Then A extends to a map A* from A* to R given by
A*(O) = 1 and A*(W) = A(at} ... . A(an) for each nonempty word W = al . . .. . an
in A* . Let S = r:l{A). Then there exists a morphism of semi rings T S --+ R, which
is clearly surjective, defined by T j t--+ I: j(W)A*(W) . Moreover , the semiring r:l is
surely difference-ordered and hence so is r:l(A) by Example 20.27. 0

(20.37) PROPOSITION. The following conditions on a semiring R are equivalent:

(1) R is difference ordered;
(2) Ifa, b, c are elements of R satisfying a = a + b+ c, then a = a + b.

PROOF. Assume that R is difference ordered and let b, c E R. If a = a + b+ c
then a ~ a + b ~ a, proving that a = a + b. Conversely, assume that (2) holds and
define the relation ~ on R by setting r ~ r' if and only if there exists an element
r" of R satisfying r + r" = r' , Then clearly a ~ a for all a E R , while a ~ b, and
b ~ c imply a ~ c for all a, b, c E R. If a and b are elements of R for which there
exist elements c and d satisfying a + c = band b + d = a then a + c + d = a so
a + c = a. This implies that b = a + c = a, proving that ~ is a partial order on R
which turns R into a partially-ordered semiring. Thus R is difference ordered. 0

(20.38) COROLLARY. IfR is a nonzeroic difference-ordered semiring then Z(R)
is a strong ideal of R .

PROOF. If b+ c E Z(R) then, by definition, there exists an element a of R such
that a+b+c =a. By Proposition 20.37 , this implies that a+b = a and so b E Z(R).
Similarly c E Z(R). 0

(20.39) PROPOSITION. An ideal I of a difference-ordered semiring R i~. strong
if and only if a ~ band bEl imply that a E I.

PROOF. Assume that I is strong. If a ~ band bEl then there exists an element
c such that a+c E I. By assumption, a E I . Conversely, assume the given condition
holds . If a and b are elements of R satisfying a + bEl then a ~ a + bEl and so
a E I . Similarly bEl and so I is strong. 0

(20.40) PROPOSITION. If R is a difference-ordered semiring and A is a subset
of R then (0 : A) is a strong ideal of R.

PROOF . If c ~ b E (0 : A) and a E A then 0 ~ ca ~ ba = 0 so ca = O. Thus
c E (0 : A) and so, by Proposition 20.39, (0 : A) is a strong ideal of R. 0

(20.41) PROPOSITION. If R is a difference-ordered Gel'fand semiring and d 2:
c E U(R) in R then dE U(R).

PROOF. Since R is difference-ordered, we know that there exists an element r
of R satisfying d = c + r . Then dE U(R) by Proposition 4.50. 0

An element a of a partially-ordered semiring R is prime if and only if a is not a
unit and be ~ a in R implies b ~ a or e ~ a. An element a of R is semiprime if and
only if a is not a unit and b2 ~ a in R implies that b ~ a. If R is multiplicatively
idempotent then clearly every nonunit of R is semiprime.
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(20.42) EXAMPLE . If R is a semiring then the prime elements of th e semiring
id eal(R) are precisely th e prime ideals of R and th e semiprime elements of ideal(R )
are precisely th e semi prime ideals of R .

(20.43) EXAMPLE . [Solian & Viswan athan , 1988] If A is a set having at least
two elements th en. f E JIA is prime if and only if there is an element a of A such
that f(a) < 1 and feb) = 1 for all b E A \ {a} .

(20.44) EXAMPLE. If R is the semiring of all open subsets of a topological spac e
X th en th e prime elements of R are precisely the complements of closed irr educible
sets . If th e space X is sober (namely, if every closed irredu cible set is the closure
of a point) th en th e primes of R are th e compl ements of closures of points in X .

A maximal nonunit of a partially-ordered semiring R is an element a of R \
U(R) satisfying th e condition that {r E R I r > a} is a nonempty subset of U(R) .
Note th at if R is simple th en th e maximal nonunits of R are precisely the coatoms
of R. Frames R for which the prime elements are coatoms have been studied in
detail in [Rosicky & Smarda, 1985].

Since ideal(R) is certainly a positive difference-ordered Gel 'fand semiring , we
see that the following result generalizes Coroll ary 7.13.

(20.45) PROPOSITION. If R is a positive difference-ordered Gel 'fand sem iring
then every maximal nonunit of R is prime.

PROOF. Let a be a maximal nonunit of R; let band c be elements of R satisfying
bfa, c f a , and be ~ a. T hen a , b ~ a + b and so a < a + b, proving that
a + b E U (R ). Similarly a + c E U (R ) and so d = (a + b)(a + c) E U(R). But

d = (a + b)a + ac + be ~ (a + b)a + ac + a

= (a + b)a + a(c + 1) ~ (a + b + l)c( c + 1),

where a + b+ 1 and c+ 1 are units of R, since R is a Gel'fand semiring . Therefore,
since R is positive, (a + b + I)-ld(c + 1)-1 ~ a and so, by Proposition 20.41 , we
have a E U(R). This is a cont radict ion, proving th at a must be prime. 0

(20.46) COROLLARY. Any coatom of a sim ple differenc e-ordered sem iring is
prune.

PROOF . This is an immediate consequence of Proposition 20.45 . 0

(20.47) PROPOSITION. Let R be a simple difference-ordered sem iring and let
A be a nonempty subset of R satisfying the condition that if a , a' E A th en th ere
exis ts an element a" E A with a" ~ aa' . Let B = {r E R I a f r for all a E A} .
Then every additively-idempotent maximal element of B is prime.

PROOF. Let b be an additively-idempotent maximal element of B and let r , r' E
R satisfy r , r' f b. Then r + b, r' + b > b. By the choice of b, this means that r + b
and r' +b do not belong to B and so th ere exist elements a , a' , and a" of A satisfying
a ~ r+b , a' ~ r' +b, and a" ~ aa' . Hence a" ~ (r+b)(r' +b) = rr' +br' +rb+b2

•

By Proposition 4.3, br' + rb + b2 ~ b+ b+ b = b and so a" ~ rr' + b. If rr' ~ b th en
a" ~ b + b = b, contradicting the fact that b E B . Thus rr' f b, proving that b is
prime. 0
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(20.48) PROPOSITION. Let R be a simple difference-ordered additively­
idempotent semiring and let a be an element of R which is not a unit. Then a
is prime if and only if there exists a character 'Ya on R satisfying ker( I a) = {r E
R I r ::; a} . Moreover, if a and b are distinct prime elements of R then la and Ib
are also distinct .

PROOF. Assume that a is prime and define the function la : R -+ IB\ by la(r) = 0
if and only if r ::; a. Then la(O) = 0 since R is difference ordered and la(1) = 1
since 1 1:: a. Moreover , if r, r' E R th en 'Ya( r + r') = 0 ¢} r + r' ::; a ¢} r ::; a
and r' ::; a ¢} l a(r) = 0 = la(r') so la(r) + 'Ya(r') = la(r + r') . Similarly, by
primeness, la(rr') = 0 ¢} rr' ::; a ¢} r ::; a or r' ::; a ¢} la(rha(r') = 0 and so
la( rr') = 'Ya(rha(r') .

Conversely, assume that th ere exists a morphism I a:R -+ IB\ satisfying ker( I a) =
{r E R I r ::; a}. If rr' E R satisfy rr' ::; a th en ,a(rha(r') = 'Ya(rr') = 0 so
l a(r) = 0 or la(r') = O. Hence either r ::; a or r' ::; a, proving that a is prime.

Finally, if a and b are prime elements of R satisfying la = Ib then Ib(a) = 0 and
so a ::; b. Similarly b ::; a and so a = b. 0

If R is a partially-ordered semiring then a function t/: R -+ R is a nucleus if and
only if the following conditions are satisfi ed :

(1) If r ::; r' in R then v(r) ::; v(r') ;
(2) If r E R th en v2(r) = v(r) 2 r ;
(3) If r , r' E R th en v(rr') 2 v( r)v(r') .

Note that if v is a nucleus then r::; v( r') if and only if v(r) ::; v(r') .

(20.49) PROPOSITION. Let R be a partially-ordered semiring and let v : R -+ R
be a nucleus on R .

(1) If R is positive then v(rr') = v(v(r)r') = v(v(rw(r'» = v(rv(r'» for all
r.r' E R;

(2) IfR is additively idempotent then v(v(r)+v(r'» ,.= v(r+r') for all r , r' E R .

PROOF . (1) If R is positive and if r , r' E R then vCr) 2 rand v(r') 2 r' so
v(r)v(r') 2 v(r)r' 2 rr' , This implies that v(v(r) r') 2 v(rr') = v(v(rr'» 2
v(v(r)v(r'» 2 v(v(r)r' ), proving that v(rr') = v(v(r)r') = v(v(r)v(r'» . A similar
proof shows that v(rr') =v(rv(r'» = v(v(r)v(r'» .

(2) If r, r' E R then r + r' 2 r, r' and so v(r + r') 2 v(r) , v(r') . Since R is
additively idempotent , this impli es that v(r + r') 2 v( r) + v(r') . Thus v(r + r') =
v2(r + r') 2 v(v(r) + v(r'». Conversely, v(r) 2 rand v(r') 2 r' so v(r) + v(r') 2
r + r' , Th erefore v(v(r) + v(r'» 2 v(r + r') and hence we have equality. 0

A nucleus u on R is strict if and only if condition (3) can be replaced by:

(3') If r, r' E R th en v(rr') = v(r)v(r').

The notion of a nucleus is usually defined for fram es. Refer to [Johnstone, 1982].
Examples of several nuclei on the frame of torsion th eories are given in [Golan &
Simmons, 1988].

(20.50) EXAMPLE. [Kirby, 1969] If R is a commutative ring R th en the map
I ........ Vi is a nucleus on the semiring idea/(R).
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(20.51) EXAMPLE. [Banaschewski & Harting, 1985] Let R be a ring and let v
be the function which assigns to each ideal I of R the ideal v(I) defined by the
condition that v(I)/ I is the Levitzki radical of R/ I . Then v is a nucleus on the
semiring idea/(R) . The same is true if we take, instead , th e Jacobson radical or the
Brown-McCoy radical.

(20.52) EXAMPLE . If R is a C*-algebra, then th e map which takes each element
of idea/(R) to its closure is a nucleus on the semiring idea/(R).

(20.53) EXAMPLE . If R is a commutative integral domain then the semiring
jract(R) of all fractional ideals of R is partially-ordered by inclusion . A function v
from jract(R) to itself is a *-operation on R if and only if the following conditions
are satisfied:

(1) v(aR) =aR and v(aI) =av(I) for all a E R and all IE jract(R);
(2) I ~ v(I) = v2(I) for all IE jract(R) ;
(3) v(I) ~ v(H) whenever ~ H in jract(R).

See [Gilmer, 1972] for details . Examples of such functions include the function Vv
which assigns to each IE jract(R) the intersection of all principal fractional ideals
of R containing I, and the function Vt defined by

Vt(I) = 2:)vv(H) I H a finitely-generated subideal of I} .

For further examples, see [Anderson & Anderson, 1991]. It is straightforward to
verify that a *-operation on jract( R) is a nucleus. Commutative integral domains
R satisfying the condition that the nuclei Vv and Vt coincide are studied in [Houston
& Zafrullah , 1988]. Noetherian domains, Krull domains , and Mori domains are of
this type.

(20.54) EXAMPLE . If R is a difference-ordered semiring th en any morphism of
semirings t/ : R ---+ R satisfies conditions (1) and (3') of the definition of a nucleus .
Thus such a morphism is a strict nucleus if and only if v 2 ( r ) = v( r) 2: r for all and
only if v is a closure operator on R.

(20.55) EXAMPLE. Let R be a semiring and let the function t/ : idea/(R) ---+

idea/(R) be defined by v :11-+ 0/1. Then v is a nucleus which , in general, is not
strict .

If v is a nucleus defined on an additively-idempotent semiring and if p is the
relation on R defined by r p r' if and only if v(r) = v(r') , then it is immediate
that p is an equivalence relation . Moreover, as a straightforward consequence of
Proposition 20.49 , we see that it is in fact a congruence relation .

If R is a partially-ordered semiring then a function /1: R ---+ R is a modality if
and only if the following conditions are satisfied:

(1) If r ~ r' in R then /1(r) ~ /1(r');
(2) If r E R then /12(r) = /1(r) ~ r ;
(3) If r , r' E R then /1(/1(r)/1(r')) = /1(r)/1(r') .
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(20.56) EXAMPLE . If H is an ideal of a semiring R then the function I 1-+ In H
is a modality on the semiring ideal(R) .

Let R be a partially-ordered semiring. A left R-semimodule M is partially­
ordered if and only if there exists a partial order relation :S defined on M satisfying
the following conditions:

(1) If m :S m' in M and if mil E M then m + mil :S m' + mil;

(2) If m :S m' in M and if r ~ 0 in R then rm :S rm';
(3) Ifr:S r' in Rand ifm ~ 0 in M then rm:S r'rn .

Partially-ordered right R-semimodules are defined analogously. If the relation :S is
in fact a total order, then we say that the semimodule is totally-ordered. Totally­
ordered N-semimodules are studied in [Clifford , 1958] and [Lugowski , 1964a, 1964b].

(20.57) EXAMPLE . Clearly Q is a totally-ordered left (and right) semimodule
over N .

(20.58) EXAMPLE . If R is a partially-ordered semiring then R+ is a partially­
ordered left and right R-semimodule.

(20.59) EXAMPLE. Let R be a partially-ordered semiring and let A be a non­
empty set . Define a relation :S on RA by setting I :S 9 if and only if I(a) :S g(a) for
all a E A. Then RA is a partially-ordered left R-semimodule. A function I E RA is
bounded if and only if there exists an element rfER such that I(a) :S bf for all
a E A. The set B(A, R) of all bounded elements of RA is clearly a subsemimodule
ofRA . For an analysis of such R-semimodules of bounded functions, when R is
an additively-idempotent semifield , refer to [Dudnikov, 1992] and [Dudnikov and
Sambourskif, 1989).

If R is a commutative additively-idempotent semiring and if B(A , R) ~ Ml U M 2

for nonzero R-semimodules M 1 and M 2 , then A can be partitioned into a disjoint
union A = A 1 U A 2 such that M 1 ~ B(A j , R) for i = 1,2 . See [Dudnikov and
Sambourskil, 1992) for details .

(20.60) EXAMPLE . Let R be a partially-ordered semi ring and let m and n
be positive integers. Then the set Mm,n(R) of all m x n matrices with entries
from R can be partially-ordered by setting [ajj) :S [bij) if and only if aij :S bjj
for all 1 :S i :S m and 1 :S j :S n . Moreover, as we have seen in Example 20.11,
Mm(R) is a partially-ordered semiring and one easily checks that Mm,n(R) is
a partially-ordered left Mm(R)-semimodule, under the usual definition of matrix
multiplication and addition .

(20.61) EXAMPLE. A Riesz space is a vector space Lover JR which is partially­
ordered in such a manner that the positive cone {f ELI I ~ O} is a partially­
ordered JR+-semimodule. Such spaces play an important part in functional analysis,
and especially spectral analysis. They were studied in [Freudenthal, 1936) and in
detail by H. Nakano in an unpublished manuscript partially printed many years
later in [Nakano, 1966). For a detailed work on Riesz spaces and their place in
functional analysis, refer to [Luxemburg & Zaanen , 1971) and [Zaanen, 1983). For
topological Riesz spaces, see Fremlin, 1974.
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As with semirings , a partially-ordered left R-semimodule M is difference or­
dered if and only if m 2: m' in M when and only when th ere exists an element
mil E M satisfying m = m' + mil. Additively-idempotent semimodules are canon­
ically difference-ordered under the partial order defined by m 2: m' if and only if
m=m+m'.

(20.62) PROPOSITION. IfR is a positive sem iring and M is a difference-ordered
left R-semimodule th en :

(1) M' = {m EM Im:S O} is a subm od ule of M ;
(2) Mil = {m EM 1m 2: O} is a subsemimodule of M ;
(3) If0 f. m E M' th en m + m < m ;
(4) If0 f. m E Mil then m + m > m .

PROOF. (1) Ifm,m' E M' th en m+m':S 0+0 = 0 so m+m' EM'. Ifm E M'
and r E R th en r 2: 0 and so rm :S r O= O. Thus M' is a subsemimodule of M . If
m E M th en m :S 0 and so there exists an eleme nt mil of M such that m + m" = O.
Hence V(M') = M' .

(2) The proof that Mil is a subsemimodule of M follows as in (1) .
(3) If m < 0 in M then there exists an element mil of M satisfying m + mil = 0

and so m+m+m" = m . Thus m+m :S m. Ifm+m =m then m =m+(m+m") =
(m + m) + mil = m + mil = 0, which contradicts the choice of m .

(4) This is proven in a manner similar to th e proof of (3) . 0

Note that if R is a positive semi ring and M is a difference-ordered left R­
semimodule then either one of th e sets M' and Mil defined in Proposition 20.62
equ als {O} or M f. M' U Mil. Indeed , if 0 f. m' E M' and 0 f. mil EM" ,
consider m = m' + mil . If m E M' then th ere is an element u of M satisfying
0= m + u = mil + (m' + u) and so mil E M' n Mil , which is a contradiction since
m" f. O. A similar contradiction is obtained if we assume that m E Mil . Thus
m 1. M'UM" .



21.

SEMIRINGS

LATTICE-ORDERED

A semiring R is lattice-ordered if and only if it also has th e structure of a
lattice such th at , for all a and b in R :

(1) a + b = a V b; and
(2) ab :::; a 1\ b,

where partial ord er here is th e one induced naturally by th e lattice st ruc ture on
R . If R , as a lat ti ce, is distributive, th en R is a distributive lattice-ordered
semiring (DLO-semiring) . Clearly any lattice-ord ered semiring is a part ially­
ord ered semiring in the sense of Chapter 18, with respect to th e partial order
induced by th e lattice structure. (Note in passin g that some authors replace ( l)by
a weaker condition ; see, for example, [Ran ga Rao , 1981].)

As an immediate consequence of th e definition we see tha t lattice-ordered semir­
ings are additively idempotent . Also , if a and b are elements of a lattice-ord ered
semiring satisfying ab = a or ba = a then a :::; b. Therefore, if a is an element of
a lattice-ord ered sem iring R then a = a1 :::; 1. Any element a of a latt ice-ord ered
semiring R defines a nucleus Vo on R given by Va : r ........ r + a.

(21.1) EXAMPLE . Any bounded distributive lattice R is clearly a DLO-semiring
if we define a+b = aV band ab = atvb for all a, b E R . The set R' of all com plemented
eleme nts of R is a subsemiring of R which is a ring (in fact , it is a boolean algebra) .

(21.2) EXAMPLE . The semi ring of all ideals of a semiring is lattice ordered but
is not , in general , a DLO-semiring. Ind eed , as we have seen in Example 6.36, th e
la t tice ideal( R) need not even be modular .

If d is a derivation on a semiring R th en a d-differential ideal of R is an ideal
I satisfying d(a) E I for all a E I. If I and Hare d-differential ideals of R then
clearly so are 1+ H and In H . Moreover , if {a t , . . . , an} ~ I and {b1 , . . . , bn} ~ H
th en

d (taibi) = taid(bd+ td(ai)bi E IH

so I H is aga in a d-differential ideal of R . Thus the set of all d-differenti al idea ls of
R forms a sub semiring of ideal(R ) which is also a lattice-ordered semiring.
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(21.3) EXAMPLE . One does not even need a semiring . If (M , *) is a commu­
tative groupoid, i.e. a set on which we have a binary operation , which may not
even be associative, th en a nonempty subset I of M is an ideal of M if and only if
a * mEl for all a E I and mE M . Denote the set of all ideals of M by ideal(M )
and set L» H = {a *b Ia E I, s e H} for all I , H E ideal(M) . Then ideal(M ), U, n)
is a lattice and (ideal( M) , U, *) is a lattice-ordered semiring.

(21.4) EXAMPLE . [Alarcon & And erson , 1994a] If R is a division semiring which
is not a ring and which does not have characteristic 0 then R is a lattice-ordered
semiring of th e form (R ,V, '), where (R \ {O} , ·) is a lattice-ord ered group.

(21.5) EXAMPLE . F. A. Smith [1966] defines operations +, " and 1\ on R =
{O, 1, a, b, c, d} which turn R into a lattice-ordered semiring which is not a DLO­
semiring.

(21.6) EXAMPLE . In Example 1.7 we noted th at th e set R - fil of all topolo­
gizing filters of left ideals of a ring R is a semi ring in which addition is given by
intersection and multiplicat ion is given by th e Gabriel product. It is easy to see
that this semi ring is zerosumfree and hence additively idempotent . If we consid er
R- fil as a partially-ordered set with the order being the reverse of the usual order,
we see that R - fil has the structure of a lattice in which join is taken to be n.
This lattice is not necessarily distributive. See [Golan , 1987] for det ails.

(21.7) EXAMPLE. [Arnold, 1951] Let A and B be bounded distributive lattices.
Then R = A x B is again a bounded distributive lattice on which the operations of
join and meet are defined by (a, b) V (a' , b') = (a Va' , b V b') and (a , b) 1\ (a' , b') =
(a 1\ a', b 1\ b'). We can define an operation * on R which is equal to neither of
thes e by setting (a , b) * (a' , b') = (a 1\ a' , b V b'). Then (R , V, *) is a commutative
additively-idempotent semi ring which is not a DLO-semiring since (a , b) * (a' , b') 2
(a ,b) 1\ (a' ,b') .

(21.8) EXAMPLE . Let a be a prime element of a lattice-ord ered semiring R .
Then n, = {O} U {r E R I t: <L a} is a subsemiring of R.

(21.9) EXAMPLE . Define a lattice structure on ~ by setting an b equal to th e
least common multiple of a and b and aU b equal to the greatest common divisor of
a and b. (Note that this is the reverse of th e usual definitions.) Thus, in this lattice
a ::S b if and only if b divid es a. If · is ordinary multiplication in ~ th en (~ , U, ·) is
a lattice-ord ered semiring.

(21.10) EXAMPLE . Let R be the set of all functions from IT to itself and let $,

0 , and n be th e operations on R defined by:

(1) (f $ g)(a) = min{f(a) , g(a)} for all a E IT ;
(2) (f 0 g)(a) = f(a)g(a) for all a E IT;
(3) (f n g)(a) = max{f(a) , g(a)} for all a E IT.
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Then (R , EEl, n) is a lattice and (R , EEl , @) is a LO-semiring.

In Proposition 20.19 we saw that any addit ively-idernpotent semiring is naturally
partially ordered . We now consider a condition for such a semiring to be a DLO­
semm ng.

(21.11) PROPOSITION. Let R be an additively-idempotent semiring satisfying
the condition that a E bR n Rb whenever a :S b in R . Th en we can define an
operation 1\ on R such that (R, +,1\) is a distributive lattice; and multiplication
distributes over 1\ from either side . If R is simple it is a DLO- semiring.

PROOF . We begin by noting a consequen ce of the condition in th e hypothesis.
If r E R th en surely r :S r and so there exists an element r" of R satisfying
r * r = r , If r' :S r in R th en th ere is an element r" of R satisfying r' = rr" and so
r * r' = r * rr" = rr" = r' ,

By hypothesis, we know that if a, b E R then th ere exist elements a' , a" , b', b" of
R satisfying a = (a + b)a' = a"(a + b) and b = (a + b)b' = b"(a + b). Moreover ,
ab' =a"(a + b)b' =a"b, while ba' = b"(a + b)a' =b"a. Then

b = ab' + bb' ~ ab' =a"b :S a"a + a" b =a

so ab' :S a, b. Similarly, ba' :S a, b. Therefore ab' + ba' :S a + a = a and simil arly
ab' + ba' :S b. Suppose that r is an element of R satisfying r :S a, b. Then th ere
exists an element r' of R such that r = r' (a + b) and hence t: = r' a + r' b =
r'(a+b)a'+r'(a+b)b' = ra'+rb' :S ba'+ab' =a"b+b"a . Thus ba'+ab' = a"b+b"a
is a well-defined infimum of a and b in R, which is independent of the choice of a' ,
b', a", and b", and which we will denote by a /\ b.

If e is another element of R th en ea = (ea + eb)a' and eb = (ea + eb)b' and so
ea 1\ eb = (ea)b' + (eb)a' = e(ab' + ba') = e(a 1\ b). Similarly, (a 1\ b)e = ae 1\ be.
Therefore multiplication distributes over 1\ from either side .

Since b = aa' + ba", we see th at ba' :S b and so there exists an element d of R
satisfying ba' =db. Set e = (a + b)* 1\ d. Then

eb = (a + b)* b 1\ db =b 1\ db =b 1\ ba' = ba' :S a

while, similarly, ea = arvda :S a. Therefore ba' = eb = e(a + b)b' = (ea+ eb)b' :S ab'.
Similarly, ab' :S ba' and so we conclude that in fact a 1\ b = ab' = ba' =a"b =b"a.

To complete the proof th at (R,+, 1\) is a distributive lattice, we must show
that if a, b, and e are elements of R then e 1\ (a + b) = (e 1\ a) + (e 1\ b). It is
trivial that e 1\ (a + b) ~ (e 1\ a) + (e 1\ b) and so all we need to establish is the
reverse inequality. Since e :S e + a + b, we know by hypothesis that there exists
an element r of R satisfying e = r(e + a + b). Set r' = (c + a + b)* 1\ r , Then ,
as above, c = r'(e + a + b), r'« :S a, and r'b :S b, from which we conclude that
e + r'« = r'(c + a + b + a) = c. Hence r'« :S c and similarly r'b :S c. Hence
e 1\ (a + b) = r'(a + b) = r'ti + r'b :S (c 1\ a) + (c 1\ b), as desired .

Finally, if R is simple then for a, b E R we have ab :S a and ab :S b by Proposition
4.3 and so ab :S a 1\ b. Hence, in this case, R is a DLO-semiring. 0
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(21.12) PROPOSITION. If a, b, and c are elements of a lattice-ordered semiring
R then :

(1) a+ab=a;
(2) ab + c = (a + c)b + c;
(3) a:S b implies that ca :S cb and ac :S be;
(4) a:S b implies that a2 :S ab :S b2 ;

(5) ab 1\ ac ? a(b 1\ c) and ba 1\ ca ? (b 1\ c)a ;
(6) (a 1\ b)(a + b) :S ba + ab;
(7) If a + b = 1 th en a 1\ b = ab + ba;
(8) If a + b = 1 th en ac :S b or ca :S b implies c :S b;
(9) Ifa+b=a+c=l thena+bc=a+(bl\c)=l .

PROOF. (1) By definition , ab :S a and so ab + a = ab V a = a.
(2) By (1) , (a+c)b+c= ab+cb+c=ab+c.
(3) By definition , a :S b implies that a + b = a V b = b and so cb = c(a + b) =

ca + cb = ca V cb. Thus ca :S cb. Similarly, ac :S be,
(4) This is an immediate consequence of (3).
(5) Since b 1\ c :S b, we have a(b 1\ c) :S abo Similarly, a(b 1\ c) < ac and so

a(b 1\ c) :S ab 1\ ac . The second inequality is proven similarly.
(6) By (3) we have (a 1\ b)(a + b) = (a 1\ b)a + (a 1\ b)b :S ba + abo
(7) From the definition of a lattice-ordered sem iring we know that ab + ba =

ab V ba :S a 1\ b. The converse follows from (6) .
(8) Assum e that ac :S b. Then c = (a + b)c = ac + be :S b + b = b. If ca :S b the

proof is similar .
(9) If a + b = a + c = 1 th en 1 = (a + b)(a + c) = a2 + ab + ac + be :S a + bc:S 1

so a + be = 1. Since be :S b 1\ c, we immediately have a + (b 1\ c) = 1 as well. 0

(21.13) COROLLARY. If R is a zom m ute tive lattice-ordered semiring and a , b,
and c are elemen ts of R satisfying a + b = a + c = 1 th en a(b 1\ c) = ab 1\ ac .

PROOF. By Proposition 21.12(9) we have a+(bl\ c) = 1 and so by Proposition
21.12(7) we have a(bl\c) = (al\b l\c)(a+[bl\c]) = ar.br«: = (al\b)(al\c) = abr.ac. 0

Note too th at , as a direct consequence of Proposi tion 21.12(9) , we see th at if a

and b are elements of a lattice-ord ered semiring satisfying a+b = 1 th en ah +bk = 1
for all positive int egers hand k .

(21.14) PROPOSITION. A lattice-ordered sem iring R is multiplicatively idem­
potent if and only if ab =a 1\ b for all a , b E R.

PROOF. If R is multiplicatively idempotent and a , bE R then a 1\ b = (a 1\ b)2 :S
ab :S a 1\ b and so ab = a 1\ b. The converse is trivial. 0

(21.15) PROPOSITION. Every lattice-ordered semiring R is simple and positive,
having 1 as it s sole unit .

PROOF. We not e that R is simple by Proposition 21.12(1) and Proposition 4.3.
Also, for any element a of R we have 0 = aO :S a 1\ 0 :S a and so 0 is the unique
smallest element of R . This proves that R is positive. Finally, we have alr eady
not ed that U(R) = {I} for any simple semiring R. 0
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(21.16) PROPOSITION. Ifr is a sem iprime elemen t of a lattice-ordered semiring
R and if a and b are elemen ts of R th en th e follow ing conditions are equivalen t:

(1) ab S r ;
(2) ba S r;
(3) a A b S r.

PROOF. By th e definition of a lattice-ordered semiring , (3) implies (1) and (2).
Conversely, assume (1). Then , by Proposition 21.12(3) we have (a A b)2 S ab S r
and so, by semiprimeness, a A b S r , proving (3) . Similarly (2) implies (3) . 0

(21.17) COROLLARY. If rand r' are sem iprime elem ents of a lattice-ordered
semiring th en r A r' is semiprime as well .

PROOF . By Proposition 21.15, we note that r A r' is not a unit . If a2 S r A r'
then a2 S r , r' and so, by semi primeness, a S r, r' : Therefore a S r A r' , proving
that r A r' is semiprime. 0

If m and m' are elements of a partially-ordered monoid (M ,*) , we define the
interval [m, m'] to be {mil E M I m S mil S m'} . (Note that this set may be
empty!) We will denote the set of all such int ervals by int(M) and define th e op­
eration l*J on int(M) by [m, m'][*][n , n1 = [m * n , m' * n'] . It is easy to see that
if (M , *) is a partially-ordered monoid with identity element e then (int(M) , l*J) is
a monoid with identity element [e, e]. In particular, we note th at if R is a lattice­
ordered semiring then (R ,+) and (R, ·) are partially-ord ered monoids , with the
partial order being that coming from the lattice-structure of R . As an immedi­
at e consequence of th e definitions , we see that if R is a lattice-ordered semiring
th en (int(R) , lvl.[AJ) is a lattice and (int(R), I-l ,[.J) is a lattice-ordered semiring.
Moreover , we have a morphism of semirings R -+ int(R) given by r f-t [r, r] for all
r E R .

(21.18) PROPOSITION. If R is a DLO-semiring th en in int(R) we beve:

(1) [a,b][+][c,dj = {u + v Iu E [a , b], v E [e,dj};
(2) [a,b][·][e,dj 2 {uv Iu E [a,bl,v E [e, d]}.

PROOF. (1) If u E [a , b] and v E [c , d] th en a + e S u + v S b + d and so
u + v E [a ,b][+][c,dj. Conversely, if w E [a ,b][+][c,dj then a S w A b S band
e S wAd S d. Moreover, (w A b) + (w A d) = w A (b + d) = w. Thus we have
equality.

(2) If u E [a ,b] and v E [c, d] then ac S av S uv S bv S bd and so uv E
[a ,b][·][e,dj. 0

(21.19) EXAMPLE . If (R ,V, A) is a lattice which is not distributive, then
[a ,b][V][e,d] is not necessarily equal to {u V v I u E [a, bl,v E [e ,d]} and , in­
deed, the latter may not be an interval at all. To see this , consider the lattice
R = {O , aI ,a2,as, 1} in which 0 S a; S 1 for 1 SiS 3 but th e a; are incomparable
among th emselves. Then R = [0 , al][V][O , a2] but [0 ,as] rf:. {u V v I u E [0 ,all, v E
[0 ,a2]}'

If we have equality in Proposition 21.18(2) , then we say that the lattice-ordered
semiring R is divisory.
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(21.20) ApPLICATION . The lattice-ordered semiring int(lR.) is introduced and
studied in detail in [Moore , 1966) as a tool in numerical analysis and the treatment
of floating-point computations in computers with a fixed word length . Refer also
to [Alefeld & Herzberger, 1983) and [Moore, 1979]. For the use of int(lR.) and
int(1R. U {-<X>, oo}) in global optimization theory, see [Hansen, 1992].

A subset A of a lattice L is a lattice ideal if and only if a E A and bEL
imply that a /\ b E A. In particular , if a E A and b ~ a then b E A. Thus
every subset A of L is contained in a unique smallest lattice ideal of L, namely
(A] = {b ELI b ~ a for some a E A} . If a E L we write (a] instead of ({a}] .

(21.21) EXAMPLE . Let (R, +, .) be a lattice-ordered semiring and let 1 "# a E R.
Set [a) = {r E R I r 2: a} and define an operation * on [a) by r * r' = rr' + a.
Then, using Proposition 21.12, it is straightforward to verify that ([a),+,*) is also
a lattice-ordered semiring with additive identity a and multiplicative identity 1.
Moreover, the function 'Ya: R --+ [a) given by r ....... r + a is a surjective morphism of
semirings . Note that [a) is a lattice ideal of R but is not an ideal of R .

(21.22) PROPOSITION. The following conditions on an ideal I of a lattice-
ordered semiring R are equivalent:

(1) I is a lattice ideal;
(2) I is a strong ideal;
(3) I is a subtractive ideal .

PROOF. (1) ~ (2) : Let a and b be elements of R satisfying a + bEl. Then
a = a /\ (a Vb) = a /\ (a + b) and so, by (1), a E I. Similarly, s e t and so I is a
strong ideal of R.

(2) ~ (3) : This is trivial.
(3) ~ (1): Let a E: I and let r E R. Then a = a V (a /\ r) = a + (a /\ r) E I and

so, by (3), a /\ rEI. Thus I is a lattice ideal of R . 0

In Chapter 5 we noted that the sum of subtractive ideals of a semiring need
not be subtractive. However, this condition does hold in the case of lattice-ordered
semirings.

(21.23) COROLLARY. If {h IkE n} is a family of subtractive ideals of a
lattice-ordered semiring R then :Ej El1 t, is subtractive.

PROOF . Let a E L:j El1 Ij and let bE R . Then there exists a finite subset A of
n and elements ak E Ik for all k E A such that a = L:kEA ak . Thus, by Proposition
21.22, a /\ b = (L:kEA ak) /\ b = L:kEA(ak /\ b) E L:j El1 t, and so :E t, is a lattice
ideal of R and hence, by Proposition 21.22, a subtractive ideal of R. 0

In particular, if R is a lattice-ordered semiring then the family consisting of R
and all of its subtractive ideals is a sublattice of ideal( R).

(21.24) PROPOSITION. If I is an ideal of a lattice-ordered setniring R which is
also a lattice ideal and ifa and b are elements of R satisfying ab E I then (a)( b) ~ I .

PROOF. If r , r' : and rl! are elements of R, then rar' ~ a and br" ~ b so
rar'br" ~ abo Thus rar'br" E I. Since every element of (a)(b) is a finite sum of
elements of R of this form, it follows that (a)(b) ~ I . 0
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(21.25) PROPOSITION. The following conditions on an ideal I of a lattice­
ordered sem iring R which is also a lattice ideal are equivalent :

(1) I is prime.
(2) If a and b are elements of R satisfying ab E I then either a E I or bEl.

PROOF . Assume (1) and suppose that I is prime and that a and b are elements
of R satisfying ab E I . By Proposition 21.24 we see that (a)(b) ~ I and so either
(a) ~ I or (b) ~ I . This implies that either a E I or i e i . Thus (1) implies (2).
Conversely, (2) implies (1) by Proposition 7.4. 0

Let Rand 5 be lattice-ordered semirings. If -y: R -+ 5 is a morphism of semirings
then, is a morphism between the semigroups (R, +) and (5, +) , and so is ord er­
preserving. Indeed, if r 2: r' in R then r' + r = r' V r = r and so ,(r') V,(r) =
,(r') + ,(r) =,(r' + r) = ,(r) and so ,(r) 2: ,(r') .

(21.26) PROPOSITION . Let Rand 5 be lattice-ordered semirings, let , : R -+ 5
be a morphism of semirings, and let 8: R -+ 5 be a morphism of lattices. Then :

(1) ,(r 1\ r') ~ ,(r) 1\ ,(r') for all r, r' E R ;
(2) 8(r + r') 2: 8(r) + 8(r') for all r, r' E R .

Moreover , ifeither, or 8 is bijective then the corresponding inequality becomes an
equality.

PROOF . Since, as already noted, morphisms of semi rings between lattice-ordered
semirings are order-preserving, we have ,(r 1\ r') ~ ,(r) and similarly ,(r 1\ r') ~
,(r') . This suffices to establish (1). If, is bijective then it has an inverse ,-1 . Note
that ,-l(,(r) + ,(r')) = ,-l,(r + r') = r + r' =,-l,(r) + ,-l,(r') and so ,-1
is a morphism between the semigroups (5, +) and (R , +) . This implies that ,-1 is
order-preserving and so , as before, ,-l(,(r) 1\ ,(r')) ~ ,-l,(r) 1\ ,-l,(r') = r 1\ r'
so, applying " we get ,(r) 1\ ,(r') ~ ,(r 1\ r') , and thus we have equality, proving
(1). The proof of (2) is similar. 0

If R is a lattice-ordered semiring and v : R -+ R is a nucleus then v( ab) ~

v( a) 1\ v(b) for all a";'b E R , sin ce v is ord er-preserving. The following result gives
necessary and sufficient condit ions for equality.

(21.27) PROPOSITION. If R is a lattice-ordered sem iring and v :R -+ R is a
nucleus then v(ab) = v( a )I\v(b) for all a, b E R ifand only if the following conditions
are satisfied:

(1) v(ab) = v(ba) for all a, se R ;
(2) v( a2) = v( a) for all a E R .

PROOF . If v(ab) = v(a) 1\ v(b) for all a , b E R then surely (1) and (2) are
satisfied . Conversely, assume that th ey are satisfied . Then a 1\ b ~ v(a) 1\ v(b) and
so v(a 1\ b) ~ v(v(a) 1\ v(b)) = v([v(a) 1\ v(b)F) ~ v(v(a)v(b)) ~ v(v(ab)) = v(ab) .
The reverse inequality, as we have noted above, is always true and so we have
equality. 0

Note that the nucleus given in Example 20.50 satisfies the conditions of Propo­
sition 21.27 .

A multiplicative filter on a partially-ordered semiring R is a nonempty subset
F of R satisfying r , r' E F => rr' E F and r 2: r' E F => rEF.
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(21.28) EXAMPLE. If a is an element of a semiring R th en F = {I E ideal(R) I
an E I} for som e n ~ 1 is a multiplicative filter on th e partially-ordered semiring
ideal(R) .

(21.29) EXAMPLE. Let p be a congruence relation an a difference-ord ered semir­
ing R having a mul tiplicatively-idemp ot ent infinite element a. Then {r E R I r p a}
is a mul tiplicative filter on R .

If {Fj li E n} is a family of multiplicative filters on a partially-ordered semiring
R then n jEo Fj is again a multiplicative filter on R , so th e set of all mul tiplicative
filters on R is a complete lattice. If a E R th en th e smallest multiplicative filter on
R containing A is {r E R I r ~ ak } for some kE N .

If F is a multiplicative filter on an additively-idempot ent simple semi ring Rand
a is an element of R , set Fa = {r E R I r + a E F}. Then clearly Fa = F . Define
a relation =F on R by setting a =F b if and only if Fa = Fi: This is clearly an
equivalence relation . We claim that it is a congruence relation as well. Indeed ,
assum e that a =F band c =F d in R . Th en

Fa+c = {r E R I r + a + c E F}

= {r E R I r + a E Fc }

= {r E R I r + a E Fd }

={rERlr+a+dEF}

= {r E R I r + d E Fa}

= {r E R I r + d E Fb}

= {r E R I r + b+ dE F}

= Fb+d

T hus a+c =F b-i-d. Moreover , r E Fac => r+ac E F => r + a E F and r+c E F =>
r+b E F and r+d E F => (r+b)(r+d) E F => r2+br +rd+bd E F => r-s-bd E F
since r ~ r 2 + br + rd => rE Fbd and so Fac ~ Fbd. A simil ar argument shows the
reverse containment , and so we have Fac = Fbd. T hus ac =F bd.

The same argument used above can make another point : let R be a lattice­
ordered semiring and let F be a mul tipli cative filter on R . If a , b E R and r E Fab
th en r + ab E F and so r + (a /\ b) E F since ab ~ a /\ b. Thus r E Fa/\b . Conversely,
if r E Fa/\b th en r + (a /\ b) E F , whence r + a E F and r + b E F . Thus
r 2 + rb + ar + ab = (r + a)(r + b) E F and so r + ab E F , whence r E Fab. This
shows that ab =F a /\ b. As an immediate consequence we see that ab =F ba for all
a,b E R.

If R is an additively-idemp ot ent simple semiring and F is a multiplicative filter
on R , we can th erefore form the factor semiring RF = R/ =F. The elements of
RF are j ust th e sets of the form Fa for a E R . The operations on RF are defined
by Fa + Fb = Fa+b and Fa . Fb = Fab. In par ticular , we note that if R is a lattice­
ordered semiring th en Fa . Fb = Fb . Fa and (Fa)2 = Fa for all a, b E R. Thus
RF is commutative and multiplicatively idemp otent. Moreover , it is simple and
addit ively idemp otent since R is. Therefore, by the result cit ed in Example 1.5,
R F is a bounded distribu tive lat ti ce.



22. COMPLETE SEMIRINGS

We now want to consider the possibility of infinit e sums in semirings. Semirings
hav ing infinite sums, such as ideal(R) for any ring R , are well-known and the
ability to take infinite (or at least countably-infinite) sums is, as we shall see, very
imp ortant in certain appl ications.

Let R be a semiring. A family A of functions of the form 0:n -> R , where n is
a set , is admissible if and only if to each 0 in A we can assign a value L:0 in R
such that the following conditions are satisfied :

(1) Ifn = 0 th en L:O = O.
(2) If n = {h 1 , . . . , hn } is a finite set , then any function 0:n -> R belongs to A

and L:0 =O(ht) + ... + O(hn ) .

(3) A function 0:n -> R belongs to A if and only if, for each r E R , the functions
rO:n -> R and Or:n -> R defined by rO:i >--+ rO( i) and Or:i >--+ O( i)r belong
to A. Moreover , in this situation , L:[rOJ = r[L: OJ and L:[OrJ = [L: OJr.

(4) If n = UjEAnj is a partition of n th en 0:n -> R belongs to A if and only if
th e restriction OJ of 0 to each nj belongs to A and the function ep :A .- R
defined by ep: j >--+ L:OJ belongs to A as well. Moreover, in this situation ,
L:O = L: ep .

The assignment 0 >--+ L: 0 is called a summation on A . A semiring R is A­
complete if A is an admissible family of functions with values in R with a specified
summation . In particular, R is countably complete if A is the family of all
functions from countable sets to Rand 'R is com p let e if and only if A is th e family
of all functions with values in R.

Complete semirings have been studied in [Eilenberg, 1974], [Goldst ern , 1985],
and [Krob , 1987], based on ideas first present ed in [Conway, 1971], all in connec­
tion with automata th eory, where the probl em of infinit e summation is central.
Semirings which are A-complete were also studied in [Mahr , 1984J . See also [Higgs,
1980J . For an applicat ion of such semirings to quantum statistics, refer to [Belavkin ,
1987J. On the face of it , th e notion of a complete semi ring seems to run into foun­
dational difficulties since the family of all functions with values in R is clearly a
prop er class. However , Goldstern [1985J has shown that if R is a complete semi ring
th en there exists a cardinal number c such that for each function 0:n -> R there
exists a subset A of n having cardinality at most c such that L: 0 = L: 0' , where 0'
is th e restriction of 0 to A.
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if A = supp(8) is finite

if A is uncountable or if th ere exists a j E n
such that 8(j) = z'

otherwise

Note : to simplify notation , we will often identify a function B: Q -+ R with its
image in R and write 2:A, where A is an indexed family of (not necessar ily distinct)
elements of R .

(22 .1) EXAMPLE . The boolean semiring IE is complete if, for each funct ion
B: Q -+ IE we define 2:B to equal 0 if im(B) = {O} and to equal 1 oth erwise.

(22.2) EXAMPLE . If (R , V , A)} is a fram e, th en R is a compl ete additively­
idempotent semiring in which , for each function B: Q -+ R, we define 2:B =
ViEOB(i) . In particular, the semiring of open subsets of a topological space is
complete.

(22.3) EXAMPLE . Let R be th e semiring (~+ U { -00 , 00 }, max, +). Th en R is
compl ete since, for each function B: Q -+ R we can define 2:B to be sup{ B( h) Ih E
Q}.

(22.4) EXAMPLE . In Example 1.10 we considered the semiring (sub(A*),U , ·)
of all languages on an alphabet A. This semiring is sur ely complete.

(22.5) EXAMPLE. If R is a complete semiring and A is a nonempty set then
the semiring RA is complete if, for each function B: Q -+ RA , we define (2: B)(a) =
2:aEA B(a).

(22.6) EXAMPLE . Countably-complete semirings have important applications
in the analysis of it eration th eories [Bloom & Esik , 1993] and in automata th eory.
Such semirings are not necessarily complete [Krob , 1987]. Indeed, let P be th e set
of all countable subsets of ~ and let R = P u [R} . Then (R ,u, n) is an additively­
idempotent semiring. Moreover , if B:N -+ R th en we can define 2:B to be UiENO( i) .
Thus R is countably complete. We claim that R is not compl ete. Indeed , let
Q = ~ \ {O} and let 0:Q -+ R be the fun ction defined by 0:r 1-+ {r} . Set b = 2:0
Suppose se P . Since Q is uncountable, there exists an element c in Q\b. If B' is the
restriction of 0 to Q\b, then b = {c}u2:0' and hence c E b, which is a contradiction .
Therefore we must have b= ~ . Then b n {O} = {O} = 2:[0 n {O}] = 2:0 = 0 ,
which is again a contradiction . Thus 2:0 cannot exist , and so R is not complete.

(22.7) EXAMPLE . [Goldstern , 1985] Let R = NU {z , z'} , where z and z' are
elements not in N. Define operations of addition and multiplication on R to be the
usual operations of addition and multiplication on N augmented as follows:

(1) n + z =nz = z + z = zz = z for all 0 # n EN ;
(2) n + z' =n z' = z + z' = z' + z' = z'z' = z'z = zz' = z' for all 0 # n E N ;
(3) 0+ z = z;
(4) 0+ z' = z';
(5) Oz =Oz' = zO= z'O=O.

If 0:Q -+ R then we set

{

L:{8(i) I8(i) # O}
z'I:8=
z
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Then R is a complete semiring.
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(22.8) ApPLICATION . Let D be a nonempty set and let S = sub(D x D) be th e
set of all relat ions on D . Define addit ion and multiplication on S by set t ing r + s =
r U s and rs = {(d , d") E D x D I th ere exists an element d' E D with (d, d') E
r and (d', d") E s} . Then S is a complete positive zerosumfree semiring partially
ordered by inclusion , having additive identity 0 and multiplicative identity ~ =
{(d , d) IdE D}. Assume that D has a distinguished element 1.. and let R =
{0} U {r E S I (1.. , d) E r if and only if d =1..} . Then R is a subsemiring of S. As
a partially-ordered set , R has a unique atom z = {(1.. , 1..)} . If 0 # r, r' E R then
z = z2 ~ rr' and so R is ent ire. This semiring R was used in [Main & Black , 1993]
as a model for comput at ions in an abstract "computer" completely determined
by being in one of a set D of st at es, among th em the distinguished state 1.. of
being in an unending loop. The nonempty elements of R are nondeterministic
procedures which th e computer is to execute.

Let {Ri liE A} be a family of semirings and let R = X i EARi . For each i in
A, let I i : R -l- R; be th e canonical projection onto the ith component . Let A be a
family of functions into R and , for each i E A, let A; = h i8 I 8 E A} . Then it is
easy to verify that:

(1) If A is admissible th en so is Ai for each i E A. In this case, summation on
A; is defined by L: l i(8) = li(L: 8) for each 8 E A.

(2) If A; is admissible for each i E A th en A is admissible. In this case, the
summation on A is defined by the condition that , i(L: 8) = L:l i8 for all
i E A.

Th e following examples show how a complete semiring generates new semirings.

(22.9) EXAMPLE. [Goldstern , 1985] If R is a complete sem iring and if A is a
nonempty set then the semiring of formal power series R«A)) in A over R is also
compl ete. Indeed , if 8: n -l- R«A)) is a function , then for each word w E A* we have
a function Bw; n -l- R defined by Bw(i) = [B(i)](w) . Then define (L:B)(w) = L:8w
for each wE A* .

(22.10) EXAMPLE. If R is an A-complete semiring and n is a nonempty set such
that every function from n to R belongs to A , th en we can define the semiring
Mn(R) of (n x n)-matrices on R. This is the set Rn xn on which addition is
defined componentwise. If i .s E Rn xn and if (i ,j) E n x n , then (fg)(i ,j) is
defined to be L:8, where 8: n -l- R is the function defined by 8(k) = f(i , k)g(k,j) .

(22.11) EXAMPLE . If R is a complete semiring and if (M, *) is a monoid , then
any favorable family C of subsets of M is R-favorable and so we can define the
convolution algebra (R[C], +,(*)).

(22.12) ApPLICATION . By Example 1.5, we know that (IT, max, min) is a simple
semiring, which is complete, idempotent , and commutative. A function f :~+ -l- IT
is called a fuzzy nonnegative real number if and only if, for each {r E ~+ I
f(r) ~ h} is a nonempty closed interval in ~+ . In particular , we see that this
condition impli es th at th ere exists a real number ro for which f(ro) = 1. We will
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denote the set of all fuzzy real numbers by fuzz( IR +) . For details, see [Kaufmann
& Gupta, 1985]. In particular , it is shown there that fuzz(IR+) is closed under the
convolutions (+) , defined by

(J(+)g)(r) = sup{min{f(r') ,g(r")} I r = r' + r"}

and 0 defined by

(J( ·)g)(r) = sup{min{f(r'),g(r")} I r = r'r"} .

Moreover, (Juzz(IR+) , (+), 0) is a commutative semiring, the additive identity f o
and the multiplicative identity !l in which are defined by fk (r) = k if r = k and
fk(r) = 0 otherwise. This semiring has important applications in the computation
under conditions of uncertainty.

The notion of a fuzzy nonnegative real number can be generalized in many
directions to fit different applications. Many such generalizations are considered in
[Kaufmann & Gupta, 1985]. Thus, for example, we can define the notion of the
set fuzz(IR+ n ) of all fuzzy nonnegative real numbers of dimension n , for n
some positive integer, which , in a manner analogous to the above, can be turned
into a semiring by using the convolutions (+) and 0 appropriately defined.

(22.13) ApPLICATION. Let R be a complete simple semiring. A constraint
system over R consists of a pair (D, V) , where D is a finite set and V is an
ordered set of variables. A constraint is a pair (J{, 15), where J{ ~ V is the type of
the constraint and 15 : DIKI --+ R is the value of the constraint. Problems involving
constraints and constraint satisfaction play an important role in optimization theory
and the modeling of optimization schemes. By considering the general framework of
constraints over semirings, one can model not only classical constraint problems but
also fuzzy constraint problems and weighed constraint problems. Refer to [Bistarelli
et al., 1997a, 1997b] and [Georget & Codognet, 1998] for an introduction to this
theory.

(22.14) PROPOSITION. Let R be an entire positive totally-ordered semiring
and let 00 be an element not in R . Extend the order on R to one on R{ oo} by
setting t: < 00 for all r E R. For each function 8: D --+ R{oo} define L:8 to be
sup{L: 8' I8' the restriction of 8 to a finite subset ofD} . TIlen R{oo} is a complete
semiring.

PROOF. First note that R is zerosumfree by Proposition 20.16 and so, the semir­
ing R{ oo} is well-defined. It is easily seen that it is complete. D

If particular, we note that l':l{co] and IR+[co] are complete semirings, as is
R{oo}, where R is the schedule algebra.

(22.15) EXAMPLE. [Goldstern, 1985] The above construction can be generalized
as follows: Let R be a uniquely difference-ordered semiring (e.g. l':l) having additive
identity z and multiplicative identity e and let R= {f IrE R} be a set bijectively
corresponding to R and disjoint from it. Set S = R u R and define operations ffi
and 0 on S as follows:

(1) If a, b E R then a ffi b and a 0 b are just the sum and product of these
elements in R;
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(2) If a,bE R then a EB b= z=a 0 b;
(3) If a E Rand bE R then a EB b=bEB a =c, where c = z if a 'i band c is the

unique element of R satisfying a + c = b otherwise.
(4) e 0 a =a =a 0 e for all a E R;
(5) z 0 a = z = a 0 z for all a E R;
(6) a 0 b= z =b0 a for all a E R \ {e , z} and bE R.

Extend the partial order on R to a partial order on 5 by setting a ~ bfor all a E R
and bE R, and a ~ b in R if and only if a 2: b in R.

For each function () : 0 -+ 5, define L: () to be equal to ()(hd EB . .. EB ()(hn ) if ()
has finite support {h1 , . .. , hn } , and equal to z otherwise. Then the semiring 5 is
complete.

The following result is extremely important.

(22.16) PROPOSITION. Let R be a A-complete semiring and let 0 and A be
sets between which there exists a bijective correspondence r ; 0 -+ A. If () : 0 -+ R
and ¢ : A -+ R are functions in A satisfying ¢r = () then L: ()(O) = L: ¢(A).

PROOF . Set a = L: ()(O). Define a partition {OJ I j E A} of 0 by setting
OJ = r- 1 (j) . Then ()(OJ) = ¢(j) for each j E A and so, by the definition of a
complete semiring, a = L: ¢(A) . 0

In particular, Proposition 22.16 implies that if R is an A-complete semiring and
if B is a function in A then the sum L: B is independent of any ordering of O. This is
a generalization of the condition that in a semiring the operation of addition is com­
mutative. Next, we note that summations are not necessarily uniquely determined
by the addition in R .

(22.17) EXAMPLE. [Goldstern , 1985; Kuich , 1987] Let 00 be an element not
in JB and let R = JB{ oo}. Then R is commutative and additively idempotent .
Furthermore, it is totally ordered by the relation 0 ~ 1 ~ 00 . Then, for each
function B: 0 -+ R, we can define L: B in two different ways:

(1) L:B = sup{()(i) liE O}; and
(2) L: B= 00 if and only if B does not have finite support .

We will say that a summation on an admissible family A of functions is nec­
essary if and only if, for functions () , ()': 0 -+ R in A satisfying the condition
that each finit e subset A of 0 is contained in a finite subset A' of 0 such that
L:{B(i) liE A'} = L:{B'(i) liE A'} we have L:() = L:B'. In particular, a
countably-complete semiring R has a necessary summation if and only if it sat­
isfies the condition that for any (), B' :l':! -+ R we have L: () = L: ()' whenever
B(O) + '" + ()(n) = ()'(O) + ... + B'(n) for each natural number n, for all n greater
than or equal to some no E l':! .

(22.18) EXAMPLE . The summation given in Example 22.17(1) and in Proposi­
tion 22.14 is necessary that given in Example 22.17(2) is not necessary .

(22.19) EXAMPLE . [Goldstern , 1985] If R is a countably complete semiring
having necessary summation and if T R -+ 5 is a surjective morphism of semirings
then the summation in 5 need not be necessary . For example, let y be an element
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not in N and let R = N{y} . For any countable set n and any fun ction () :n ---+ R,
define L: () to be y if and only if () does not have finite support . This summation is
easily seen to be necessary. If S = lffi{oo} for some element 00 not in lffi and if for
each function ():n ---+ S, with n again a countable set , we define L: () = 00 if and
only if () does not have finite support then this summation is, as we have already
noted, not necessary. However , there exists a surjective morphism of semirings
T R ---+ S defined by setting ,(V) = 00 , ,(0) = 0, and ,(n) = 1 for all 0 < n E N.

(22.20) EXAMPLE . In Chapter 5 we noted that if R is a semiring then it is
possible to define infinite summation in the semiring idea/(R) of all ideals of R.
This summation is clearly necessary.

Let R be a positive partially-ordered semiring and let A be an admissible family
of functions of the form () : n ---+ R such that R is A-complete. Then R is finitarily
A-complete if and only if, for each function () :n ---+ R in A and for each element
a of R satisfying the condition :

(*) If A is a finite subset of n then L:iEA ()(i) :S a

we have L: () :S a . The semiring R is said to be finitarily [resp . countably]
complete if and only if it is finitarily A-complete , where A is the family of all
functions [resp . from countable sets] with values in R .

(22.21) EXAMPLE . The semiring N{oo}, as defined in Proposition 22.14, is
finitarily complete.

(22.22) EXAMPLE . Let R be the semiring lffi{oo} with sums of th e form L: ()
defined as in Example 22.17(2) . Then R is not finitarily complete.

(22.23) EXAMPLE . The semiring S defined in Example 22.15 is not finitarily
countably complete since if () : N ---+ S is defined by ()(n) = e for all n E N then
L: () = z, while L:iEA ()( i) :S e < z for all finite subsets A of N.

(22.24) PROPOSITION. Let R be a finitarily countably-complete semiring, let
a E R , and let () : N ---+ R be a function satisfying the condition that ()(O)+ . .+()(n) =
a for each natural number n . Then L: () = a.

PROOF . If A is a finite subset of N having maximal element n then I:iEL ()( i) :S
()(O) + ...+ ()(n) = a. Since R is finitarily countably-complete, this implies that
I: () :S a. Since R is positive, a :S I: () and so we have equality. 0

(22.25) PROPOSITION. Let R be a finitarily countably-complete semiring. Then
a + b+ c =a implies a + b =a for all elements a, b, and c of R.

PROOF . Let a + b+ c = A and define a function () : N ---+ R by

if n = 0

if n = 2i - 1 for some i E lID .

if n = 2i for some i E lID

Let d = I: e. Then

d= L[(}(2n-l)+(}(2n)] =a+(b+c)+(b+c)+ ... .
n~l
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Since a + (b + c) = a, we see that all of the finite partial sums are equal to a and
so, by Proposition 22.24, we have d = a. On the other hand ,

d= L[0(2n)+0(2n+l)] =(a+b)+(c+b)+(c+b)+ .. ..
n~O

Since (a + b) + (c + b) = a + b, we see that all of the finite partial sums are equal
to a + b and so, by Proposition 22.24, we have d =a + b. Therefore a =a + b. 0

Thus, combining Propositions 20.37 and 22.25, we see that every finitarily
countably-complete semiring is difference ordered. Goldstern [1985] has proven th e
converse as well: any difference-ordered semiring is isomorphic to a subsemiring of
a finitarily countably-complete semiring.

Note that if R is a A-complete semiring and if 0 E A is the O-function then
I: 0 =I:iE!1 OO( i) =O(I: 0) =O.

(22.26) PROPOSITIO N. Let R be an A-complete sem iring and let 0:D --> R
and <p :A --> R be elem ents of A . Then the function t/J :D x A --> R defined by
t/J : (i, j) I-> O(i)<pU) belongs to A and I: t/J =(I: O)(I: <p) .

PROOF . For each j E A, the restriction of <p to Dj = {( i , j) liE D} is just Ob
for b = <pU) , and this function belongs to A. Since D x A = U{Dj I j E A} is a
partition of D x A, the function t/J belongs to A . For each j E A, let OJ :D --> R be
the function defined by Or i I-> O( i)<pU) · Then I: OJ = (I: O)<pU) and so I: t/J =
I:{I:jEAOj} =I:jEA(O)<PU) = (I:0)(I:<P). 0

Let us note one consequence of this result . A (possibly infinite) subset A of a
complete semiring R is a cove r of R if and only if I: A = 1. For example, ir R is
th e set of all open subsets of lk" (in th e usual topology) then (R, U, n) is a complete
semiri ng. For each c > 0, the set of all elements of R having Lebesgue measur e less
than e is a cover of R. If A and B are covers of R , Proposition 22.26 immediat ely
implies that An B is also a cover of R .

(22.27) PROPOSITION. Every complete semiring R has an infinite element .

PROOF . Let D = R x N and define the function 0: D --> R by 0: (1' , i) I-> 1' . For
each r E R , let Dr = {(1', i) E D liE N} and let Or be th e restriction of 0 to Dr .
Then n = UrERDr is a partition of D and so if a = I: 0 then a = I:{I:rER Or}.

If b E R th en R = {b} U (R \ {b}) and so a =c + I: Ob , where

c = L {l: Or Ib # r E R} .

Then a + b = c+I: Ob + b. Now let r: N --> N be the function defined by r :i I-> i + 1.
Then O(b , i) =O(b , r( i)) for all i EN . Moreover, N = {O} Uim(r) so I: Ob =O(b, 0)+
I: OL where O~ is the restriction of Ob to im(r) . Thus I: Ob =b+ I: O~ =b+ I: Ob.
This shows that a + b = c + I: Ob = a for all b in R , proving that a is an infinite
element of R. 0
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(22.28) PROPOSITION. Every countably complete semiring is zerosumfree.

PROOF . Let a and b be elements of a countably-complete semiring R satisfying
a + b = O. Define the function B from 1'1 to R by setting B(i) = a if i is even and
B(i) = b if i is odd. Set c = L B, d = L {B(i) I i odd} , and e = L {B(i ) I i even }.
Then c =d + e. On the other hand , c =L {B(i) + B(i + 1) I i even } =O.

If T:1'1 -+ 1'1 is th e function defined by T:i ........ i + 2 th en B( i) = BT(i) for all i E N .
Moreover ,

e =B(O) + I)B(i + 2) I i even }

= B(O) + L {BT(i) I i even}

=B(O) + L {B(i) I i even}

= B(O) + e = a + e.

Therefore 0 = d + e =d + a + e = a and 0 = a + b =0 + b =b. 0

If we have a countably-complet e semiring with necessary summation t hen we
can improve the result in Proposit ion 22.28.

(22 .29) PROPOSITION. If R is a countably-complete sem iring with necessary
summation then R is difference ordered.

PROOF. Define th e rela tion :::; on R by setting a :::; b if and only if there exists
an eleme nt c of R such that a + c = b. Then for elem ents a, a' , and a" of R we
clearly have a :::; a and a :::; a" whenever a :::; a' , and a' :::; a" .

Assume that a and b are elem ents of R satisfying a :::; band b :::; a. Then th ere
exist eleme nts c and d of R such that a + c = band b+ d = a . Set ( -= C + d. Then
a + e = a and b+ e = b. Indeed , for each positive integer n we h.sve b+ ne = b.
Let B:1'1 -..:... R be th e func tion defined by B(i) = e for each i . Sin ce R is countabl y
complete, u = L B exists . If Bo:1'1 -+ R is th e fun ction defined by Bo(i) = 0 for all
i th en b + B(O) + ...+ B(n) = b + Bo(O) + ...+ Bo(n) for eac h natural number n
and so, since th e summation on R is necessary, we see th at b+ u = b + L Bo = b.
On th e other hand if <p and <p' are th e functions from 1'1 to R defined by <p( i ) = c
and <p'(i) = d for each natural number i th en , by Proposition 22.16 , we have

b =b+ u =b+ L <p + L <p' =b+ d + L <p + L <p' =d + b+ u =d + b =a. Thus
:::; is a partial ord er relation on R, and so R is difference ordered . 0

(22.30 ) EXAMPLE . Complet e semirings need not be ent ire . For example, let R
be th e boolean algebra (sub(N), U, n) . This is a complet e semiring. The additive
identity of R is 0 . If A is th e set of all even eleme nts of 1'1 and B is t he set of all
odd elements of 1'1 then both set s ar e nonzero but A n B = OR .

(22. 31) PROPOSITION. If R is a complete simple additively-idempotent sem ir­
ing with necessary summation then there exists a bijecti ve correspondence between
the set of all prime elements of R and the set of characters of R .

PROOF . By Proposition 22.29 we see that R is difference ordered and so , by
Proposition 20.4 8, we know t ha t eac h prime element a of R defines a character fa
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of R by 'a(r) = 0 if and only if t: :S a. Moreover, if a # b are prime elements
of R then "[a # ,b. Conversely, let , be a character of R and let a = L: ker(,) .
Since R has necessary summation , we see that ,(a) = O. If a is a unit, we obtain
,(1) = ,(ah(a- 1 ) = 0, which is a contradiction . Thus a cannot be a unit of
R . If r :S a then there exists an element r' of R satisfying r + r' = a and so
,(r) + ,(r') = ,(a) = O. Since JE is zerosumfree, this implies that ,(r) = O. Thus
ker(;) = {r E R I r :S a} and so, by Proposition 20.48 , a is prime and, = "[a ­

This proves that the map a f-+ ,a is the bijection we seek. 0

(22.32) PROPOSITION. If R is an entire zerosumfree semiring and 00 rt. R then
R{oo} is a complete semiring.

PROOF. In Chapter 2 we saw how the semiring structure of a zerosumfree semir­
ing R can be extended to R{ oo} . Consider a function B:n ---+ R{ oo}, and let
A = {i E n IB( i) # O} . If A is finite , set L: B to be the sum of the elements of R of
the form {B(j) I j E A}. Otherwise, set L: B= 00 . Then R{ oo} is complete. 0

(22.33) PROPOSITION. The following conditions on a complete commutative
semiring (R , + , .) are equivalent:

(1) (R , + , .) is a frame in which arbitrary joins are given by L: ;
(2) R is simple and idempotent .

PROOF. (1)::} (2) : This is immediate.
(2) ::} (1) : By Proposition 20.19 we see that R is partially ordered by the

relation a :S b if and only if a + b = b and, indeed, it is a meet semilattice with
a V b = a + b for all a, se R . If a, se R then ab + a = a(b + 1) = al = a so ab :S a.
Similarly ab :S b. On the other hand , if c :S a, b then c + a = a and c + b = b so
ab = (c + a)( c + b) =c + cb + ac + ab so c :S c + cb+ ac :S abo Thus R is a lattice,
with a 1\ b = abo

If we are given a function B:n ---+ R then L: B 2: B( i) for each i E n. Suppose that
b 2: B(i) for each i En. Then bB(i) = B(i) so b(L: B) = 'Ei~n bB(i) = L: 0, whence
b 2: 'EO. Therefore v[O(n)] = L: B. The distributivity of meet over arbitrary joins
follows from the definition of a complete semiring. 0

(22.34) EXAMPLE . If R is an entire zerosumfree semiring and 00 rt. R then
R{oo} is a complete semiring by Proposition 22.32 . However, (R{oo}, +, .) is not
a frame since, if it were a frame, then by the uniqueness of infinite elements, we
would have a = al = aoo = 00 for all a E R, which is a contradiction .

If R is a complete semiring and if A, B, Care nonempty sets (or if R is an
arbitrary semiring and the set B is finite) and if h E R A x B and k E R B x C are
R-valued relations then we can define the R-valued relation k 0 ne RA x C by

k 0 h: (a,c) f-+ I: h(a, b)k(b,c).
bEB

It is straightforward to show that 0 is associative and distributes over addition
from either side. Also , if h = h' + h" in R A x B or k = k' + k" in R B x C then
k 0 h = k 0 h' + k 0 h" and k 0 h = k' 0 h + k" 0 h. If k and hare R-valued functions
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th en k 0 h is also an R-valued fun ction . Ind eed , if ao E A th en , if there exists an
element bo E B for which I(ao, bo) :j:. 0 then that eleme nt mus t be unique. Simil arly ,
if th ere exists an element Co E C for which g(bo, co) :j:. 0 then th at element must
be unique. On the other hand , if (k 0 h)(ao, ci) :j:. 0 for some Cl E C, then th ere
exists an eleme nt bi E B such that h(ao, bI)k(b 1 , cI) :j:. 0, which, by th e uniqueness
of bo and Co , implies that bi = bo and Cl = Co . However , we do note that h 0 k
could be the O-map even if k and h are not. This would not be so if the semiring
R is entire, for th en we would have (k 0 h)(a o, co) = h(ao, bo)k(bo,co) :j:. O. If R is a
complet e difference-ord ered semi ring and A is a nonempty set , t hen h 0 h = h for
each R-valu ed equivalence relation h on A ,

(22.35) PROPOSITION. Let R be a difference-ordered com plete sem iring and let
A be a nonempty set . Let I , g, hE RA X A be R-valued relations on A satisfying the
following conditions:

(1) im(l ) ~ IX (R) ;
(2) Th e elem ents of im(l) and im(g) commute.

Let I' E R A x A be defined by 1':(a, b) t-+ I(b, a) . Then (10 g)h :S 10 [g(l' 0 h)].

PROOF . If a , se A th en

[(10 g)h](a , b) = [L I(a , c)g(c, b)] h(a , b)
cEA

= L I(a , c)g(c, b)h(a , b)
cEA

=L I (a, c)g(c, b)!,(c, a)h (a , b)
cEA

:S L I( a, c)g(c, b) lU' 0 h)(c, b)]
cEA

=L I(a , c) [g(l' 0 h)( c, b)]
cEA

= (10 [g(l ' 0 h)]) (a , b).

from which th e result follows. 0

Compositions can , of course, be iterated . In particular , if h E RA x A we can
define hOk for all k 2:: 0 by setting hOO = eo and th en setting hok = ho(k-l ) 0 h for
all k > O. Moreover, if R is complete we can further define hO* = L:~=o hO k to be
th e reflexive and transitive closur e of h. These definitions lead to th e operational
semant ics of R-valued computat ions, as studied in [Wechler , 1986a].

If R and S are [countably-] complete semirings th en a fun ction T R ~ S is
a morphism of [countably-] complete semirings if and only if th e following
condit ions are sa t isfied:

(1 ) , (OR) = Os ;
(2) , (1R) = Is ;
(3) , (rr') = , (r) · , (r' ) for all r , r' E R;
(4) , (L: (J ) = L: (,(J) for all functions (J from a [countable] set n to R.
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(22.36) EXAMPLE . [Goldstern, 1985] We extend Example 9.4 . If R is a
countably-complete semiring then we define a morphism of countably-complete
semirings I R:N {oo} -+ R by setting IR(n) = n1R if n EN and IR(OO) = I:O,
where O:N -+ R is th e fun ction defined by O(i) = 1 for all i E N . Note that if
6: R -+ 5 is a morphism of countably-complete semirings, then for each a E N{00 }

and each r E R we have 6('R(a)r) = ,s(a)6(r) = 6(rhs(a) .

(22.37) EXAMPLE . We now extend Example 9.19. Let R be a complete sernir­
ing , let A be a nonempty set , and let <p be a function from A to the center C(R)
of R. Then <p defines a morphism of compl ete semirings f.cp : R((A)) -+ R, called the
<p-evaluation morphism, given by

Let R be an A-complete semiring for some admissible family A of functions with
values in R. An element b of R is A-compact if and only if for each function
0:n -+ R in A satisfying I: 0 = I: 0 + b there exists a finite subset A of n such
th at th e restriction 0' of 0 to A satisfies I: 0' = I: 0' + b. The element is compact
if it is A-compact for th e family A of all functions with values in R. We not e that
compact elements play an important part in the study of frames; we will also mak e
significant use of this concept in th e next chapter. From the definition it follows
that 1 is a compact dement of R if and only if every cover of R contains a finit e
subcover. We will denote th e set of all compact [resp. A-compact] elements of a
semiring R by comp(R) [resp . A - comp(R)] .

(22.38) EXAMPLE . If R is a semiring, then any finit ely-generated ideal of R is
a compact element of th e semiring idea/(R). In particular , R is a compact element
of i dea/(R).

Let R be a complete semiring and let KR be the family of all subsets V of R
satisfying th e condition th at if 0:n -+ R is a function and if I: 0 E V th en th ere
exists a finit e subset Aoof n satisfying th e condition that I: iEA O( i) E V for all
finit e subsets A ;2 Ao of n. Then KR is a topology on R, which we will call th e
Karner topology, since it was first introduced in [Karner , 1994].

(22.39) EXAMPLE . If R = (Q+ U {oo}, + , .) th en th e Karner topology KR is
characterized as follows:

(I) Every a E Q+ is isolated;
(2) A subset V of R containing 00 belongs to K R iff and only if R \ V is well­

ordered by th e reverse of the usual ord er.

(22.40) EXAMPLE . If R = (l~+U {oo}, +,.) then a base for the Karner topology
KR is given by {O} and all subsets of R of th e form {r E R I a < r :S b} for some
a < b in R.

It is straightforward to verify that if Rand 5 are complete semirings and if
a :R -+ 5 is a function satisfying the condition that a(I: 0) = I:(aO) for all
functions 0:n -+ R, th en a is a continuous function from (R, KR) to 5,Ks) .
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If {Ri liE n} is a family of complete semirings and R = XiEnRi, th en projec­
tion maps R -+ Rh are continuous when Rand Rh are endowed with th e Karner
topologies and so th e Karner topology contains th e produ ct topology on R. How­
ever, th ese topologies need not be equal. Thus, for example, Karner [1994] poin ts
out that if R 1 = Rz = (Q+ U {oo}, + , .) th en the map R 1 x Rz -+ R 1 given by
(a,b) f-+ a + b is not continuous when R1 is endowed with the Karner topoogy
and R 1 x Rz is endowed with the product topology but is cont inuous when both
semirings are endowed with the Karner topology.

As expected , if o : R -+ S is a surj ective morphism of complete semirings th en
K s coincid es with th e final topology on S generated by Cl'.



23. COMPLETE SEMIMODULES

In a manner analogous to that in th e preceeding chapter, we can also define
the noti on of a [countably-] compl ete semimodule over a [countably-] complete
semiring R. Refer to [R. Lee, 1979]. Note that if {Mh I hEr} is a family of
[countably-] complete left R-semimodules then the left R-semimodule [her Mh is
also [countably -] complete. Ind eed, if {Ii liE O} is a (countable) family of elements
of Iher Mh' we define L:ieo Ji to be the function from r to UherMh given by

~kh >--+ ~Ji(h),
ieO ieO

where Ji(h) E Mh for all hEr and all i E O. In particular, we note th at a direct
product of an arbitrary number of copies of a [countably-] complete semimodule is
again [count ably-] complete.

(23.1) EXAMPLE. If R is a complete semiring and X is a nonempty set such that
RX is a complete left R-semimodule, then summation in RX can be consdid ered
as a form of integrat ion . An important example of this is th e case in which we
take R to be th e schedul e algebra and X to be a locally- compact space [Litvinov
& Maslov, 1998]. Indeed , let us writ e Ix f(x) = VxeX f(x) for all f E RX

. If f is
continuous or upp er-continuous , th en we can define a function mr sub(X ) ~ R by
setting m j i B >--+ VxeBf(x). Note that mj(UeoBj) = Vieomj(Bd for any index
set O. Th e function mj is th e R-measure defined by f and we can define an analog
of the Lebesgue integral with respect to this measure by setting

f g(x)dmj = f [g (x) + f(x)] = V[g( x) + f(x)] .
Jx Jx xex

(Recall that + is the multiplication in R!) . These considerations lead to th e anal­
ogy between such functions and probability measures, which has been exploited
so fruitfully in "idempotent analysis" . Refer also to [Del Moral & Doisy, 1999a,
1999b].

Many other notions from functional analysis can be transfered to this context .
For example, if X is an appropriate space we can use the above formul a to define
the noti on of an R-vaIued inner product on RX by setting

(I, g) = j [f(x) + g(x)] = V[g(x) + l(x)] .
X xex
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Also note that we clearly have the analog of Fubini's Theorem : for a suitable
function f: X x Y -+ R we can easily reverse the order of integration :

llf(x,y)= llf(x,y) .

Loreti and Pedicini [199S] in fact give a somewhat more general form of this: if F
is a function from X to sub(Y) and if, for each y E Y, we write F- 1(y) = {x E X I
y E F(x)}, then

{ ( f(x,y) = { ( f(x,y) .
lx IF(x) IF(x) i.-;

If M and N are [countably-] complete left R-semimodules , then an R-homomor­
phism 0' : M -+ N is [countably-] complete if and only if it satisfies the aditional
condition that (:LiEn mi) 0' = :LiEn miO' for all [countable] index sets O. We
will denote the set of all [countably-] complete R-homomorphisms from M to N
by CHomR(M,N) [resp. CCHomR(M,N)] . Similary, we denote the set of all
[countably-] complete endomorphisms from M by CendR(M) [resp. CCEndR(M)] .

If M is a countably-complete left R-semimodule then the function B:M -+ M
which assigns to each m E M the sum mB of a countably-infinite number of copies of
m is an idempotent member of CCEndR( M) satisfying the condition that m+mB =
mB for all m E M . We also note that every element of MB is idempotent. More
generally, if M is a complete left R-semimodule and if c is an infinite cardinal, then
the function Be :M -+ M which assigns to each mE M the sum mBe of c copies of
itself is a member of CendR(M) satisfying the condition that mBe + mBd = mBe
for all cardinals d ~ c and all m E M . Moreover, that every element of MBe is
idempotent .

Let R be a partially-ordered semiring. A partially-ordered [countably-] complete
left R-semimodule M is finitary if and only if for every (countable) family {mi I
i E O} of elements of M and every element m' of M satisfying the condition that
:LjEA mj ~ m' for any finite subset A of 0, we have :LiEn mj ~ m' . As an
immediate consequence of this definition, w see that a direct product of finitary left
R-semimodules is again finitary.

(23.2) PROPOSITION. The following conditions on a [countably-} complete posi­
tive left R-semimodule M over an additively-idempotent semiring R are equivalent:

(1) M is finitary;
(2) M is a [countably-} complete lattice, if we set ViEnmi = :LiEn mi for any

[countable} family {mi liE O} of elements of M ;
(3) mBe =m for all infinite cardinals c [resp. mB = m} and all m EM.

PROOF. (1) ::} (2): If {m, liE O} is a [countable] family of elements of M
then , by hypothesis, we know that m' = :LiEn mi exists and that mi ~ m' for all
i E O. Now let mil E M satisfy the condition that that rn, :S mil for all i E O.
Then m' = :LiEn mi :S :LiEn(mi + mil) . But mi + mil = mil for all i E 0 and
so :Lj EA (mj + mil) = mil for each finite subset A of O. By (1), we then have
m' :S :LiEn(mi + mil) :S mil, proving (2).
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(2) => (3) : If m E M and if {mi li E n} is a [coun tably-] infinite family of
elements of M wit h mi = m for all i E n t hen , by (2), L: iEOmi = ViEomi = m,
estab lishing (3) .

(3) => (1): Let [rn, li E n} is a [countabl y-] infini t e famil y of elem ents of M .
If m' E M satisfies the condition that L:i EAmi S m' for each finite subset A of n
then , in part icular , rn, S m' for all i En}. By (3) , L: iEOm: = m', where m: = m'
for all i En}. Hence

2: mi + m' = 2: mi + 2: m: = 2:(mi + m;) = 2: m: = m'
iEO iEO iEO iEO iEO

and so L: iEO mi S m' , pr oving (1). 0

(23.3) PROPOSITION. IfR is an additively-idempot en t sem iring, th en every left
R-semimodule can be em bedded in a finit ary complete R -semimodule.

PROOF. Let M be a left R-semimodule. Since R is addit ively-idempote nt, B(R)
is isomo rphic to lE and so R is a left lE-semimodule. As in Chapter 15, set I(M) =
Homp.(R, lEM ) . For r E R and TJ E I(M ) we define the fun cti on rTJ :R ---> lEM by
setting rTJ :r' >-. (r'r )TJ . It is st ra ight forward to verify that rTJ E I (M) and th at this
defini t ion turns I(M ) int o a left R-semimodule, which is addit ively idempo t rent
since R is an addit ively-idempotent semiring .

We cla im that I( M ) is in fact complet e. Indeed , let {TJi l iE n} be a family of
eleme nts of I (M) and define L: iEO TJi to be the fun ction from R to lEM given by
(L: iEO TJi ):r >-. L: iEO(r)TJi ' This fun ction belongs to I (M ) since, if r , r' E R t hen

(r + r ") (2: TJi) = 2:(r + r' )TJi = 2: [rTJi + r' TJ;] = L rTJi + L r'TJi
iEO iEO iEO ;EO iEO

while

(r' ) (r 2: TJi) = (r ' r ) (2: TJi) = 2:(r'r )TJi = ~(r') rTJi = (r') (r 2: TJi) .
lEO lEO lEO lEO lEO

Clea rly lE is a finitary complet e semimo dule over itself, and so, as pr eviously
not ed, lEM is also finitary and complete . Now suppose that {TJi l iE n} is a family of
element s of I(M) and let TJ' E I(M ) satisfy th e condition tha t L:iEA TJi ::; TJ' for each

finit e subset A of n. Then for each such A and each r E R we have (r) (L: j EA TJj) ::;

(r )TJ' in lEM
. Since lEM is fini t ar y, th is implies that (r) (L:iEO TJi) ::; (r )T)' for each

r E R and so L: iEo TJi ::; TJ' . T hus I (M ) is a finit ar y comp let e left R-semimodule.
We are left to show that there exists a moni c R-homomorphism a :M ---> I (M )

and , ind eed , such a map is defined as follows: if m E M and r E R let r(ma) E lEM

map m' inM to 0 if m' 2 r m an d map it to 1 otherwise. The fact t hat a is an
R-h omomor phism is st raight forward to verify. 0



262 ______CHAPTER 23 _

(23.4) PROPOSITION. IfR is an additively-idempotent semiring and M is a fini­
tary [countably-] complete left R-semimodule then C E ndR(M ) [resp.
CCE ndR(M)) can be made a finitary [countably-] complete additively -idem potent
semiring.

PROOF. It is easy to see that CEndR(M) [resp . CCEndR(M)] is a subsemir­
ing of EndR( M) and so is additively idempotent . We claim th at this semir­
ing can be made [countably-] complete by an appropriate definition of infinite
summation . Indeed, if Q is a [countable] ind ex set and if O'i l iE Q} is a
family of elements of CEndR(M) [resp . CCEndR(M)], we define L:iEn O'i by
(L:iEn O'i) : m 1--+ L:iEn mO'i · If m , m' EM and r E R th en we have

(m+m') (LO'i) = L(m+m')O'i = L(mO'i+m'O'd
iEn iEn iEn

= L mO'i + L m' O'i = m (L O'i) + m' (L O'i)
iEn iEn iEn iEn

and

(rm) (L O'i) = L(rm)O'i = L r(mO'i)
iEn iEn iEn

Therefore L:iEn a,E E ndR(M ). Moreover, if {mj I j E A} is a [countable] family
of elements of M th en

(L mj) (LO'i) = L (Lmj) O'i = LLmjO'i
jEA iEn iEn jEA iEnjEA

=LLmjO'i = Lmj(LO'i) .
jEAiEn jEA iEn

Therefore L:iEn O' i belongs to C EndR( M) [resp . C C EndR(M)] . It is now
straightforward to check that CEndR(M) [resp . CCEndR(M)] is [countably] com­
plete as a left and right semimodule over its elf, and so is a [countably-] complete
sernmng.

We are left to show that this semiring is finitary. Let 0' be an endomorphism of
M and let c be an infinite cardinal. Set O'e = (O')Be Then for each m E M we have
mO'e= (mO')Be= rno by Proposition 23.2. Therefore 0' = O'e and so CEndR(M)
[resp . CCEndR(M)] is finitary. D

(23.5) PROPOSITION. Every additively-idempotent sem iring R can be em bed­
ded in a finitary complete semiring.

PROOF. By Proposition 23.3, we know that R, considered as a left semimod­
ule over itself, can be embedded in a finitary complete left R-semimodule M . By
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Proposition 23.2, th e semiring 5 = C EndR(M) is finitary complete, as is th e semir­
ing T = C Ends(M) . But there is a canonical embedding of R into T , establishing
th e desired result . 0

(23.6) PROPOSITION. If R is a zerosum free sem iring then there exis ts a mor­
phism of sem irings from R to a com plete additively-idempotent semiring.

PROOF . Define a relation p on R by setting r p 1" if and only if th ere exist
eleme nts x , y E R and nonnegative int egers n and m sat isfying r + X = nr' and
1" + y = mr. This relation is clearly symmetric and reflexive. To show tha t it is
transitive , assume that r p 1" and 1" p 1'''. Then r + x =mr' and 1" + y = nr" for
some x, y E Rand m , n E N . It then follows that

l' + (x + my) = mr' + my = m(r' + y) = m(nr") = (mn)r" .

Similarly, we can show that 1''' + z = kr for some z E Rand kEN. Therefore
t: p 1''', proving that p is an equivalence relation on R. Note that if r P 0 then
r + x = 0 for some x E R. Since R is assumed to be zerosumfree, thi s implies that
r =O.

We now prove that p is compat ible with th e operations on R. Indeed , suppose
th at 1'1 P SI and th at 1'2 p S2· Then we have 1'1 + xl = mlsl , Sl + Yl = m 1r1 ,

1'2 + x2 = m 2S2 , and S2 + Y2 = m 2r2 , from which we deduce that

and

and
S1+ S2 + [(n2 - l) Sl + n2Y1+ (nl - 1)s2 + nlY2) = n1n2(r1 + 1'2)

so (1' 1 +1'2) p (S1 +S2). Thus we see th at p is a congruence relation on R. Moreover ,
the semiring R/p is additively idempotent . By Proposition 23.5, this semi ring can
be embedded in a complete semiring and so this emb edding, com posed with the
canonical morphism R --+ R/p, is the morphism we seek . 0

(23.7) PROPOSITIO N. Let R be a positive additively-idempotent semiring and
let M be a left R-semimodule whi ch is a retract of a finitary [countably-] complet e
left R-semimodule N . Then M it self is finitary and [countably-] complete.

PROOF . By hypothesis , there exist R-homomorphisms a : M --+ Nand 13:N --+

M such th at 0'13 is the identity map on M . By Proposition 23.2 we know that N
is a [countably-) complete lattice in which ViEnni = :LiEn ni for any [coun table)
family {n i liE S1} of elements of N . If n = :LiEn mia , then mhO' ~ n for all
hE S1 and so mi, = mha j3 ~ nj3. Therefore nj3 is an upper bound for {mi liE S1}
in M. Assume that m E M is another upp er bound for this family of elements.
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Then mi, :::; m for all hEn and so mh a :::; rno , Therefore n = E iEf! m ia :::; rno so
n (3 :::; m a (3 = m . Thus n (3 is th e unique least upper bounded for {mi l i E n} in
M , proving that M is a complete lat ti ce. We now define E iEf! rn, in M to be equa l
to n/3 E M and claim that this defini tion turns M into a com plete R-semimodule.
Indeed , if r E R t hen

L 1'm i =

iEf!

Again , by Propositi on 23.2 , t he sem imo dule M is finitary complete. 0

(23. 8) PROPOSITIO N. If R is a positive additively-idempoten t sem iring then
every injective left R-semimod ule can be made finitary and complete.

PROOF . Assume that M is an inj ect ive left R-semimodule. By Proposit ion 23.3,
we know that M can be embedded in a finitary complet e R-semimodule. Since M
is injective, this embedding is a ret raction and so , by Proposition 23.7, we see tha t
M too is finit ary and complete . 0

Note th at th e converse of P roposit ion 23.8 is false. Indeed , any complete la t t ice is
a finit ary complete lff..semimo dule, bu t injective left lff..semimo dules must be frames.

(23.9 ) PROPOSIT IO N. Let R be a com plete sem iring and let u: A ---+ B be a
function between nonempty sets. T hen:

(1) If9 E RB then there exists a fun ction 91 E R B sat is fying hu [h; 1 [g]]+9 = g;
and

(2) If f E R A then f + h;l[hu!.f]] = h; l[hu[f]].

PROO F . (1) If bo E B

hu[h ;;- l [g]] :bo f-+ L h;;-1 [g] (a)hu(a, bo) = L L hu(a, b)g(b)hu(a , bo).
aE A a EA bEB

But thi s sum equals OR except in the case b = bo = u(a) , in which case it equals
g(bo). T hus , if gl E R B is th e fun cti on defined by

{
o if bEim(u)

gl( b) =
g(b) ot herwise.

t hen hu[h; l [g ]] + gl = g.
(2) If ao E A t hen

h;;- l[hu[f]]:ao f-+ L hu(ao, b)hu[f ](b)
bEB

=L L hu(ao, b)f(a)h u(a , b)
bEB a EA

L f (a)
f (a )=f( ao)



_____COMPLETE SEMIMODULES _ 265

Note th at Proposition 23.9 implies th at if R is a compl ete semiring and if u : A --+

B is a function between nonempty sets th en th e funct ion 9 f--+ h,,[h~l[gll is an
interior operator on RB and th e fun ction f f--+ i: 1 [h" [Ill is a closure operator on
R A .



24. CLO-SEMIRINGS

A lattice-ordered semiring R is a complete-lattice-ordered semiring (CLO­
semiring) if and only if (R ,v, 1\) is a complete lattice. A CLO-semiring is a
quantalic lattice-ordered semiring (QLO-semiring) if and only if multipli­
cation distributes over arbitrary joins from either side ; it is a frame-ordered
semiring (FO-semiring) if and only if it is a QLO-semiring and the und erlying
complete lattice is a frame . As an immediate extension of Proposition 21.12(1),we
see that if a a is an element of a CLO-semiring R then V(Ra) = a = V(aR) .

The study of complete lattices equipped with an additional operation which dis­
tributes over arbitrary joins goes back to [Krull , 1924], [Dilworth, 1939], and [Ward
& Dilworth , 1939]. CLO-semirings are considered in [Fuchs, 1954, 1963] under the
name of complete lattice-ordered semigroups. Refer also to [Anderson, 1976].
The related notion of a quantale is studied in [Borceux & Van den Bossche, 1986]
and is based on an attempt by Mulvey to provide a constructive foundation for
quantum mechanics. Also see [Borceux , Rosicky & Van den Bossche, 1989] and
[Brown & Gurr, 1993a]. In a quantale Q, multiplication ;E; associative but 1 is only
a one-sid ed multiplicative identity: al = a for all elements a of Q but la is not
necessarily equal to a. An element a of Q is two-sided if 1a = a = a1 and the
collection Q* of all two-sided elements of Q is a sublattice of Q which is in fact
a QLO-semiring. Since the meet of any arbitrary family of two-sided elements of
Q is again two-sided , we see that for any a E Q there exists a unique smallest
element a" among those elements b of Q* satisfying b 2 a . In ord er to relate a
quantale and its subsemiring of two-sided elements, the notion of a quantum frame
was introduced in [Rosicky, 1989, 1995]. In particular, we can consider Q as a Q*­
semimodule. A more general notion of a quantale given in [Niefield & Rosenthal ,
1988] and [Roman & Rumbos, 1991a]. For the application of quantales to process
semantics of computer programs, refer to [Abramsky & Vickers, 1993]. Another
related notion is that of a net , introduced in [Blikle; 1971, 1977], which differs
from that of a CLO-semiring in that multiplication is assumed to distribute only
over finite or countable joins. Such structures are also known as zr-frames. For an
application of nets to the analysis of computer programs, refer to [Janicki , 1977].

Quantic lattice-ordered semirings provided a natural setting for fuzzy set theory,
as proposed in [Goguen, 1967] and for a logic of inexact concepts. The notion of a
logic over a QLO-semiring has been extensively expanded in [Pavelka , 1979a, 1979b,
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1979c].

_______CHAPTER 24 _

(24.1) EXAMPLE. If (R , V , 1\) is a complete lattice then R is surely a CLO­
lattice; it is a frame precisely when this lattice is a QLO-semiring. Any frame is a
fram e-orde red semiring if we take multiplication to coincide with meet . Indeed, as
an immediate consequence of Proposition 21.14 we see that fram es are precisely th e
multiplicatively idempotent QLO-semirings. Thus , if R is a fram e-ord ered semiring
in which mul tiplication and meet are not th e same, R has two canoni cal structures
of a complete semiring: (R , V,·) and (R , V,1\).

(24.2) EXAMPLE. If R is a semiring th en (ideal(R) , + , .) is a QLO-semiring.
Not every QLO-semiring is isomorphic to a subsemiring of a QLO-semiring of thi s
type. See [Bogar t , 1969b]. If (5,*) is a monoid th en (ideal(5) ,U,*) is an FO­
semiring, where A * B = {a *b Ia E A ,se B} for all ideals A and B of 5 .

Simil arly, if 0 is a sheaf of commutative rings on a locale then th e sheaf of ideals
of 0 is a semiring under th e operat ions of sum and sheaf product . See [Niefield &
Rosenthal , 1990] for details.

(24.3) EXAMPLE . The semiring (1I , max , ·) is frame ordered , where the frame
opera tions are sup and in f o

(24.4) E X AM PLE . If R is a semiring th en th e dual lattice (R - fi/)dU of R - fil
is a CLO-semiring. However , multiplication in (R- fil)du distributes over arbitrary
jo ins (i.e. int ersect ions in R - fi/)) from the left but not necessarily from th e right .
Therefore (R- f i/)dU is not a QLO-semiring . For th e case of R a ring , this semi ring
is st udied in detail in [Golan , 1986].

(24.5) E XAM PLE . If A is a nonempty set th en a relation on A is a subset of Ax A .
The family R of all relations on A is a frame und er th e operati ons of intersection
and union . In addition , we can define the product of two elements of R by setting
BC = ((a , a') E A x A I th ere exists an a" E A with (a, a") E B ,(a" ,a') E C} .
This turns R into a FO-semiring. For th e exte nsion of this notion to fuzzy relations
refer , for exa mple, to [Dubois & Pr ade, 1980].

T his example can be generalized in several directions, one of th e most important
being that of [Chin & Tarski, 1951]. In th ese generalizations, as a rule, we end up
with a QLO-semiring the underlying lattice of which is a complete at omic boolean
algebra with, perhaps, some additional structure.

(24.6) E X AM PLE . If A is a nonempty set th en th e semirings R = (sub(A*) , + , .)
and R' = (sub(AOO ), + , .) of form al languages and formal oo-languages on A, re­
spectively defined in Example 1.11, are QLO-semirings. In the semiring R' we can
also define countably-infinite products as follows: if L 1 , L 2 , . . . are elements of R' .
define L 1L2L3 ... . to be th e set of all words w E A00 of th e form w = al a2a3 . . . .
where, for each i , we have 0 # tu E (Li n A*) U (L i n A*)* . (L i n AOO).
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(24.7) EXAMPLE. The semiring R = (~U {-oo}, max , +) is certainly a CLO­
semiring. If A is a non empty set , th en the set M of all bounded elements of RA

,

namely th e set of those functions f E R A for which th ere exists an element r E R
such that f(a) :S r for each a E A , is an R-semimodule. For th e importance of
this semimodule in optimization th eory built around idempotent measures, refer to
[Gunawardena, 1998] or [Akian , Quadrat & Viot, 1998].

(24.8) PROPOSITION. If a is a prime element of a CLO-semiring R then A =
{a' E R I a' prime and a' :S a} has a minimal element .

PROOF. The proof of this is a straightforward variant of the proof of Proposition
7.14. 0

The notion of a compact element of a complete semiring holds in particular for
complete lattices: an eleme nt a of a complete lattice R is compact if and only if
for each nonempty set A of R satisfying VA 2: a th ere exists a finit e subset A'
satisfying VA' 2: a. If a and b are compact elements of R then surely so is a V b.

(24.9) EXAMPLE. The semiring (R - fil , n, ') presented in Example 1.7 is a
CLO-semiring. The compact elements of this semiring are studied in [Golan , 1987]
(where they are called "ducompact" ). A sufficient condition for K E R - fil to be
compact is th at it have a cofinal subset of finitely- generated left ideals . This would
always be true, of course, if R were left noeth erian.

The product of two compact element s of R need not be compact. We say that R
is compactly generated (or algebraic) if and only if every nonzero element of R
is the join of compact eleme nts. Compactly-generated CLO-semirings satisfying th e
condition that the product of compact elements is compact are studied in [Keimel,
1972]. The semiring sub(A) of subsets of a nonempty set A is compactly generated.

(24.10) EXAMPLE . If R is a semiring then any finit ely-generated ideal of R is
a comp act eleme nt of th e CLO-semiring id~al(R) . Therefore ideal(R) is compact ly
generated .

(24.11) PROPOSITIO N. If R is a CLO-semiring and A is a non empty set then
R A is compactly-generated if and only if R is.

PROOF . For each a E A and r E R, let wa,r be the function defined by Wa ,r(a) =
rand wa,r(a') = a for a' :f. a . We claim that an element r of R is compact if and
only if wa,r is a compact element of RA for all a E A . Indeed , assume that r is
a compact element of R and , for an element a of A, let U be a non empty subset
of RA satisfying wa,r :S VU. Then r = wa,r(a) :S VgE ug(a) and so there exists
a finit e sub set U' of U such that r :S VgE u ,g(a) . Then wa,r :S VU' , proving that
wa,r is compact. Conversely, assume th at wa,r is compact for all a E A and let
Y be a nonempty subset of R sat isfying r :S VY. Then for any a E A we have
wa,r :S V. EY wa,, · Since wa,r is compact , th ere is a finite subset Y' of Y such that
wa,r :S V.Ey,wa " , whence r = Wa,r(a) :S V.Eyl wa,.(a) = vY' .

For r E R we set C( r) = {s :S r I s is compact} . Similarly, for f E RA we set
C (J ) = {g :S fig is compact}. Assume that R A is compactly-generated. and let
a :f. r E R. Then, by th e above , we see that for a E A we have wa,r = V.EC(r)Wa ,.

and so r = wa,r(a) = VsEC(r)Wa ,s(a) = VC(r). Thus R is compactly-generated .
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Conversely, suppose th at R is compact ly-genera ted. If 0 i= f E R A then f =
VaEAWa.!(a) = V{wa.s I a E A ;s E C(J(a»)} where each of the functions w a.' is
compact . Thus R A is compactly-generated . D

(24.12) PROPOSITION . If R is a CLO-semiring in which 1 is compact then , for
each 1 i= r E R , the set B = {r' E R I r ~ r' < I} has a maximal element, which is
prune.

PROOF . If B' is a chain of elements of B th en VB' E B since 1 is compact .
Therefore, by Zorn 's Lemma, B has a maximal element . Since R is simple, addi­
tively idempotent , and difference ordered we see by Proposition 20.47 , taking the
case of A = {I} , that such a maximal element is prime. D

(24.13) PROPOSITION. Let A be anonempty set ofcompact elementsofa CLO­
sem iring R and let B = {r E R I a ~ r for all a E A} . Then for each bE B there
exists a maximal element b' of B with b < b'.

PROOF . Let B' be a maximal totally-ordered subset of B with b E B' . Since
th e elements of A are compact, b' = vB' E B . Clearly b' is a maximal element of
B satisfying b ~ b'. D

The following result generalizes Proposition 7.25.

(24.14) PROPOSITION. In a compactly-generat ed CLO-semiring, every sernr­

prime element is the m eet of primes.

PROOF . Let s be a sem iprime element of a compactly-generated CLO-semiring
R . It suffices to show th at if r > s in R th ere exists a pr ime element b of R satisfying
b 2': sand b'l. r . Ind eed , let r > s. Define a sequence A = {aI , a2, " '} of compact
elements of R in th e following manner : Let a l be a comp act element of R satisfying
al :S rand a l 1: s . Such an element exists since R is compactly generated . Now
assume th at we have found compact elements a2, . . . , an of R such that a, 1: s for
all i and a; :S (a j_l)2 for all 2 :S i :S n . Then a; 1: s since s is semiprime and hence
there exists a compact element an+l of R such th at an+l 1: s and an+l :S a; .

By construction , we note that if ai , aj E A th en there exists an element ah of
A satisfying ah :S a jaj . Since a; 1: s for all i , we see by Proposition 24.13 th at
there exists a maximal element b of {r' E R I a; 1: r' for all i} such th at s :S b.
By Proposition 21.15 , R is simple and positive so by 20.47 , we conclude th at b is
prime . Clearly r 1: b. D

(24.15) PROPOSITION . For a com pactly-generated CLO-semiring R the follow-
ing conditions are equivalen t:

(1) Every 1 i= a E R is the in tersection of prime elements;
(2) Every 1 i= a E R is semiprime;
(3) R is multiplicatively idempotent ;
(4) Ifa ,bERthenab=a l\b .

PROOF. (1) {::> (2) : Assume (1) . If 1 i= a E R th en th ere exists a nonempty set
A of prime elements of R satisfying a = I\A . If r 2 ~ a in R th en r 2 ~ b for all
b E A so r :S b for all such b. Hence r ~ a , proving th at a is semiprime. Thus we
have (2) . The converse follows from Proposition 24.14.
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(2) {::} (3) : Clearly (3) implies (2) . Conversely, assume (2) . If 1 =f:. a E R th en
a2 ~ a2 and so a ~ a2

• Conversely, a 2 ~ a 1\ a = a and so a = a2
• Thus we have

(3).
(3) {::} (4) . This follows from Proposi tion 21.14 . 0

(24.16) EXAMPLE . [Keim el , 1972] Let (M, *) be a semigrou p. Then the set R
of all sem igroup-ideals of M is a compactly-generated CLO-semiring and so every
semiprime element I of R is t he intersecti on of prime eleme nts of R . Moreover , the
followin g condit ions are equiva lent :

(1) Every IE R is semiprime;
(2) Every I E R is idempo tent ;
(3) I H = In H for all I , HER.

If R is a CLO-semiring and if a and b are elements of R, th en we define th e
left residual ab(-I ) = V{r E R I rb ~ a} and th e right residual b{- I)a =
V{r E R I br ~ a}. Clearly b{-I)a 1\ ab(-I) ~ a for all b E R. Note that if
R is a QLO-semiring th en (ab{ -1))b = V{rb I rb ~ a} ~ a 1\ b and similarly
b(b(-1) a) = V{br I br ~ a} ~ a 1\ b. Not e too that any CLO-semiring is simple
and positive by Proposition 21.15 and so we see that aO{- I ) = 1 = O{-I)a for
any eleme nt a of R and , if R is ent ire , we also have Ob{-I} = 0 = b{-I)O for any
nonz ero element b of R. In general , if a is an elem ent of a QLO -semiring R th en
Oa{- l} = V{r E R I ra ~ O} = V{r E R Ira = O} and (Oa(-I ))a = O. Thus Oa{-l)

is the unique maximal left annihilator of a . Similarl y, a{- l)O is t he unique maximal
righ t annihila to r of a.

(24.17) E XAM PLE . If R is t he CLO-semiring (II , max , min) and a , s e R t.hen
b(- I) a = 1 when a ~ Ii while b{-1} a = a when a < b.

(24.18) E X A M PL E . Recall t he notion of a t riang ular norm on II as defined in
Example 1.13 . If n is a triangula r norm on II and if a and b are eleme nts of II t hen
a ~ 1 so an b ~ 1 n b = b. Sim ilarl y, an b ~ a and so a nb ~ m i n{a , b} . Thus
(II , max , n) is a lattice-ordered sem iring . (Exa mple 24.3 is a spec ia l case of this .) If
n is a t riangular norm on II which is lower semicont inuous as a fun ct ion from II x II
to II then in fact R = (II , max , n) is a QLO-semiring and so we can define residuals
(sided ness is unimportant here, becau se of th e com mutativity of mul tiplication) in
R. Som e of these are presented in det.ail in [Got twald , 1984] for vari ous triangular
norms. Thus, for exam ple, if we consider the fund am ental t riangular norms we
have

(1) In th e semiring (II , max , n o) we see that ab{-I) equals 1 if b ~ a and equals
a otherwise;

(2) In th e semiring (II , m ax , n1) we see that ab( -l) equals 1 if b = 0 and equals
m in {1, b/ a } otherwise; and

(3) In the semirin g (II , m ax , noo ) we see that ab{-I ) = min { 1,1 - a + b}. T his
resul t is due to J . Lukasiewicz in connect ion with his st udies in logic.

Oth er examples of residuals in sem irings of this ty pe are given in [Weber , 1983].
Thus, for instan ce, if 0 < c E rn; one can define a t riangula r norm nH(c) on II by
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setting a nH(c) b = ab/[c + (1 - c)(a + b - ab)). In the semiring (IT , max, nH(c)) we
have ab(-I} = [a + (c - l)a(1 - b))/[b + (c - l)a(1 - b)) for b > a.

(24.19) EXAMPLE. Let R be a CLO-semiring and let A, B , and C be nonempty
sets. If 9 E R AXB, hE R BXC, and k E R AxC then we can define

k 0 h(- I) =L {g' E RA x B I9' 0 h ~ k}

and
g(-I} ok= L{h' E R BxC Igoh' ~ k}.

In particular, if hERA x A then

h 0 h(-I) =L {k E R Ax A I k 0 h ~ h}

and
h(-I) 0 h = L {k E R Ax A I h 0 k ~ h}.

These R-valued relations on A x A are called, respectively, the right and left traces
of h and have been studied, for the special case of R = IT, in [Doignon et aI. , 1986],
[Fodor , 1992], and [Sanchez, 1976).

(24.20) EXAMPLE . If R is a CLO-semiring and A, B, and Care nonempty
sets then there are ways of defining compositions between relations h E R Ax B

and k E R BxC other than those given previously. Some of these, along with their
applications, were considered in [De Baets & Kerre , 1993b) for the case of (IT , V, A).
These can be easily ext ended further . For example, over an arbitrary CLO-semiring
we can set

(h <I k) : (a, ~) >--+ (L: h(a ,b)) (1\ h(a , b)(-I) k(b, C)) (2: k(b , C)) .
bEB bEB bEB

The reasons for considering such compositions are detailed in [De Baets & Kerre,
1993b).

If rand s are elements of a CLO-semiring R then , as an immediate consequence
of the definitions, we see that r( r(-I} s) ~ sr.r , Ifwe have equality for all s E R, then
the element r of R is left weakly meet principal. Similarly, r(-I} (rs) 2: s+r( -I} 0
for all r, s E R . If we have equality for all s E R, then r is left weakly sum
principal. An element of r is left weakly principal if and only if it is both left
weakly meet principal and left weakly sum principal. An element r of R is left
meet principal if and only if ra A b = r[a A r(-I}b) for all elements a and b of
R and is left sum principal if and only if r(-I}[ra + b) = a + r(-I}b for all a
and b in R. Clearly left meet principal elements are left weakly meet principal and
left sum principal elements are left weakly sum principal. An element of R is left
principal if and only if it is both left meet principal and left sum principal. Since
any CLO-semiring is positive and simple, we not e that 0 is always both left and
right principal.

Note that if an element r of R is left weakly meet principal then an element s
of R satisfies s ~ r if and only if s = rr' for some element r' of R.
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(24.21) EXAMPLE . [Anderson , 1975] If 5 is a commutative semigroup with 0
and R = idea/(5} , th en a principal ideal S e« of 5 is always weakly meet principal.
It is weakly sum principal if and only if sSo = s'so i:- 0 implies th at S« = 5s' for
all s , s' E 5 .

(24.22) EXAMPLE. [Alarcon & And erson , 1994a] Let R = idea/(Q +[t ]), where
t is an indeterminate. Then th e principal ideal (1 + t) is a meet-principal element
of R which is weakly sum principal but not sum pr incipal.

(24.23) PROPOSITION. If a is an elem en t of a Cl.Ossemuing R whi ch is not a
left zero divisor th en a(-l}O = O. If, in addition , a is weakly sum principal then
a(-l}(ab) = b for all elements b of R .

PROOF . If a is not a left zero divisor then a(-l}O = Vir E R I ar = O} = O. If,
in addition , a is weakly sum principal then a(-l}(ab) = b + a(-l}O = b. 0

(24.24) PROPOSITION. A commutative QLO-semiring R is isomorphic to
idea/(5) for som e com m utative multiplicative monoid 5 with 0 if and only if R
is an FO-semiring and th ere exis ts a subset 5' of R satis fy ing th e following condi­
tion s:

(1) 0 E 5' ;
(2) Every elem en t of 5' is weakly m eet principal;
(3) Every elemen t of R is of the form VA for some nonempty subse t A of 5' ;
(4) 5' is closed under products;
(5) If s E 5' then there do not exist nonzero elements s' and s" of 5' satisfy ing

s = s' + s" .

PR:-}OF . If 5 is a commutative multiplicative monoid with 0 then in Example
24.2 we alr eady not ed that idea/(5) is an FO-semiring. Moreover, the set 5' =
{Sa Ia E 5} of principal ideals of 5 has the desired properties.

Conversely, let R be an FO-s emiring having a subset 5' satisfying (1) - (5) . Then
(5' , .) is a commutat ive monoid with o. We define a function T idea/( 5') -+ R
by , :H t-t 'LH . Clearly ,(5') = 1 and ,({O}) = O. Moreover , ,(H UK) =
,(H)+,(I() and ,(HK) = ,(H)/(K) since R is additively idempotent . Thus, is a
morphism of semirings. For r E R th ere exists a nonempty subset A of 5' satisfying
r = V A . Then r =V{5a I a E A} = , (H ), where H = U{5a I a E A} E ideal(5') .
Thus, is surjective . To show th at 'Y is injective, it suffices to show that ,(H) ~

,(I() implies that H ~ K. Indeed , let h E H . Then h ~ ,(H) ~ ,(K) = VK and
so h = h 1\ (VK) = V{h 1\ k IkE K} . Since each element k of K is weakly meet
principal , we have h = h 1\ k = k(k(-l}h) for all k E K . Moreover, k(-l}h = VAk
for some subset Ak of 5' and so h = V{kAk IkE K} . By (5) , this implies that
h = ks for some s E 5' , proving that h E 5'k ~ K . Thus H ~ K , as desired. 0

(24.25) PROPOSITION. For elements a, b, and e of a QLO-semiring R the fol-
lowing conditions hold:

(1) a ~ b -¢= e(-l}a ~ c(-l}b;
(2) a ~ b -¢= b(-l}e ~ a(-l}c;

(3) a 2': be {:} b(-l} a 2': c;
(4) c(-l}(b(-l}a) = (bc)(-l}a;
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(5) c(-l}(b(- l}a) ~ (c(-l}b)a ;
(6) (c(-l}b)(- l}(c(-l}a) ~ c(- l }a;
(7) (c(-l}b)(- l}( c(-l}a) ~ b(-l}a ;

(8) a ~ b <=> b(-l}a = 1;
(9) a = 1(-l}a;

(10) a + b = 1 {::: b(- l}a = a ;
(11) a(-l}(b A c) = a(-l}b A a(- l}c;

(12) c(- l }(ba) ~ (c(-l}b)a ;
(13) (c(-l}b)(b(-l}a) ~ c(- l}a .

Similarly, the analogous condit ions for right residu als are also true.

PROOF . (1) By definition , c(c(-l}a) ~ a ~ b so c(-l}a ~ c(- l}b.
(2) c ~ b(b{- l}c) ~ a(b(-l} c) and hence a(-l} c ~ b(-l} c.
(3) If a ~ be th en b(-l}a ~ c by definit ion . Conversely, if b(-l}a ~ c th en

a ~ b(b(-l}a) ~ be.
(4) This is an immediate consequence of the definitions.
(5) By definition , a ~ b(b(-l} c) and b(-l}a ~ c[c(- l}(b(- l}a )] and so a ~

b(b(-l}a) ~ b(c[c(-l}(b(-l}a)]) = (bc)[c(- l}(b(-l}a)] . This implies that (bc)(-l}a ~

c(- l}(b(- l}a) . Conversely, a ~ (bc)[(bc)(-l}a] = b(c[(bc)(-l} a]) and so b(-l}a ~

c[(bc)(- l }a]. Thus c(- l}(b(- l}a ) ~ (bc)(-l} a , provin g equa lity .
(6) By definition , b ~ c(c(- l }b) and so ba ~ [c(c(-l}b)]a = c[(c(- l }b)a]. This

implies th at c(- l }(ba ) ~ (c(- l}b)a .
(7) We know that b ~ c(c(- l }b) so

b ~ b(b(-l} a) ~ [c(c(-l}b)](b(- l)a) = c[(c( - l }b)(b(-l }a)].

Then c(- l}a ~ (c(-l}b )(b(-l} a) so we have (7) .
(8) , (9) These are immediate consequences of the definit ion.
(10) Since a + b = 1, we have a = la = (a + b)a = a 2 + ba. In par ti cular , a ~ ba

so a ~ b(-l)a. Conversely, a ~ a(b(- l}a) since ab ~ a A b and a ~ b(b(- l}a) by
definition . T herefore a ~ a(b(- l}a) + b(b(- l}a) = (a + b)(b(-l}a) = b(- l}a , proving
equa lity.

(11) By definit ion , b A c ~ a[a(-l)(b A c)] so a(- l }b A a(-l} c ~ a(-l}(b A c).
Conversely, b A c ~ a(a(-l}b) A a(a(-l) c) ~ a(a(-l)b A a(-l} c) and so b A c ~

a(a(- l }b A a(- l}c). This suffices to prove th e reverse inequali ty, and so we have
equa lity.

(12) If r E R satisfies cr ~ b th en era ~ ba since R is positiv e and so ra ~

c(- l }(ba). In part icular , for r = c{- l }b we have (c(-l}b)a ~ c(- l }ba.
(13) Since b(b(-l} a) ~ a we ha ve, by (12) and (1) , that (c(- l }b)(b(- l }a) <

c(- l }[b(b(-l )a)] ~ c{- l }a.

T he ana logous condit ions for right residu als are proven in th e sam e manner . D

Note th at by Proposition 24.25(8) we have b(-l} 1 = 1 = Ib(-l} for all b E R.

(24.26) PROPOSITIO N. Th e following conditions on a QLO-semiring are equiv-
alent :

(1) Every element of R is left m eet principal;
(2) Every element of R is left weakly m eet principal.
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PROO F . Clearly (1) implies (2) . Conversely, assume (2) . If a, b,r E R th en, by
(2) and Proposition 24.25(4) , we have ra r.b = ra[(ra)(-I}b] = r(a[a(-I}( r(-I}b)]) =
r(r(-I}b 1\ a) , proving (1) . 0

(24.27) PROPOSITION. If R is a QLO-semiring then:

(1) Th e set of all m eet -principal element s of R is a submonoid of (R , .);
(2) Th e set of all sum-principal elements of R is a submonoid of(R, .);
(3) Th e set of all principal elements of R is a submonoid of (R , .) .

PROOF . (1) By Proposition 24.25(9) we see that 1 is a meet-principal element
of R. Assume that rand s are meet-principal. If a , b E R th en , using Proposition
24 .25(4) , we note th at (rs)[(rs)(-1}bl\a] = r(s[s(-I}(r(-I}b)l\a]) = r(r(-I}bl\sa) =
b 1\ (rs)a and so rs is also left meet-principal.

(2) Again , by Proposition 24.25(9) we see that 1 is a sum-principal element of
R. Assume that rand s are sum-principal. If a, s« R th en

(rs)(-I) [(rs)a + b] = s(-I) (r(-I) [r(sa) + b])

= s(-I)(sa + r(-1}b)

=a + s(-I}(r(-I}b)

=a + (rs)(-I}b

and so rs is also left sum-principal.
(3) This is a dir ect consequence of (1) and (2). 0

In particular , if R is a commutative QLO-semiring and if A is the set of all
principal elements of R which are not zero divisors then A is an 0re set and we
can construct the classical semiring of fractions A - 1R of R. Indeed , recall that
A-I R is defined to be (A x R)j "' , where r- is the equivalence relation defined
by (a, r) '" (a', r') if and only if th ere exist elements u and u' of R satisfying
ur = u'r' and ua = u'a' . If (a , r) and (a' , r') are elements of A x R satisfying
ar' = a'r th en , taking u = a' and u' = a, we see that (a , r) '" (a' , r') . Con­
versely , if (a , r) '" (a', r') then uu'ar' = uu'o'r and so , by Proposition 24.23 ,
ar' = (uu,){-I}(uu'ar') = (uu,)(-I}(uu'a'r) = a'r . Therefore this const ru ct ion
generalizes th at given in [Burton, 1975] . Not e that A-I R is a semiring which is
partially -ordered by the relation a-I r ~ b- 1s if and only if rb ~ as in R . In­
deed , A-I R has th e structure of a lattice with operations given by a- 1r V b- 1s =
(ab)-1[rb + sa] = a- 1r + b- 1s and a- 1r 1\ b- 1s = (ab)-I[rb 1\ sa]. Howeover ,
A-I R is not necessarily a lattice-ordered semiring since it does not follow from the
definitions th at (a- 1r)(b- 1s) ~ a- 1r 1\ b- 1s.

(24.28) PROPOSITION. Th e following conditions on an elem ent r of a QLO­
semiring R are equivalent :

(1) r is left weakly principal;
(2) r is left principal.

PROOF . Clearly (2) implies (1). Conversely, assume (1) . Making use of (1) and
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Proposition 24.25(1) , we see that for all a , b E R we have

r(-l)(a + rb) =r (- l )(a + rb) + r(-1}O =r(-l)(r[r(-l)(a + rb)))

= r(-l)[r /\ (a + rb)] = r(-l)[(r /\ a) + rb]

= r(-l}[r(r(-l}a) + rb] = r(-l}[r(r(-l}a + b)]

=r(-l}a+b+r(-l)O = r(-l}a+b.

Furthermore, making use of Proposition 24.25(11) as well, we have

ra r; b = ra r; r /\ b =r[r(-l}(ra /\ b)]

= r[ r(-l}(ra /\ r /\ b)] = r(r(-l) [ra /\ r(r(-l)b)))

= r(r(-l}[ra] /\ r(-l}[r(r(-l}b))) = r[r(-l}(a + 0) /\ (r(-l}b + r(-l}O)]

=r[r(-l}(a + 0) /\ r(-l}b] = r[r(-l}(a /\ b) + r(-l}O]

=r[rr(-l)(a /\ b)] + 0 = r[r(-l}(a /\ b)],

proving (2). 0

(24.29) PROPOSITION. If a, b, and c are elements of a QLO-semiring R then
a(-l}(bc(-l}) = (a(-l}b)c(-l) .

PROOF . As a direct consequence of th e definitions, it is easy to see that both of
the mentioned expressions are equal to V{r E R Iarc::; b} . 0

(24.30) PROPOSITION. If a and b are elements of a QLO-semiring R then:

(1) b = a(-l)(ab) if and only ifb = a(-l}c for sorne » E R;
(2) b = a(a(-l}b) if and only ifb = ac for some cEll;
(3) b = (ba)a(-l) if and only if b = ca(- l } for some l E R;
(4) b = (ba(-l})a if and only ifb =ca for some c E R.

PROOF . (1) If b = a( -1} c for some c E R th en a( a( -1) c) ::; c and so, by Propo­
sition 24.25, a(- l)[a(a(-l)c)]::; a(-l}c. Moreover , a(-l} c::; a(-l}[a(a(-l}c)] and so
b = a(-l}c = a(-l)[a(a(-l}c)] = a(-l}(ab) . The reverse implication is trivial.

(2) If b = ac for some c E R th en a(-l}(ac) ~ c by Proposition 24.25 and
so a[a(-l}(ac)] ~ ac. On the other hand , ac ~ a[a(-l}(ac)] by definition and so
b = ac = a[a(-l)(ac)] = a(a(-l}b) . Again , the reverse implication is trivial.

The proofs of (3) and (4) are given in an analogous manner . 0

(24.31) PROPOSITIO N. If a, b, and c are elements of a QLO-semiring R then:

(1) (ab(-l})(-l}a ~ a + b;

(2) a(b(-l)a)(-l} ~ a + b;
(3) a[(ab(-l})(-l}a]( -l} = ab(-l} ;
(4) [a(b(-l}a)(-l}](-l}a = b(-l}a .

PROOF . (1) From the definitions, we know that (ab(-l})(- l}a ~ a. To show
that (ab( -1})( -I} a ~ b we have to show that a ~ (ab( -l})b and this , ind eed , is an
immediate consequence of th e definition .
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(2) The proof of thi s is similar to the proof of (1) .
(3) Since a 2: (ab(-l)(-l) a 2: b we have (ab(-l)(-l)a 2: b and so ab(-l) >

a[(ab(-l)(-l)a](-l) . The reverse containment follows by definition.
(4) The proof is similar to th at of (3). 0

(24.32) PROPOSITION . For an element a of a QLO-semiring R which is not a
unit the following conditions are equivalent:

(1) a IS prune;
(2) ab(-l) = a for all se R satisfying b 1: a;
(3) b(-l)a = a for all s« R satisfying b 1: a.

PROOF . Assume (1). If r E R satisfies rb :::; a then r :::; a since b 1: a and a
is prime. Therefore ab(-l) :::; a. The reverse inequality is trivial and so we have
equality. Conversely, assume (2) and let b, c E R satisfy b,c 1: a and be :::; a. Then
b :::; ac(-l) = a, a contradict ion. Thus a is prime, proving the equivalence of (1)
and (2) . The equivalence of (1) and (3) is proven similarly. 0

(24.33) COROLLARY. Ifb is a prime element of a QLO-semiring R then a(-l) b
and ba(-l) are also prim e for all a 1: bin R .

PROOF . Assume that c 1: a(-l)b in R . By Proposition 24.25(4), we have
c(-l)(a( -l)b) = (ac)(-l)b . Since c 1: a(-l)b , ac 1: b and so, by Proposition 24.32 ,
c(- l )(a(- l )b) = b. But b :::; a(-l)b :::; c(-l)(a(-l)b) so we have c(-l)(a(-l)b)
a(-1) b, proving that a(-1) b is prime by Proposition 24.32. Similarly, ba(-1) is
prime. 0

(24.34) PROPOSITION. Let a be an element of a QLO-semiring R satisfying the
condition that {r E R I r > a} has a unique minimal element c. Then ac(-l) is
prune.

PROOF . If rand r' are elements of R satisfying rr' :::; ac(-l) then rr'c :::; a.
Assume that r' 1: ac(- 1) . Then ric 1:. a and so a < a + r' c :::; c. By the minimality
of c, this implies that a + ric = c and so rc = rea + ric) = ra + rr'c :::; a. Thus
r:::; ac(-l) , proving that ac(-l) is prime. 0

(24.35) PROPOSITION. Let a be an element of a QLO-semiring R and let U be
a nonempty subset of R . Then :

(1) (VU)(- l)a = A{b(-l)a Is« U} ;
(2) a(VU)(-l) = A{ab(-l) Ib E U} ;
(3) a(-l)(AU) = A{a(-l)b Ise U} ;
(4) (AU)a(-l) = A{ba(-l) Ib E U} .

PROOF . (1) If b E U th en vU 2: b implies that b(-l)a 2: (VU)(-l)a and so
c = A{b(-l)a I s e U} 2: (VU)(-l)a. Conversely, b(-l)a 2: c for all b in U and so
(VU)c = V{bc Ib E U} :::; a. Th erefore c:::; (VU)(-l)a, proving equality.

(2) This is proven similarly.
(3) Note that a[a(-l)(AU)] :::; AU :::; b for all b E U and so a(-l)(AU) :::; a(-l)b

for all b in U . Thus a(-l)(AU) :::; d = A{a(-l)b I b E U} . Conversely, d:::; a(-l)b
and so ad :::; b for all such b. Thus ad:::; AU and so d :::; a(-l) (AU) , proving equality.
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(4) Note that [(AU)a(-l}ja ::; AU ::; b for each s« U and so (AU)a(-l) ::; ba(-l)
for all such b. Therefore (AU)a(-l) ::; c = A{ba(-l} I b E U} . Conversely, if
b E U then ba(-l} ::; c and so b ~ (ba(-l})a ~ ca . Therefore AU ~ ca and so
(AU)a(-l) ~ c, proving the desired equality. 0

(24.36) PROPOSITION . Let R be an entire QLO-semiring. For any subset A of
R and any nonzero left principal element b of R we have b(-l}(VA) = V{b(-l}a I
a E A} .

PROOF . Set d = VA . By Proposition 24.23 and the fact that b is weakly left
meet principal, we have b(-l}d = b(-l}(b(b(-l}d» = b(-l}(d 1\ b). Since R is a
QLO-semiring we then have

b(-l}d = b(-l}(d A b) =b(-l}(V{a 1\ b I a E A})

= b(-l}(V{b(b(-l}a) I a E A}) = b(-l}b[V{b(-l}a I a E A}]

= V{b(-l}a I a E A}.

o
(24.37) COROLLARY. If R is an entire QLO-semiring in which 1 is com pact

then every left principal element of R is compact .

PROOF . If b is a left principal element of R and A is a nonempty subset of R
satisfying b V A th en, by Proposition 24.36, 1 = b(-l}(VA) = V{b(-l}a I a E A} .
Since 1 is compact , there exists a finite subset A' of A such that 1 = V{b(-l} a I a E
A'} = b(-l}(VA') and so b::; VA' , proving that b is compact . 0

Let b be a nonzero left principal element of an entire QLO-semiring R. By
Proposition 24.25(11) and Proposition 24.36 we see that b defines a congruence
relation =b on R by setting r =b s if and only if b(-l}r = b(-l}s .

(24.38) PROPOSITION. The following conditions on an element a of a QLO-
sem iring R are equivalent:

(1) ab(-l} = b(-l}a for all b E R;

(2) If bl .. .. . b« ::; a then b2 • • • • • bnbl ::; a for all n ~ 2 and all bl , . . . , bn E R.

PROOF . (1)::} (2) : Set c = b2 • •• ..bn . Then blc ::; a and so bl ::; ac(-l} =c(-l}a ,

proving that b2 .. . .. bnbl = cbl ::; a .
(2) ::} (1) : For any r E R , if rb ::; a then , by (2), br ::; a. Then (1) follows from

the definitions. 0

(24.39) PROPOSITION. Let R be a CLO-semiring and let A be a nonempty set .
Th en 5 = R A X A with operations ffi and 0 defined by

(1) (s ffi s' )(a, a') = sea , a') + s'(a , a') ;
(2) (s 0 s')(a , a') = V{s(a, b)s'(b, a') Ib E A} ;

is a sem iring . Furthermore, if D is a nonempty set then (RD X A
, 1\) is a left 5­

semimodule, with scalar multiplication defin ed by

(sf)(d , a) = I\{f(d, b)s(a, b)(-l} Ise A} .
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PROOF . Th e proof th at 5 is a semi ring is straightforward, as is the fact that
(RA , 1\ ) is an abelian monoid.

If s,s' E 5 , f E R D x A , and (d ,a) E D x A then, by Proposition 24 .35 and
P roposition 24.25(4) , we have

[( s 0 s')f](d , a) = 1\{f(d , b)[s 0 s' )(a, b)(-I) Ib E A}

= 1\{f(d ,b)[V{s(a ,c)s'(c ,b) IcE AW- 1
) Ib E A}

=I\{f(d , b)[s(a , c)s'(c, b)](-I) Ib, c E A}

=I\{[f (d, b)s'(c , b)(-I)] s(a ,C)(-I) Ib,c E A}

=[s(s' f)](d , a)

and so (s 0 s' )f = s(s' f).
If s E 5 and f ,g E R D x A th en , by Proposition 24 .25(11) ,

[s(J 1\ g)](d, a) = I\{(J 1\ g)(d , b)s(a , b)(-I) Ib E A}

= 1\{f(d , b)s(a ,b)(-l) 1\ g(d, b)s(a, b)(-I) I b E A}

=(sf)(d , a) 1\ (sg)(d , a)

for all (d,a) E D x A and so s(J 1\ g) = s f 1\ sg.
If s , s' E 5 and f E R D x A th en for each (d, a) E D x A we have, by Proposition

24.35,

[( s + s' )f ](d, a) = 1\{f(d , b)(s V s' )(a, b)(-l) I b E A}

::: I\{f(d, b)s(a ,b)(-l) 1\ f(d , b)s'(a , b)(-I) I b E A}

c: [sf 1\ s' f](d, a)

and so (s + s' )f = sf 1\ 1]' f .
If f E RD xA and (d,a) E D x A then

(l sf)(d, a) = 1\{f(d , b)O(-I) I a #- b E A} 1\ f(d ,a)l (-1) = f(d , a)

and so 1sf = f .
Finally, if e E RD x A is defined by e(d, a) = 1 for all (d,a) E D x A th en

e 1\ f = f 1\ e = e for all f E R D x A . Moreover , if s E 5 and (d, a) E D x A then, by
Proposition 24 .25(8) , we have se(d, a) = l\ { l s(a, b)(-I) I b E A} = 1 = e(d, a) and
so se = e. If f E R D x A and (d, a) E D x A th en (Of)(d , a) = I\{f(d, b)O(-I) I s «
A}=l andsoOf = e.D

Note that we can take th e particular case of D being a singleton and thus see
th at if R is a CLO-sem iring and A is a nonempty set th en (R A , 1\) is a left 5­
semimodule, where 5 = RA x A is th e semiring defined in Proposition 24.39 . Also,
note th at , in this case, if we take R = lffi we come back to the semiring 5 constructed
in Example 22 .8 .

Furthermore, we remark in passing that it is possibl e to consider residuation in
mor e general situations. For example, if R is a CLO-semiring and M is a partially­
ordered left R-semimodule th en for each pair m, m' of elements of M we can define
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m'm(-l) to be the element V{r E R I rm ~ m'} of R. See, for example, [Johnson
& Johnson, 1970). However , we will not pursue this matter further here .

In Proposition 6.48 we showed that if R is a simple semiring, and hence, in
particular, if R is a CLO-semiring, then for each 1 oF s e R the set Id of all d-small
elements of R is an ideal of R . It is also immediate that the set Ir of all I-small
elements of R is all of R. If d ~ d' are elements of a CLO-semiring R and if a E Id

then a + b = 1 implies that d + b = 1 and so d' + b = d + d' + b = d' + 1 = 1.
Therefore a E u, Thus t, ~ t».

(24.40) PROPOSITION. If R is a CLO-semiring in which 1 is compact and if
dE R then Id = (a) for some a E Id .

PROOF. The result is clearly true for d = 1 and so we can assume that d oF 1.
Set a = VId. We claim that a E Id. Indeed, assume that a + b = 1. Since 1 is
compact, there exists a finite subset U of Id such that VU + b = 1. Since Id is an
ideal , vU E Id and so this implies that d + b = 1. Hence a E Id . This implies that
Id ~ (a). Conversely, if a' E (a) then a' + a = a E Id and, since the ideal Id is
strong by Proposition 6.48, we see that a' E I d , proving equality. 0

In Chapter 18 we considered nuclei on partially-ordered semirings. We now turn
to consider them in the special case of CLO-semirings and QLO-semirings.

(24.41) PROPOSITION. If R is a CLO-semiring in which 1 is compact then the
function a: R ---+ R defined by d 1---+ AId is a nucleus.

PROOF. If d ~ d' are elements of R then, as we have noted above, Id ~ Id' and
so er(d) ~ er(d'). Moreover, we know that if s e R then s « Id and so d ~ er(d) and
similarly er(d) ::: er2(d) . Suppose that a is a er(d)-small element of R. If a + b = 1
then er(d) + b = 1 and so . by the compactness of 1, there is a finite subset U of Id

satisfying VU + b = 1. But Id is an ideal of R so VU E Id and hence d + b = 1.
Thus a is d-small. This shows that Id = II7(d) and so er(d) = er2(d) .

Finally, assume that d and d' are elements of R and that er(d)er( d') +b = 1. Then
er(d) + b = 1 and er(d') + b = 1 and so, since er(d) is d-small and er(d') is d'-small,
we have d + b = 1 = d' + b. Thus dd' + bd' = d' so 1 = dd' + bd' + b = dd' + b,
proving that er( d)er(d') is dd'-small or, in other words, that er(d)er( d') ~ er(dd') . 0

(24.42) EXAMPLE . [Banaschewski & Harting, 1985) If R is the semiring of open
subsets of a topological space X and d E R then a E R is d-small if and only if
every closed subset of X contained in a is contained in d. In particular, if X is a
Tl-space then a is the identity map on R. The converse is false .

(24.43) PROPOSITION. If R is a QLO-semiring then a function v :R ---+ R is a
nucleus if and only ifv(b)v(a)(-l) = v(b)a(-l) and v(a)(-l)v(b) =a(-l)v(b) for all
a,b E R.

PROOF. Assume that v is a nucleus and let a, b be elements of R. Since a ~

v(a) , we have v(b)v(a)(-l) ~ v(b)a(-l) by Proposition 24.25(2) . On the other
hand, [v(b)a(-l))v(a) ~ erv[v(b)a(-l))v(a) ~ v([v(b)a(-l)]a) ~ v(v(b» = v(b) so
v(a)a(-l) ~ v(b)v(a)(-l) , proving the first equality. The second equality is proven
similarly.
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Now assume that both equalities hold for all elements a and b of R . By Propo­
sit ion 24.25, we see th at 1 = lI( a)(-l}lI(a) = a(-l}lI(a) and so a = al ::; lI(a) for
each a E R . Moreover , if a::; b in R then a::; lI (b) and so, by Proposition 24.25(8) ,
we have 1 = a(- l }lI(b) = lI(a)(-l} lI (b). Thus lI (a) = lI(a) . 1 ::; lI(b). If a E R
then 1 = lI(a) lI(a) (-l} = lI( a)1I2(a)(- 1} and so, as before, 11 2(a) ::; lI(a ) ::; 11 2 (a),
proving that lI(a) = 11 2 (a). Fin ally, if a , b E R then ab ::; lI (ab) im plies th at
a ::; lI( ab)b(-l} = lI (ab)lI(b )(-l} and so all( b) ::; lI (ab). T his in turn means that
lI( b) ::; a(-l}lI(ab) = lI (a)(-l}lI(ab) so lI(a )lI (b)::; lI(ab). 0

(24.44) PROPOSITION. If R is a QLO-semiring and if II : R -> R is a nucleus
then lI(ba(-l }) ::; lI (b)a(-l} and lI (a(-l }b) ::; a(-l}lI(b ) for all a , s« R.

PROOF. If a , b E R then lI (ba(-1} )II(a) ::; 1I([ba(-1}]a) ::; lI(b) so lI(ba(-l}) ::;
lI(b)lI (a)(-l} = lI (b)a(- l) . T he ot her inequality is proven similarly. 0

If R is a QLO-semiring, set Y(R) = {a E R Iab(-l} = b( -1} a for all s e R} . This
set is nonempty since 1 E Y(R) . Moreover, as a dir ect consequence of Proposition
24.35 we see th at Y(R) is closed under taking arbitrary meets. If R is commutative
th en surely Y(R) = R. For each dE Y(R) we can define a fun ction lid: R -> R by
lid: a 1-+ d(da(-1})(-l} . Note th at 111: a 1-+ 1 for all a E R .

(24.45) PROPOSITION. If R is a QLO-semiring and d E Y (R ) then lid is a
nucleus on R.

PROOF. By Proposit ion 24.25(2) , we see tha t a ::; b implies that da(-l} ~ db(-l}
and so IId(a) ::; nd(b). By Proposit ion 24.31(1) we have IId(a) ~ a+d ~ a . Moreover ,
by Proposi tion 24.3 1(4), we have

IIJ(a) =d(d(d(da(-1} )(- 1} )(-1})( - l } =d(da(- l} )(- l} = IId(a).

If a , b E R then [d(da(- 1} )(- l}][da(- l }] ::; d. By Proposition 24.25(12) , we have
[d(db( ··1} )(-l}][db(-l} )a(-l}] ::; da(-l} and so

d(da(-l} )(-1}][d(db(-l} )(-l}][(db(-l})a(- l}] ::; d.

That is to say, [lId(a)lId(b)][(db(-l})a(-l}] ::; d. By Propositi on 24.25(4) , thi s says
tha t [lId(a)lId(b)][d(ab)(-l}] ::; d and so IId(a)lId(b) ::; IId(ab). 0

A QLO-semiring R is a Girard semiring if and only if there exists an element
d of Y(R) such that lid is the identity map on R. In such semirings the function
from R to R defined by a 1-+ da(-l} is called th e li n ea r negatio n map. See [Yet ter ,
1989] for details. Complete boolean algebras are certainly Gir ard semirings.

(24.46) ApPLICATION. In Exa mple 1.10 we saw that if (M ,*) is a monoid th en
(sub(M ),U, ·) is a semi ring, which is in fact easily seen to be a QLO-s emiring. Note
th at if A , B E sub(M ) then

AB (- 1} =U{C E sub(M) I BC ~ A } = {m EM Ib* mE A for all b E B}.

An element A of sub(M) satisfies AB (- l } = B(-l} A for all B E sub(M) if and only
if m * m' E A ¢} m' * mE A for all m , m' E M . Under the assumpt ion th at M
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is commutat ive, this sit ua tion was studied in [Girard , 1987] in connect ion with th e
semant ics of linear logic , developed as a suitable logic for th e study of parallelism
in com puter systems . For a development of proof th eory using linear logic, see
[Girard , 1989]; for a sequent calculus for noncommutiati ve int uit ionist ic linear logic
based on QLO-semirings, see [Brown & Gurr , 1993b].

Given an element D of sub(M) , let 5D = {AE sub(M) I vD(A) = A}. Then
(5 , VD , 'D) is a Girard semiring with operat ions defined by VDA j = vD(UA j) and
A 'D B = vD(AB) . Rosenth al [1990] shows that in fact any Gira rd semiring is
isomorphic to a semiring obtained in this manner.

(24.47) PROPOSITIO N. IfR is a QLO- semiring then there exists a Girard semir­
ing 5 and a surjec tive m orphism of semirings 5 --+ R.

PROOF . Let R be a QLO-semiring and set 5 = R x R. Define lat tice operations
V and 1\ on 5 by setting V( aj, bj) = (VA j,l\bj) and I\(aj, bj) = (I\aj,Vbj). Then
(5, V, 1\) is a complete lattice. Define operat ions + and· on 5 by setting (a, b) +
(e,d) = (aVe ,bl\d) and (a ,b) ·(e,d) = (ae,da(-l) l\ e(- l)b) for all a,b ,e,dE R .

Clearly (5,+) is a commutat ive monoid with identity element (0 , 1). As a conse­
quence of Propositions 24.25, 24.29, and 24.35, we can verify th at (5, ·) is a mon oid
with identity (1, 1) and that multiplication distributes over add it ion from either
side. Fur th ermore, if (a , b) E 5 then (0,1) . (a, b) = (0,1) = (a , b) . (0,1 ). T hus
(5, +,.) is a semiring. As a consequence of Prop osition 24.35, we also see tha t mul ­
tiplicat ion distributes over arbit ra ry joins in 5 and so 5 is in fact a QLO- semiring.

In 5 we see th at

(a , b)· (e, d) :S (e,f) ¢} ae:S e and f:S da(- l} 1\ e(-l )b

¢} a :s ee(- l ) , fa :s d, and ef :s b

¢} a :s ee(- l ), a :s f( - l) d, and ef :s b

¢} (a , b) :s (ee(- l ) 1\ r» d, eI)

and so we see that , in 5 , (e, I) (e, d)(-l) = (ee(- l ) 1\ f(-l)d , eI). Simi larly,

(e, d)(-l) (e, I) = (e(-l) e 1\ df( -l) , f e)

in 5 . Thus, (1,1) E Y (5) and, ind eed , for each element (a, b) of 5 we have
(1,1 )[(1, 1)(a , b)(-l)](-l) = (a , b) and so V(l ,l ) is th e identity map on 5 . This
shows th at 5 is a Girard semiring.

Finally, we note that we have a surj ective morphism of semirings T 5 --+ R
defined by T (a, b) I---> a. 0

In fram e-ord ered semirings we can define not only infini te sums but infinite
products as well , using a const ruction based on that in [Levitzk i, 1946]. Let R be a
fram e-ord ered semiring and let B: Q --+ R. Wi thout loss of genera lity we can assume
th at there exists an ordina l h such th at Q is th e set of all ord inals less than h. Then
we can define th e element a =rr B(Q) inducti vely as follows:

(1) If h = 0 then a = 1;
(2) If h = k + 1 > 0 is not a limit ordina l and if Q' = Q \ {k } then a =

lll' B(Q' )]B(k ); (3) Ifh > 0 is a limi t ordina l then a = V{rr B(Q' ) IQ' C Q} .
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Note that, since R is lattice-ordered , we have Il' 8(0') ~ IT 8(0) whenever 0' ~ O.
We can similarly define a = n' 8(0) by changing the definition in (2) to be

a = 8(k)[IT' 8(0')] .

(24.48) EXAMPLE. For infinite applications of triangular norms and conorms,
see [Gonzalez, 1999].



25. FIXED POINTS OF

AFFINE MAPS

Let R be a semiring and let M be a left R-semimodule. If a E Rand mE M then
the R-affine map from M to itself defined by a and m is th e function >'a,m:M - M
given by >'a,m:m' ........ am' +m. We will denote the set of all R-affine maps from M to
its elf by Aff(M) . Note that affine maps are written as acting on th e side opposite
scalar multiplication , in this case on th e right . We can define affine maps of right
R-semimodules in a similar fashion : if M is a right R-semimodule, if a E R, and if
m E M th en we have an R-affine map Pa ,m:M - M given by Pa ,m: m' ........ m + m' a.
These maps will be written as acting on the left.

(25.1) EXAMPLE . Let R be a semiring and let M the th e set of all functions
from N to R. This is clearly an (R , R)-bisemimodule. If 5 is th e semiring of
all R-endomorphisms of M as a right R-semimodule, th en M is also an (5, R)­
bisemimodule. Indeed , we have a morphism of semirings T R - 5 defined by
, (a): f ........ af for all a E Rand f EM . One of th e elements of 5 not in th e image
of, is th e right shift R-endomorphism (}' defined in Example 14.34. We also have
an R-homomorphism of right R-semimodules 0:R - M defined by (Oa)(i) = a if
i =0 and (Oa)( i) =0 if i > O. Combining th ese two, we see that for each a E R we
have an 5- affine map (fa = >' a,9a from M to itself defined by (fa : f ........ 0:/+ Oa for
all f EM. Maps of this form are called affine right shifts of M .

We define an operation + on Aff( M) as follows: if >'a ,m and >'b ,n are elements
of Aff(M) then >'a,m+>'b ,n = >'aH,m+n . It is easily verified that (Aff(M), +) is a
commutativemonoid th e identity of which is th e map >'0,0 which sends every element
m' of M to OM . If >'a ,m E Aff(M) and r E R , set r>.a ,m equal to >'ra ,rm. This
turns Aff(M ) into a left R-semimodule. Moreover, we have an R-monomorphism
from M to Aff(M) defined by m ........ >'O ,m . Simil arly, we have an R-epimorphism
from R x M to Aff(M) defined by (r, m) ........ >'r,m.

We can also define the product of two elements of Aff( M) to be their com­
position: >'a ,m>'b,n = >'ba ,bm+n . Again , it is clear th at (Aff(M) , .) is a monoid
with identity element >'1,0 which takes every element of M to itself. However ,
Aff(M) is not a semiring with respect to th ese operations. Indeed , while it is
true that if >'a,m, >'b ,n, and >'c,p are elements of Aff( M) then >'c,p(>'a ,m + >'b ,n) =
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Ac,pAa,m + Ac,pAb,n , distributivity from the other side does not necessarily hold .
Similarly, while Aa,mAO ,O = AO ,O , the same is not necessarily true for multiplication
by AO,O on the left . (The structure of Aff( M) is known as a seminearring, an
interesting generalization of the notion of a semiring which we will not go into since
it is beyond the scope of this book .) Note, in particular , that if a E Rand m E M
th en for each k > a we have A~,m = Aak ,n, where n =0=;';01 ai)m. In particular , if

a is nilp otent with index of nilpotency k th en m' A~,m = (2:;';; ai)m for all h 2: k.
An affine map in Aff(M) of the form A1 ,m for som e mE M is a transformation

of M . The set Trans(M) of all transformations of M is a submonoid of (Af f(M), .).
The function M ----> Trans(M) defined by m 1-+ A1 ,m is an isomorphism from th e
additive mon oid (M , +) to th e multiplicative monoid (Tran s(M) , -).

If X is any set and <p is a function from X to its elf th en a fixed point of <p is an
element x of X satisfying <p( x) = x . In par ticul ar , let R be a semiring and let M
be a left R-semimodule. For a E Rand m E M we will denote th e set of all fixed
points of th e R-affine map Aa,m by £(a ,m) . Similarly, if M is a right R-semimodule
th en we denote th e set of all fixed poin ts of the R-affine map Pa ,m by 1?(a,m) . If
M is an (R , R)-bisemimodule, and in particular in th e case M = R, then we denote
£(a, m) n 1?(a, m) by 7(a , m) . Thus £(a , m) = {m' E M I m' = am' + m} ,
1?(a, m) = {m' E Rim' = m'a + m} , and 7(a, m) = {m' E M I m' = am' + m =
m'a + m} .· These sets may be empty. Thus, for example, if R = M = N then
£(1 ,1) = 1?(1 , 1) = 7(1 ,1) = 0 . If £(a, m) [resp . 1?(a,m)] is nonempty then we
say that th e equation X = aX +m [resp . th e equat ion X = X a+m] is solvable in
M . If thi s set is a singleton, th en th e corresponding equa t ion is said to be uniquely
solvable .

In what follows, when we will state results for sets of th e form £(a , m) , th e
corresponding results for sets of the form 1?(a, m) will also be implied.

If R is a semiring and M is a left R-semimodule, and if A is a finite or countably­
infinite set, th en the system of linear equatio ns

{Xi = aiXi +mi liE A ja i E R,mi E M}

can be represented as one linear equation of th e form X = f X + g, where f E
MA ,rc(R) and g E M A are given by g(i) = mi for all i E A and f( i, j) = ai if i = j
while f( i , j) = aoth erwise.

(25.2) EXAMPLE . If M is a left R-semimodule then the set £(a ,OM) is never
empty for any element a of R since OM E £(a ,OM)' Indeed , £(1 , OM) = M and
£(a,OM) is a right ideal of R for all 1 :f a E R.

(25.3) EXAMPLE . If R is a commutative semiring th en clearl y £(a ,b), 1?(a,b),
and 7(a ,b) are equal for all a,b E R.

(25.4) EXAMPLE . It is clear that £(1 , b) = 1?(1 ,b) = 7(1 , b) for all elements b
of R. Moreover , Z(R) = {b E R 17(1, b) :f 0} .
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(25 .5) EXAMPLE . If a is an infinite element of R, then a E T(1 , r ) for every
element r of R. In particular, if R is a simple semiring th en 1 E T(1 , r) for all r in
R .

Let a be a nilpotent element of a semiring R having positive ind ex of nilpotency
n and let b = 1 + a + ...+ an-I . Then b E T(a , 1). More generally, if a is an
element of a semiring R for which there exist s a nonnegative integer n such that
1 + a + ...+ an = 1 + a + ...+ an+! th en b = 1 + a + ...+ an belongs to T(a , 1).
Such an element a of R is said to be stable and th e leas t nonnegative integer n
such that 1+a+...+an = 1+a+...+an+1 is the stability index of a. Note that
if a and b are elements of R satisfying th e condition that ab is stable with stability
index n , th en ba is stable with stability index at most n + 1. Indeed ,

1 + ba+ ...+ (bat+ 1 = 1+ b[1 + + (ab)na

= 1+ b[1 + + (abt+l]a

=1+ba+ · · ·+(bat+2
.

Note that if a is a stable element of an additively-idempotent semiring having
stability index n th en 1 + a + ... + an E IX (R) .

T he semiring R is simple if and only if every element is stable with stability index
O. Some conditions for the transition matrix of a graph with values in a semiring R
to be st abl e are given in [Wongseelashot e, 1979]. Thus, if R is a bounded distributive
lattice and ifn is a positive int eger , any element of Mn(R) is stable [Give'on , 1964].

By Proposition 20.37 , we not e th at a semi ring R is differen ce ordered if and only
if £( 1, b+ c) ~ £( 1, b) for all b, c E R. Also, we note that an element a of a simple
semiring R is small if and only if 1 rt: £( a, b) and 1 rt: £( b, a) for any element b of R.

(25.6) ApPLICATION. One of the major motivations for th e study of linear equa­
t ions in semirings comes from graph theory. Let I' be a directed graph on a finit e
set V and let U be th e set of edges of f . Without loss of generality, we can assume
that V = {1, . . . , n} for some positive int eger n . A path from vertex v to vertex v'
in th e graph is a finit e sequence of ar cs of the form «v , i2), (i2, is ), . .. , (it-I , v')} .
We also assume that we have a function len :U -> 1R + which assigns to each arc
in U a valu e called the length of the ar c. For the sake of convenience, we extend
len to a funct ion from V x V to IR+ U {oo} by setting len( i , j) = 00 whenever
(i ,j) rt: U. The length of a pa th P = « v, i2), . . . , (it-I ,V' )} is then defined to be
len( P) = I:{l en(j, k) I (j, k) E P} . The Shortest Path Problem in f is that
of finding , for a given set v and v' of vertices, a path from v to v' having minimal
length. There is no loss of generality in assuming that th e vertices are numbered
such that v = 1.

The Shortest Path Problem is, to quote [Mahr , 1981], the "most famous and
important problem in combinatorial optimization" ; it is ext ensively studied th ere
and in [Gondran & Minoux, 1984a], in which several solution algorithms are pre­
sented. Refer also to [Lawler , 1976] for a good introduction to this problem. For
an analysis of the algebraic complexity of path problems see [Mahr, 1982]' and
for additional algorithms and explicit computer routines to solve this problem see
[Brucker, 1972], [Gallo & Pallottino, 1986, 1988], [Gondran , 1975], [Kolokol'tsov ,
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1992], [Mehlhorn, 1984]' [Minoux, 1979], [Moffat & Takaoka, 1987], [Shier, 1973],
[Tarjan, 1981a, 1981b], [Tong & Lam, 1996], and the other papers listed in [A.
R. Pierce, 1975]. Moreover, it is shown there that the problem can be considered
in the following setting: let R be the semiring defined in Example 1.22 and let
A = [ajj] be the matrix in Mn(R) (where n is the number of vertices in V) de­
fined by ajj = len( i , j) . Then solutions to the Shortest Path Problem are obtained
by finding elements of .c(A, 1). Refer to [Backhouse & Carre, 1975], [Carre, 1971,
1979], and [Zimmermann, 1981]. This application motivated Litvinov, Maslov &
Rodionov [1998] to refer to the problem of finding solutions of equations of the for
X = AX + B, where A, BE Mn(R) for some additively-idempotent semiring R, as
the "generalized stationary Bellman equation" . For solutions to the Shortest Path
Problem in networks with fuzzy lengths, refer to [Chanas, 1987].

Martelli [1974, 1976] used similar reasoning to solve a related problem . If r is a
directed graph as above with vertex set V and if A is a set of arcs of I', let r- A be
the graph having the same set of vertices and defined by setting

-A ') {r(v,v l
) if(v,v')~Ar (v, v = .° otherwise

If v :p Vi are distinct vertices of I' then a (v, v')-cut set for I' is a set A A of arcs
of r such that in the graph r- A there is no path from v to Vi. The family of all
(v, v')-cut sets for r is partially ordered by inclusion. Making use of the semiring
R defined in Example 1.20, he considers elements of .c(A, 1) for certain matrices A
in Mn(R), and in this manner identifies all minimal (v, v')-cut sets for any given
pair (v, Vi) of vertices in V . A variant on this problem, in which one wants to
find the k shortest paths for some k > 1, is discussed in [Minieka & Shier, 1973],
[Shier, 1976], and [Wongseelashote, 1976]. The analysis of this problem is done in
the additively-idempotent commutative semiring (R, EB , 8 ), where R is the set of all
k-tuples (al, " " ak) of elements of ~ U {oo} satisfying al < a2 < .. . < ak (where
we take 00 < 00) and the operations are defined by

(1) (al,"" ak) EB (bl , . .. , bk ) = (Cl, " " Ck) with Cj being the jth-smallest dis­
tinct element of {al,"" ad U {bl , . .. h};

(2) (al, " " ak) 8 (bl , . . . , bk ) = (d l , .. . , dk ) with dj being the jth-smallest dis­
tinct element of {aj + bh 11 ::; i, h ::; k} .

The additive identity of R is (00, . . . , 00) and the multiplicative identity of R is
(0,00, . . . ,00) .

Certain variants of the Shortest Path Problem in which the length (or cost) of
an edge in a path depends on the number of edges already passed through are
considered in [Minoux, 1976] and are solved using endomorphism semirings of N­
semimodules.

(25.7) ApPLICATION . For an example of the use of semirings to solve graph­
theoretic problems associated with the design of VLSI chips , see [Iwano, 1987].
For the application of semirings in designing reconfigurable-architecture hardware
systems using dynamic computational structures which can be used to solve graph­
theoretic problems, see [Babb et al., 1998].
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(25.8) ApPLICATION . A Petri net I' is a finite directed graph th e verti ces of
which are partitioned into two disjoint classes, the set P = P(f) of places of the
net and th e set T = T(f) of transitions of the net , satisfying the condition that
every edge of th e graph either connects a place to a t ransit ion or a transition to a
place. A marking on a Petri net I' is a function from P(f) to l':l. Each transition
t E T defines two important markings on I' : the marking Ut which assigns to each
pEP th e number of edges from p to t and th e marking Vt which assigns to each
pEP the number of edges from t to p. If I is a marking on I' and t E T satisfies the
condit ion that I(p) ~ Ut(p) for all pEP th en the net can be fired at t to obtain
a new marking f' on I' defined by f'(p) = I(p) - Ut(p) + Vt(p) for each pEP.
This process is denoted by 1ft) f' . If a marking f' is obtained from a marking I
by th e successive firing of (not necessarily distinct) transitions t 1 , . .. , t k we write I
[t1 ' . . . , tk)f' . If such a succession of firings is possible, we say that I' is reachable
from I .

Petri nets were initially developed by Carl Adam Petri in 1962 and received
considerable impetus through their use in MIT's Project MAC; th ey are of great
importance in modeling th e behavior of multi-node asynchronous syst ems, such as
large computer networks or industrial processes . See [Pet erson, 1981) or [Reisig,
1985) for an introduction to th e theory and application of Petri nets . For the use
of Petri nets in the th eory of discrete event dynamical systems, refer to [Baccelli et
al. , 1992) .

If I' is a Petri net satisfying P(f) = {p(l) , . . . ,p(n)} and T(f) = {t(1) , . . . , t(m)}
th en th e structure of I' can be characterized by two m x n matrices, U = [Uij) and
V = [Vi jJ, defined by Uij = Ut(j )(p(i» and Vij = Vt(j)(p(i» for all 1 ::; i ::; nand
1 ::; j ~ m. Any marking Ion I' can be considered as an element af = (a1 , " " an)
of l':ln defined by a; = I(p(i». It is clear that a necessary condition for a marking f'
to be reachabl e from a marking I on I' is that there exist a solution to the system
of linear equat ions af' = af + xU .

Several variants on th e theme of Petri nets have been extensively studied , one of
th e most useful being timed Petri nets . For an ana lysis of timed Petri nets using
semirings, refer to [Cohen , Gaubert & Quadrat , 1998) .

A framework for considerat ion of Petri nets with values in a difference-ordered
semiring was introduced in [Golan , 1997) and extensively studied in [Wu, 1998). Let
R be such a semiring. Given a nonempty set P (not necessarily finit e) , the elements
of which will be called places , and a nonempty set T (also not necessarily finite)
disjoint from P , the elements of which will be called transitions , an R-net on th e
pair I' = (P, T) is a pair of functions J.L E R(PxT) and v E R(TxP). A marking
with values in R is a function I E R(P) . Thus, every transition t E T defines two
markings with values in R : J.Lt :P >-+ J.L(p,t) and Vt :P >-+ v(t ,p) . Similarly, a guard
(sometimes also called a threshold) with values in R is a function 9 E R(T) .

Thus, every place pEP defines two guards with values in R : J.Lp :t >-+ J.L(p , t) and
vp:t >-+ v(t ,p). If t E T then the source of t is {p E P I J.Lp(t) f. OR} and the
target of t is {p E P I vp(t) f. OR} . Similarly, if pEP then the inset of p is
{t E T IVt(p) f. OR} and th e outset of pis {t E T I J.Lt(p) f. OR} .

If I E R(P) is a marking with values in R and if t E T then we say that the
net (J.L , v) can be fired at t if and only if I ~ J.Lt . In that case, there exists a
marking f" E R(P) satisfying I =f" + J.Lt and so the marking f' =f" +Vt satisfies
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f' + j1t = / + V t · In thi s case we write / [Rlt) f' and say that f' is the marking
obtained from / as a result of firing th e net at t . One problem we encounte r when
work ing over an arbit ra ry zerosumfree semiring which is not encountered over N is
th at the marking /" ab ove, and hence the marki ng f' , is not necessaril y unique.
T hus, in order for our notation to be well-defined we have to have a meth od of
designat ing a canonical element of S(f) = {I' E R(P) I / [Rlt) f'} to select in
case this set is not a singleton. This depends on the propert ies of the sem iring R
and is the cent ral and most difficult problem in applying the model given here. If
R is cancellat ive then it is easy to see that S(f ) is either em pty or a singleto n so
there is no problem . If R is addit ively-idempotent and com plet e th en S(f) has a
un ique maximal element and we can choose that to be the canonica l one. (Recall
tha by Proposition 23.5, every additi vely-ide mpotent semi ring can be embedded in
a complete such semiring.) Simil arl y, if g E R(T) is a gua rd with valu es in Rand
if pEP then we say th at the net (j1 , v) can be activated at p to obtai n a new
gua rd g' if and only if g :::: vp and we write g [Rip) g' , where g' is a guard satisfying
g' + vp =g+ j1p . Again , since S(g) = {g' E R(T) Ig [Rlp)g'} , when nonempty, may
not be a singleto n, we need a method of designating a canonical eleme nt of th is set
and that method will depend on the sem iring of which we are working.

If a marking t' is obtained from a mark ing / with valu es in R by successive
firings of a sequence w = tl . . . t « of (not necessaril y disti nct ) transit ions, we write
/ [Rlw) fl . Thus, every marking / E R(P) defines a subset L(f) of the free monoid
T* of all finite sequences t l ... tn of elements of T , defined by the condition that
w E L(f) if and only if there exists a marking f' E R(P) such that / [Rlw) f' . The
set L(f) is the formal language defined by [ , Simil arl y, if a guard g' is obtained
from a guard g wit h values in R by successive firings of a sequence Y = PI . . .Pn of
(not necessarily disti nct ) places, we write g [Rly) g' . Thus, every gua rd g E R(T)
defines a subset M(g) of the free monoid P* of all finite sequences PI . . .Pn of
elements of P , defined by the condit ion that y E M (g) if and only if there exists
a guard s' E R(T) such that g [RIY) g' . The set M(g) is the formal language
defined by g .

If we choose R = N we obtain the usual Petri nets defined above; if we choose
R = IT we obtain fuzzy P etri n ets .

(25.9) ApPLICATION. For an use of fixed points of affine maps in the ana lysis
of the semantics of programming languages and in the definition of abst rac t dat a
typ es, see [Manes & Arbib , 1986]. While the explanation there is often presented
in categorical language, it is clea r how the same st at ement s can often be made in
the context of semirings and sem imo dules over th em. The use of fixed-points of
affine maps in the study of prog ra mming languages and data types hark s back to
the work of Dana Scot t .

(25.10) ApPLICATION . Countably complete semi rings are an app ropriate fram e­
work for st udyi ng recursion in datab ase syst ems . Ind eed, the family R of all linear
rela tional operators on an arbitrary dat ab ase is such a semiring . T he effect of sev­
era l mutual recursion opera tors on a datab ase can then be evaluated as a fixed
point of a suitable affine map on a matrix semiring over R. See [Ioannidis & Wong,
1991] and [Du & Ishii, 1995] for fur th er details. '
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(25.11) EXAMPLE . Finding fixed points of an affine map is a spe cial case of
solving the general affine equation problem: given a left R-semimodule M and
affine functions Aa,m, Ab ,n:M ---+ M , find K = {m' E M I Aa,m(m') = Ab ,n(m')} .
If R is th e schedule algebra (JR U {-oo} , max , +) and M = R , the solution to this
problem is the following :

(1) If both b < a and n < m or if both a < b and m < n, then

f{ = {max{m,n} - max{a ,b}} ;

(2) If (1) does not hold and if neither a =b nor m = n , then K = 0 ;
(3) If a = band m =J n, then

K = {x E R I x ~ max{m,m'} - a} ;

(4) If a =J band m = n , then

K = {x E R I x:::; b - max{a,a'}} ;

(5) If a =band m = n, then K =R.
See [Baccelli et al. , 1992] for details. Refer to the same source for consideration of
the affine equ ation problem also for the semiring S defined in Example 8.3t .

(25.12) PROPOSITION . Let R be a semiring and let M be a left R-semimodule.
For a, b E Rand m E M we then have:

(1) Ifs e £(a, 1) then dm E Li« , m) ;
(2) Ifae £(a , a) then (1 + d)m E £(a , m) ;
(3) Ifm' E £(a ,m) and if m" E £(a ,OM) then m' +m" E £(a ,m);
(4) If c E £(a , 1) and s e Eibc, 1) then cd E £(a + b, 1);
(5) £(a , m) ~ £(an+1

, 2:7=0 aim) for all n ~ O.
PROOF . (I) - (3) : These are immediate consequences of the distributive laws in

R .
(4) This follows sinc e (a + b)cd + 1 = acd + bed + 1 = acd + d = (ac + l)d = cd.
(5) If m' E £(a , m) then , by repeated substitution, we have m' = am' + m =

a2m' + am + m = ... . 0

(25.13) PROPOSITION. Let R be a sem iring and let M be an additively idempo­
tent left R-semimodule. If a E Rand m E M then £( a, m). is closed under addition
Moreover, Lt« , m) ~ £(a + 1, m) for all a E R and all m E M .

PROOF . Ifm' , m" E £(a , m) then m'+m" = am'+m+am"+m = a(m'+m")+m
so m' + m" E £(a , m) . The second part is sur ely true if £(a , m) = 0 . Otherwise,
if m' E £(a, m) th en (a + l)m' + m = am' + m' + m = m' + m' = m' and so
m' E £(a + I ,m) . 0

(25.14) PROPOSITION . Let R be a sem iring and let a :M ---+ N be an R-homo­
morphism of left R-semimodules. Let a E Rand m E M . If m' E £(a , m) then
m'a E £(a , ma) .

PROOF . This is immediate since we have m' = am' + m and so m' a = a(m' a) +
rno . 0
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An element a of a semi ring R is right quasiregular if and only if £(a, a) i= 0 , it
is left quasiregular if and only if'R(a, a) i= 0, and it is quasiregular if and only
if T(a , a) i= 0 . If a is a quasiregular element of R then an element of T(a , a) is a
quasi-inverse of a . A subsemiring R is rationally closed if and only if it contains
the quasi-inverses of each of its quasiregular elements . If {Si liE Sl} is a family
of rationally-closed subsemirings of a semiring R then niEOSi is also rationally
closed. Thus each subsemiring R' of R is contained in a minimal rationally-closed
subsemiring, called the rational closure of R' in R .

(25.15) EXAMPLE. If a is an element of an additively-idempotent semiring R
then I + a + ...+ an = (1 + a)n . Moreover , an = an+1 if and only if (1 + a)n =
(1 + a)n+l . If th ere indeed exists apositive integer n for which this is true , then a
is quasiregular and a* = (1+ a)n .

(25.16) EXAMPLE . If A is a nonempty set and R is a semiring th en we had
called an element f of R((A)) quasiregular if feD) = O. If f is such an element
then 9 = limn_co I:~=1 flc exists, where the limit is taken with respect to the
topology defined in Chapter 2, and is the unique member of T(f, f) . Thus it is also
quasiregular in the sense defined here .

The rational closure of R(A) in R((A)) is called th e semiring of rational series
in A over R. A basic result in algebraic automata theory, known as Kleene 's
Theorem, states that these are precisely the formal power series which are the
behaviors of finite R(A)-automata (in th e sense of [Kuich & Salomaa, 1986]) . For a
generalization of this theorem to finit e automata having more than one initial state
see [Kuich, 1987]: if A' is a subset of a complete semiring with necessary summation
which contains 0 and 1 th en the rational closure of the subsemiring of R generated
by A' consists of the behaviors of finite automata the transition matrices of which
have entries in A' . A consequence of this result , known as the Schiitz enberger
Representation Theorem, is that an element f of R((A)) is rational if and only if, for
some n 2: 1, th ere exist a morphism of semigroups p: A *~ M n(R) , a 1 x n vector
U, and an n x 1 vector V such that , for each W E A* , we have few) = UJ1(w)V.
For a detailed study of this semiring and its application to formal language th eory,
see [Berstel & Reutenauer 1988], [Choffrut , 1992], [Salomaa & Soittola, 1978] and
[Kuich & Salomaa, 1986].

One should note that dealing with rational series can be very difficult , even if R
is very nice . Indeed, if R = ;Z it is undecidable as to whether a given rational series
in R((A))

(1) has a zero coefficient;
(2) has infinitely-many zero coefficients ;
(3) has a positive coefficient ;
(4) has infinitely-many positive coefficients;
(5) has its coefficients ultimately nonnegative;
(6) has two equal coefficients .

See Proposition 9.15 of [Kuich & Salomaa, 1986] for a proof of this, based on the
undecidability of Hilbert 's Tenth Problem. It is, however, decidable as to whether
a given rational series is equal to 0 or equal to a polynomial , and whether two given
rational series are equal.
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If th e semi ring R is finit e and commutat ive then we have another means of
cha racterizing the ra tional series in A over R. If f E R((A}} th en we define the
Hankel matrix of f to be the fun ction H(J) E RA

o x A O defined by H(J) : (w , w') ........
f (ww' ). T hen f is a rational series if and only if the number of dist inct columns
in the H (J) is fini te. If R is a field then f is rational if and only if the rank of the
matrix H(J) is finite.

Because of th e im por tance of quasi -inverses in the solution of various problem s
in ap plied mathem atics and computer science , many algorit hms have been con­
st ructed to com pute th e quasi-inverse of a quasi regul ar element in various semir­
ings, especially in semirings of matri ces over simpler semi rings. Refer , for example,
to [Gondr an & Minoux , 1984a , 1984b).

(25.17) PROPOSITIO N. Let R be a semiring and let M be a left R-semimodule.
Th en the following condi tions on an element a of R are equivalent :

(1) a is right quasiregular;
(2) ci« ,m) f. 0 for all mE M ;
(3) a«,1) f. 0 .

PROO F . (1) => (3) : If r E £(a , a) then one easily sees that t: + 1 E £(a , 1).
(3) => (2) : If mE M and r E £(a, 1) th en rm E £(a , m) .
(2) => (1): This is immediate. 0

(25 .18) PROPOSITION. Let T R ----> 5 be a m orphism of semirings . If a is a
[righ t , left] quasiregular elem ent of R then ,(a) is a [righ t, left] quasiregular element
« s.

PROOF. If a is a right quas iregular element of R t hen there exists an element
r of R sa tis fying r = ar + a and so ,(r) = , (ah( r) + ,(a) . T hus ,(a) is a right
quasi regular element of 5 . T he proof for left quasiregular elements is similar. 0

(25.19) C OROL LARY. If T R ----> 5 is a m orphism of semirings and 5' is a
rationally-closed subsemiring of 5 then R' = , -1 (5') is a rationally-closed sub­
semiring of R .

PROO F . This is an im mediate consequence of Proposition 25.18. 0

If R is a semiring th en a left R-semimodule M is totally [uniquely) solvable
if and only if £(a , m) is nonemp ty [resp. is a singl eton) for each a in R and each
m in M . It is clear th at a necessary and sufficient condit ion for M to be to tally
solvabl e is that every element of M be contained in a tot ally solvable submodule
of M . If M is a totally solvable left R-semimodule and if a : M ----> N is a surjec t ive
R-hom om orphism of left R-semimodules th en , by Proposition 25.14, we see th at N
is also totally solvable.

A sem iring R is right totally [uniquely) solvable if it is totally uniquely
solvab le as a left R-semimodule. That is to say, R is right totally solvable if and
only if it sa t isfies th e equivalent condit ions of Proposition 25.17. Similarl y, R is left
totally [uniquely] solvable if and only ifR(a , b) is nonempty [resp. is a singleto n]
for all a and b in R. A semiring R is totally [uniquely] so lvable if and only if
T (a , b) is nonempty [resp . is a singleton] for all a , s« R . By Proposition 25.12(1)
we see that if R is right totally solvab le then every left R-semimodule is totally
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solvable. A Lehmann semiring is a semiring R satisfying the condition that
T( a, 1) #- 0 for every element a of R. This condition says that for every element a
of R there exists an element a" of R such that a" =aa" + 1 =a"a + 1. Note that,
as an immediate consequence of this definition, we see that aa" =aa"a + a =a"a
for each element a of R and that 0" = 1. A Lehmann semiring is a Conway
semiring if we can choose the elements a" such that, for all a and b in R we have
(ab)* = 1 + a(ba)*b and (a + b)* = (a*b)*a* .

(25.20) EXAMPLE. From [Conway, 1971] and [Krob, 1992] we know that there
exist additively-idempotent semirings Ro and R 1 , each equipped with an endofunc­
tion a 1---+ a" , such that

(1) (a+b)* = (a"b)*a" and a" = (any (2::7:01 ai) for all a, se Ro and all n > 1,

but there exist elements a' , b' E Ro for which (a'b')* "# 1 + a'(b'a')*b'.

(2) (ab)* = 1 + a(ba)*b and a" = (an)" (2::7:01ai) for all a,b E R1 and all

n > 1, but there exist elements a' , b' E R1 for which (a' + b')* #- (a'* b')* a'" .

Moreover , for each prime p there exists a Conway semiring Rp such that a" =

(aq)* (2::r::~ ai) for all prime integers q "# p but there exist elements a', b' E Rp

such that a'" #- (a'P)* (2::f::~ a,i).

For the use of such *-operators in process algebras , see [Bergstra & Ponse , 1995].

(25.21) EXAMPLE . Clearly every totally solvable semi ring R is a Lehmann
semiring. If every element of R is stable then R is a Conway semiring [Backhouse
& Carre, 1975].

(25.22) EXAMPLE. In Example 1.10 we noted that if (M ,*) is a monoid then
R = (sub(M) , + , .) is a semiring under the operations A + B = AU Band AB =
{a * b Ia E A, bE B}. For each element A of R, let A* be the smallest submonoid
of M containing A. Then A* E T(A, 1R) and so R is a Lehmann semiring.

(25.23) EXAMPLE. As already noted, the semiring l':l of nonnegative integers is
neither right totally solvable nor left totally solvable.

(25.24) EXAMPLE . A field F is not right totally solvable since £(1 ,1) = 0 .

(25.25) EXAMPLE . [Lehmann, 1977] If R is an entire zerosumfree semiring and
00 is an element not in R then , R{ oo} is totally solvable and so is a Lehmann
semiring. Indeed, if a and b are elements of R{ oo} then, by definition , 00 E T( a, b).
For any element a of R there may be several ways of closing the element a"; For
example, let R = (lR+{oo}, +, .). Then:

(1) We can take 0* = 1 and a" =00 for all 0 "# a E R; or
(2) We can take 1" =00 and c" = (1- a)-1 for 1 #- a E R .
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(25.26) E XA MPLE. If R is a sim ple semiring then R is to tally solvable and
hence a Lehmann semiring . In deed , if a , b E R t hen , by Proposition 4 .3, we have
bE 7(a , b). In par ticular , t he boolean sem iring lffi is a Lehmann semiring . Sin ce lffi
is complete by Example 22.1, we see that if A is a non empty set th en th e semiring
of formal power series lffi((A)) is also complete by Example 22.9 and so, by (2) , it
is also a Lehman n semi ring in which , for each I E lffi((A)) we define r by r (w) =
I:n>Or(w) for each w E A* , where the the infinite sum in lffi is defined as in
Example 22.1.

(25.27) EXAMPLE . [Lehm an n, 1977] Let R = ~ U { - (X), oo} and extend the
natural order and add it ion on ~ to R by set tin g

(1) - 00 < r < 00 for all r E ~,

(2) - 00 + r = - 00 for all r E ~ ,

(3) r + 00 = 00 for all r E ~, and
(4) - 00 + 00 = 00 .

Then (R , m in , +) is a semiring. If we define th e opera to r * on R by a* = 0 for all
a 2: 0 whil e a* = - 00 for all a < 0, then it is in fact a Lehmann semiring .

(25.28) E XA MPLE. If R is an additiv ely-id empot ent semiring and if a ......... a" and
a ......... a? are fun ctions from R to R sat isfying the condit ion th at a* , aO E 7 (a , 1) for
all a E R t hen , by Prop osition 25.13, the fun cti on a ......... a" + aO also satisfies this
condit ion .

(25.29) EXAMPLE. Let (sub( A*) ,+,.) be the semiring of all formal lan guages on
a nonem pty set A , as defined in Example 1.11 , and for each langu age L in sub(A *)
let L * = {O} U [U~ l ! ,i] . T hen L * E 7 (L , A * ) and so sub(A* ) is a Lehmann
semiring. Simila rly, if S is th e semiring sub(A OO

) U {-(X)} defined in Ex ample 3.21,
t hen S is a Lehmann semi ring . An exp licit algorit hm for th e computation of L* on
the Instruction Systolic Arr ay (ISA), together bounds on the implementation time
for computation , is given in [Lan g, 1987].

(25.30) ApPLICATION. The semiring S = (R A X A , EB , .) defined in Proposition
24.39 is a Lehmann semiring where, for each s E S we define s" E S by

for all a , a' E A . Basin g himself on the work of Goguen [1967, 1969], Wechler
[19S6b] uses this semiring to construc t a proof system for the partial correct ness
of nondet erministic compute r pr ograms. To do this, he not es that th e left S­
semimodule RA is difference-ordered by the compo nentwise orde r induced from th e
difference order on R and satisfies the cond ition that if I,9 E RA and s E S sat isfy
I 2: sn9 for all n E !P' th en I 2: s* g. T he eleme nts of S are just R- valu ed relations
on th e set A which can be considered as nondet erministi c "programs" on A. The
elem ents of R A can be considered as "assert ions" per taining to th ese programs.
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(25.31) EXAMPLE . [Kuich & Salomaa, 1986] In Application 3.19 we defined th e
beh avior IIAII of an R((A))-automaton A = (5, M, So, P) and not ed that this behav­
ior may not always exist . If M is totally uniquely solvable in R' = M s,r(R((A))) and
T(M, 1~) = {M"} then IIAII always exists and equals eoM "P, where eo E (R((A))) S
is defined by eo(so) = 1 and eo(t ) = 0 for t # So.

(25.32) PROPOSITION . Every countably-com plete semiring is left and right to­
tally solvable.

PROO F . Let R be a countably complete semi rin g and let a E R . Set a" =
L:~o ai. Then aa" + 1 = a" = a * a + 1 and so a" E T(a ,I). If b E R th en
a"b E .c(a , b) and ba" E R(a ,b). Thus R is left and right totally solvabl e. 0

Every count.abl y-complete semiring R is a Lehmann semi ring by Proposition
25.32. In this case, we have a" = L:~o ai . If R is a countably-complete semiring
then, as a dir ect consequence of Proposition 4.1, we see that for all elements a and
b in R we have (a + b)" = ,,00 ,,00 a[ilMil and " '?" a(jlb[nl = (a"b)na" and so

L.t1=0 L.tJ=o L.tJ=o
(a+b)" = (a"b)*a" for all a, i e R . See [Kuich, 1987] and [Hebisch, 1990] for det ails .
Thus, for exam ple, if D is a nonempty set and if R is th e semiring of relations on
D as defined in Example 22.8, th en for each r E R, th e element r" = L:~o r i is
just the transitive and reflexive closure of r .

(25.33) C OROLLARY. Any additively-idem potent semiring can be em bedded in
a semiring which is both left and right totally solvable.

PROO F . This is a direct consequence of Proposition 25.32 and Proposition
23.5. 0

A Kleene sern ir in g is a subsemiring 5 of a countably-complete semiring R
satisfying the cond it ion that if a is in 5 th en a" = L:~o a i is also in 5. Such
semirings are Lehmann sem irings since we clearly have a" E T( a, 1) for each a E 5
and in fact th ey are Conway semirings [Conway, 1971]. The consideration of such
operations has its roots in th e work of Schroder [1895] and of Dedekind. However ,
unlike Kozen [1990], we will not assume th at 5 is necessarily additively idempotent .

(25.34) PROPOSITIO N. A sem iring R is a Lehmann semiring if and only if every
elem ent of R is quasiregular.

PROOF . Assume th at R is a Lehmann semiring. Let a E R and let b = aa" =
a/:« . Then b =ab+ a =ba+ a and so a is quasiregul ar . The converse follows from
Propos iti on 25.17. 0

(25.35) PROPOSITION. Let T R -> 5 be a surject ive morphism of semirings. If
R is a Lehmann semiring then so is 5 .

PROO F . Let s be an element of 5 and let a be an eleme nt of R satisfying 'Y(a) = s.
If s" = 'Y(a"), where a" E T(a , lR), then s" = 'Y(aa" + lR) = 'Y(ah(a") + 15 =
ss" + Is and similarly s" = s"s + Is . Thus s" E T(s, Is) . 0

(25.36) PROPOSITIO N. IfR is a right totally solvable semiring then so is M n(R)
for each n 2 1.
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PROOF . By Proposition 25.17, it suffices to show that if A = [aij] is an element
of Mn(R) th en L(A , A) is nonempty. Ind eed, let us define matrices A o, . . . , An in
Mn(R) induct ively as follows:

(1) A o = A ;
(2) Ak = [a k ;ij], where ak ;i j =ak-l ;ij +ak-l ;ikbk-lak-l ;kj , for bk- 1 an element

of L(ak-l ;kk , 1).

We claim that An E L(A , A) . Clearly this holds if and only if, for all 1 S i , j S n,
we have an ;i j = a ij + I:~=l a ihan ;hj . To prove this , we will prove, by induction on
k, that

(*) ak ;ij = a ij + I:~=l a ihak ;hj

for all 1 S i, j S n. If k = 0 this is trivial, since the sum over an empty set of
elements of R is O. Assume, therefore, that k > 0 and th at (*) has been established
for k - 1. Then

k k

aij + 2: a ihak ;hj = a ij + 2: a ih [ak-l;hj + ak-l ;hkbk-lak-l ;kj]

h-l h=l

[

k - l ]
= aij + 2: a ih (ak-l ;hj + ak-l;hkh-lak-l ;kj)

h=l

+ [aikak-l ;kj + aikak-l ;kkbk-lak-l ;kj]

[

k - l ] [k-l ]
= a ij + 2: a ihak-l ;hj + 2: a ihak-l;hkbk-lak-l ;kj

h=l h=l

+ [aikbk-lak-l ;kj]

[

k-l ] [k-l ]= a ij + 2: a ihak-l ;hj + aik + 2: aihak-l ;hk bk-lak-l ;kj.

h=l h=l

By the induction hypothesis , this equals ak-l ;ij + ak-l ;i kbk-lak-l ;kj , which is just
ak ;ij , as desired. 0

(25.37) C OROL LARY. Th e following conditions on a semiring R are equivalent:

(1) R is right totally solvable;
(2) Mn(R) is right totally solvable for all n 2 1;
(3) There exists a positive integer k such that Mk(R) is right totally solvable.

PROOF . By Proposition 25.36 we see that (1) implies (2), and clearly (2) impli es
(3) . Now assume (3). Let a be an element of R and let A = [a i j] be th e element
of Mk(R) defined by all = a and aij = 0 if (i ,j) # (1,1) . By (3) , there exists a
matrix B = [b i j ] E L(A , 1). Then , in particular ,

k

bll = 1 + 2:alhbhl = 1 + abll

h=l

and so bll E Ei«, 1). By Proposition 25.17, this suffices to prove (1) . 0
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(25.38) COROLLARY. If R is a Lehmann semiring so is the semiring Mn(R) of
for each positive integer n.

PROOF . Let R be a Lehmann semiring. An easy adaptation of the proof of
Proposition 25.36 shows that if A E Mn(R) then there exists an element A* E
T(A , A). If I is the multiplicative identity of Mn(R) , we th en see that A + I E
T(A ,1) . D

Several algorithms for the computation of A * for a square matrix A over a
Lehmann semiring R, including parallel computation models, are given in [Abdali ,
1994] and [Abdali & Saunders, 1985].

(25.39) PROPOSITION. The following conditions on a semiring R are equiva-
lent:

(1) R is a Lehmann semiring;
(2) Mn(R) is a Lehmann semiring for all n 2: 1;
(3) There exists a positive integer k such that Mk(R) is a Lehmann semiring.

PROOF . The proof is the same as the proof of Corollary 25.37. D

(25.40) COROLLARY. Let R be a semiring and let A be a countably-infinite set .
If S = MA ,rc(R) is a Lehmann semiring then so is R.

PROOF . Assume S is a Lehmann semiring and let a E R. Let B = [bij] be
the element of S defined by bd = a and bij = 0 for (i, j) ::j; (1,1) . Then th ere
exists a matrix B* = [Cij] in S satisfying BB* + I = B* = B* B + I, where I
is the multiplicative identity of S . Multiplying out , we see that this means that
Cll E T(a , 1). Thus R is a Lehmann semiring. D

(25.41) PROPOSITION. If R is a simple semiring and A E M n ( R) for some
n 2: 1, then we can select A* = I + A + ...+ An-I, where I is the multiplicative
identity of Mn(R) .

PROOF. This is an immediate consequence of the construct ion in Proposition
25.36, beginning with the choice of a' = 1 for all a E R . D

Let R be a semi ring and let A be a set which is either finit e or countably infinite.
Set S = MA(R) if A is finite or 5 = MA ,rc(R) if A is countably infinite. If Sis
a Lehmann semi ring then , by Coroll ary 25.39 and Corollary 25.40 , we see that
MA,(R) is a Lehmann semi ring for each subset A' of A . Let M E S and assume

that M can be written in block form as [~ ~] , where Band E are square matrices.

Then , by assumption, there exists a matrix B* E T(B ,1), where I is the identity
matrix of the appropriate size. Set U = E + DB*C. Again , there exists a matrix

U* E T(U,1). A straightforward calculation then shows that M* = [~~] where

F = B* +B*CU*DB* , G = B*CU* , H =U* DB* , and K =U*. If S is a Conway
semiring , we can also take F = (B+CED)*, K = (E+DB*C)*, G =B*CK, and
H = E* DF. See [Conway, 1971] for details . Indeed , a straightforward computation
shows that if M* is always given by these conditions then R must be a Conway
semiring.
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(25.42) PROPOSITION. Let R be a Conway semiring satisfying the condition
that the semiring S = Mw ,rc(R) is also a Conway semiring. Th en any polynomial
equation of the form X = 2:7=0 aiXi {a, E R) has a solution in R.

PROOF . Let M = [m ij] E S be th e matrix defined as follows:

(1) mlj =aj for 1 :s; j :s; nand mlj =0 for j > n ;

(2) m21 =ao and mil = 0 for i > 2;
(3) mij = mi-l ,j-l for i > 1 and j > 1.

Then we can write M = [~Z.] , where B = [ad , C is a row matrix, and D is a

column matrix. By hypothesis , th ere exists a matrix M" = [Vij) in S satisfying
M" = M M" + I = M" M + I , where I is th e multiplicative identity of S . By

the above remark , we know that M" = [~~] where F = (B + CM" D)*, K =
(M + DB"C)* , G = B"CK , and H = M"DF. In our particular case, we obtain :

(*) Vl1 = [a1 + 2:7;/ ai+1VilaOr

and

(**) Vil = vi-l ,laOvl1 for all i :s; n .

By (*), we have

(***) Vl1 = 1 + [a1 + 2:7;/ ai+l Vil-l Vl1 ·

By (**), we see that VilaO= (vu co)' for all 1 < i :s; n. Multiplying (***) on th e
right by ao and substituting these values for the Vil, we obtain

n

Vl1 aO = ao + al(vl 1aO) + L:: ah(vl1 ao)h

h=l

and so we see that Vl1 aO is a solution of th e given polynomial equation. 0

Given a semiring R and an indeterminate t , any polynomial f = 2:ait i E R[t )
defines a polynomial function i: R --+ R given r 1-+ :L airi . This funct ion is not ,
in general , monic.

Proposition 25.42 shows that if R is a Conway semiring th en any polynomial
function in RR has a fixed point . Baccelli et al. [1992] point out that th e function
f 1-+ j is closely related to th e Fenchel transform in convexity th eory [Fenchel,
1949]. They also study polynomial fun ctions over th e schedule algebra, and th eir
applications , in detail.

(25.43) PROPOSITION. Every entire zerosumfree semiring can be embedded in
a totally solvable semiring.

PROOF . This is a direct consequ ence of Example 25.25. 0

If U and V are nonempty subsets of a semiring R we set .c(U, V) =U{.c(a , b) I
a E U,i « V} . Similarly, we define n(U, V) and T(U, V) .

(25.44) PROPOSITION. If H is a right ideal of a semiring R then {a E R I
.c(a, H) =F 0} is either R or a right ideal of R .

PROOF . If r , r' E .c(a, H) then there exist elements b and b' in H such that
r =ar+b and r' =ar' +b' . Therefore r + r' =a(r+r')+(b+b') so r+ r' E .c(a, H) .
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If r" E R then rr" = a(rr") + br" so rr' E Lt« , H) . Hence, if £(a , H) is not all of
R, it must be a right ideal of R. 0

We now turn our attention to partially-ordered semirings. In this situation , we
can not only consider the solution sets £(a, b) and 'R(a , b) but also see if they have
minimal elements.

(25.45) PROPOSITION. Let a and b be elements of a diiierence-ordered sem iring
R and let r E £(a , b). Th en :

(1) anb::; r for all n 2': 0;
(2) (1 + a + ... + an)b ::; r for all n 2': 0; and
(3) If a is stable with index of s tabili ty n then c = (1 + a + ...+ an)b is the

minimal element of £(a , b) .

PROOF . (1) We will proceed by induction on n . If n =0 th en r =ar+ b implies
that r 2': b = aOb . Now assume that n > 0 and th at an-1b ::; r . Then r = ar + b
implies th at r 2': ar 2': a(a n-1b) = anb .

(2) Again , we proceed by induction on n . If n = 0 th e result follows from (1) .
If n = 1 we have (1 + a)b = b + ab ::; b + ar = r . Now suppose that n > 1 and
that cb ::; r , where c = 1 + a + ... + an-I . Then (1 + a + ...+ an)b = b+ (ac)b =
b+ a( cb)::; b+ar = r .

(3) If a is stable with ind ex of stability n th en surely c E £(a , b) . It is the
minimal elem ent of £(a ,b) by (2). 0

Recall th at every addit ively-idempotent semiring is canonically differen ce or­
dered .

(25.46) PROPOSITIO N. Let a be an elemen t of an addi tively -idem poten t sem ir­
ing R.

(1) Ifan =an+1 for some nonnegative integer n th en b = 1+ a +...+ an is th e
minimal element of £(a , 1).

(2) We have a ::; 1 if an d only if 1 is an element of £(a, 1). Moreover, in this
case 1 is th e minimal elem en t of £(a , 1).

PROO F . (1) This is an immediat e consequence of Proposition 25.45(3) .
(2) If a ::; 1 then, by Example 20.26, 1 = a + 1 = al + 1 and so 1 E Lt« , 1).

Moreover , if r E £(a , 1) th en r = ar + 1 so 1 ::; r . Thus 1 is the minimal element
of £(a , 1). Conversely, if 1 is an element of £(a , 1) th en , in particular, 1 = 1 + a so
a < 1. 0

Recall that simple semirings are additively idempotent .

(25.47) PROPOSITION. If a and b are elements of a simple sem iring R then b is
th e unique minimal element of Li« , b).

PROOF . Since R is simple we have 1 = a + 1 and so b = (a + l)b = ab + b,
proving th at b E £(a , b). If r E £(a , b) then r = ar + b so b ::; r . Thus b is the
unique minimal element of £(a , b) . 0
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(25.48) PROPOSITION. If a and b are elements of a lattice-ordered semiring R
then db = b for all d E £(a , 1).

PROOF. By Proposition 25.12 we know that db E £( a, b) and so b :s db by Propo­
sition 25.47 since, by Proposition 21.15, R is simple. Since R is lattice ordered, we
have db :s b by definition, and thus we have equality. 0

In Chapter 18 we noted that extremal semirings are also additively idempotent .

(25.49) PROPOSITION. Let R be an extremal semiring and let a be an element
of R satisfying the condition that £(a ,O) = {O} . Then £(a,l) = {I} whenever
a:S 1, and £(a , 1) = 0 otherwise.

PROOF. Assume that a :s 1. Then 1 = 1 + a and so 1 E £(a , 1). Conversely,
if r E Li«, 1) then r = 1 + ar so 1 :s r. By Proposition 25.46(2), we have r :s 1
and so r = 1. Thus Li«, 1) = {I} . Now assume that aiL If r E £(a, 1) then
r = ar + 1. Since R is extremal , this means that either r = 1 or r = ar , If r = 1
then a :s 1 by Proposition 25.46(2), counter to our assumption . Therefore r = ar
and so r E £(a,O) . Thus, by hypothesis , r = 0 and so 0 = aO + 1 = 1, which is
impossible. Thus we conclude that if a i 1 then £( a, 1) = 0. 0

In QLO-semirings the result is even simpler .

(25.50) PROPOSITION. Ifa and b are elements ofa QLO-semiring R then £(a, b)
has a unique maximal element and a unique minimal element .

PROOF . By Proposition 25.47 we know, since QLO-semirings are simple, that
£(a, b) is nonempty and has a unique minimal element b. If c = VLi«, b) then
ac+b =V{ar IrE £(a,b)+b} =V{ar+b IrE £(a ,b) =c} and so c is the unique
maximal element of £(a, b). 0

(25.51) EXAMPLE . [Park , 1981] If 5 is the serniring sub(AOO) U {-(X)} defined
in Example 3.21, we can define L* = {D} U [U~lLi] for each -00 :j:. L E 5. For
each such L, set LW = A* if L ={D} and

LW= {WOWl · ···1Wi E L} U [L* n A*]

otherwise. For each -00 :j:. L E 5, set LO = L*ULw . Then for each -00 :j:. L , L' E 5
one can check that L*L' is th e minimal element of £(L, L') and LO L' is the maximal
element of £(L, L') . Note that if L E 5 then ni?oLiAOO ~ LW , but we do not
necessarily have equality.

Note that it is also possible to consider fixed points of nonlinear maps from a
semiring to itself, though this study is much less developed . For an example of such
a problem over the schedule algebra which arises from optimization theory, see [K.
Zimmermann, 1982]. Similarly, certain such problems over semirings of the form
M n (R((A}}) arise from the study of context-free languages. These are considered
in detail in [Kuich & Salomaa, 1986]; see also [Manes & Arbib, 1986].

Another example is found in [Gondran, 1979]; there one considers a difference­
ordered semiring R and an element r of R for which there exists a natural number
p satisfying 1 + r + ...+ rP = 1 + r + ...+ rP+l . For each k 2: 0, let Ck =
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k .
(2k)!j(k + 1)!k E N be the kth Catalan number and let ik(r) = L:i=O c.r". Then
ip(r) = ip+1 (r) = ... and ip(r) is the unique minimal fixed point of the function <p

from R to itself defined by <p: x 1-+ rx 2 + 1.
A different approach to such problems is described in [Wechler, 1984] . An equa­

tion of the form x = a + bx 2 can be transformed into a system of countably-many
linear equations in countably-many unknowns: Xn+1 = aXn + bXn+2 . This leads
to the consideration of the linear equation X = AX + C, where X is the column
vector consisting of the variables xn , where A = [aij] is the matrix defined by

{

a for all j = i-I

a j ,j = b for all j = i + 1 ,

o otherwise

and C is th e column vector having a as its top entry and 0 elsewhere . If X* E
{(A, C) then the first component of X*C is a fixed point of the map x 1-+ a + bx .

Solutions of infinite systems of linear equations over semirings are studied in
detail in [Kuich & Urbanek, 1983] .

One method of guaranteeing the existence of fixed points of affine maps is in­
troducing by an iterative method of some sort. In order to do this, we have to
introduce the notion of convergence of sequences of elements of a semiring.

Let R be a semiring and define addition and multiplication on RN component­
wise. We will denote the multiplicative identity of RN by fl . Then RN is also an
(R, R)-bisemimodule. Among the maps from RN to itself which we have already
noted are the affine right shifts 17a defined in Example 25.1: for each a E A and
I E RN, the function 17a (I) is defined by

[(Ja(f)](i) = { ;(i _. 1)
if i = 0

if i > 0

Let .R be a semiring. A nonempty subset D of R N satisfying the conditions

(1) t, ED;
(2) D is an (R, R)-subbisemimodule of RN ;

(3) (Ja(D) ~ D for all a E R.

is called a convergence domain . A function lED is said to be D-convergent .
If D is a convergence domain , a homomorphism of bisemimodules limD :D --+ R is
a limit function provided that limD(fI) = 1 and limD((Ja(f» = limD(f) for all
a E R and lED. The element limD(f) of R is the D-limit of I.

(25.52) EXAMPLE . [Kuich & Salomaa, 1986] A function I E RN is eventually
constant if and only if there exist a natural number k(f) and an element a of R
such that I(i) = a for all i 2:: k(f). Note that if I is eventually constant then
I = 17/(0)17/(1) . . ... (J/(k(J)-1)(a/I) and so the set E of all eventually-constant
functions is contained in every convergence domain in RN . Moreover, we have a
limit function limE defined on E by limE(f) = I(k(f». Indeed , it is easy to see
that this is the only limit function definable on E .
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(25.53) EXAMPLE . [Kuich , 1987; Karner , 1992] If R is a complete semiring it
does not necessarily follow that th ere exists a convergence domain D in RN and a
limit function limD :D -> R given by limD (f) =2:iENg(i ), where g(i) = 2:~=o f(j)
for each i 2: o. To see this , consider th e semiring R defined in Example 22.17
togeth er with th e second of th e definitions of 2: given there . Und er this definition
of 2:, we not e that 2:iENII (i) = 00, and so it can define no limit fun ction .

Let A be a non empty set , let R be a semiring, and let S = R((A)) . If s :f t are
dist inct elements of S, set m(s ,t) = min{lwll w E A*and s(w ) :f t( w)} . Pick a
real number c satisfying 0 < c < 1 and define a function d: S x S -> ~+ by setting
d(s, s) = 0 for all s E Sand d(s , t) = cm(s ,t) for s :f t in S . It is straightforward to
verify that d is a complete ultrametric on S (i .e. d(s,s') ~ max{d(s , s" ), d(s', S")}
for all s, s' , S" E S) and that the fun ctions (s ,t) t-+ s + t and (s ,t) t-+ st from S x S
to S are cont inuous with respect to th e topology defined by this ultrametric. This
in turn defines a limit function lim on a convergence domain D in SN as follows: if
f E SN then fED and lim(f) = s E S if and only if for each k 2: 0 th ere exists
an m 2: 0 such that w E A* and Iwl ~ k imply that f(j)(w) = s(w) for all j 2: m.

(25 .54) PROPOSITIO N. Let R be a sem iring and let limt: be a limit function
defined on a convergence domain D in RN . Let A be a nonempty set and let E be
the set of all those func tions f in R((A))N sati sfying the condition tha t, for each
wE A*, the function f w:N -> R given by fw:n t-+ f(n)(w) belongs to D. Th en:

(1) E is a convergence domain in R((A))N; and
(2) The function limE :E -> R((A)) defined by [limE(f)] :w t-+ limD(fw) for all

wE A* is a limit function on E.

PROOF . (1) Set S = R((A)). If t .s E E and w E A* then

(f + g)w(n) = (f + g)(n)(w) = f(n)(w) + g(n)(w) = fw(n) + gt!J (n )

and so (f + g)w = fw + gw· Hence f + 9 E E. If s E S th en

(sJ)w(n) = (sJ)(n)(w) = I)s(w')f(n)(w") I w'w" = w}

=2:{s(w')fwlI(n) I w'w" =w}

= [2:{s(w')fwlI I w'w" = w}] (n).

Since s(w')fwlI E D for all w' , w" E A*, it follows that (sJ) w ED for each wE A*
and so sf E E . Similarly, fs E E and so E is an (S,S)-subbisemimodule of SN.

Let s E Sand fEE . If w E A* th en [lTs(f)] w(O) = [lTs(f)](O)(w) = s(w)
and [lTs(f)] w(i + 1) = [lTs(f)]( i + l)(w) = f(i)( w) = fw(i) . Therefore [lTs(f)] w =
lTs(w)(fw) E D for all w E A*, proving that lTs(f) E E. Thus E is a convergence
domain.

(2) This is a straightforward consequence of th e definition . 0

Every element a of a semi ring R defines th e power sequence Pa in RNgiven by
Pa:i t-+ ai and th e canonical sequence ga in R N given by ga:k t-+ 2:~=1 a", Note
that if R is additively idempotent then 9a(k) = Pa+l(k) for all a E R and all kE N.
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If there exists a convergence domain D and a limit function limD :D -+ R such that
ga E D then we will denote limr, (ga) by a+(D) or simply by a+ if there is no room
for confusion concerning which limit function we are using . If !I + ga E D then we
denote limD(!I + ga) by a*(D) or simply by a" if there is no room for confusion .

(25.55) PROPOSITIO N. Let a be an element of a sem iring R and let limD be a
limit function defined on a convergence domain D in R N • Th en ga is D-convergent
if and only if II + ga is and , in this case,

(1) a* = 1+ a+;
(2) aa" = a' a = a+;
(3) For all n > 0 we have a* ="n ai + an+la* =" '.' ai + a*an+1

- LJJ=O LJJ=o .

PROOF. Since II is eventually constant we know by Example 25.52 that !I ED .
T herefore ga E D implies that !I + ga E D . Conversely , if !I + ga E D then
ga = a[!I +ga] E D.

(1) Assume that a+ exists. Then

1 + a+ = tim» (ld + limD (ga) = limD(l1 + ga) = a"

so a* exists. Conversely, if a" exists th en aa" =a[limD(II + ga)] = limD (ga) =a+
so a+ exists.

(2) and (3) follow immediately from (1). 0

(25.56) PROPOSITION. Let a and b be elem ents of a semiring R and let limD
be a limit function defined on a convergence domain D in R N • Th en gab is D­
con vergent if and only if gba is. Moreover, in this case, (ab)*a = a(ba)*-

PROOF . To prove th e first assert ion, it suffices to show tha. gab E D implies
that 9ba ED. Ind eed , if gab E D th en h = b[!I + gab]a E D and S, ; O'o(h) +!I ED .
But , for each n 2: 0, h(n) = b[2:7=o(ab)i]a = L::7:/(ba) i and so lO'o(h) + Id(n) =
L::7;ol(ba)i = gba(n). Thus gba E D . As for the second assert ion , we note that
(ab)*a = [limD(l1 +gab)]a = limD(!Ia)+limD(gaba) = limD(ald+1imD(agba) =
a(ba)*. 0

If R is a sem iring and if M is a left R-semimodule th en th e set of all functions
from N to M is a left R-semimodule with addition and scalar multiplication defined
componentwise, denotes by M N . If I E RN and if m E M then [m is an element
of M N defined by [m: i 1---+ I( i)m for all i E No In particular, !Im is the constant
fun ction i 1---+ m for all i EN .

If D is a convergen ce domain in R N and if limD :D -+ R is a limit function
defined on D th en a left R-semimodule M is compatible with lim» if and only
if, for each finit e set {gl " ' " gn} of elements of D and finite set {ml , "" mn, m}
of elements of M sa t isfying 2:7=1 gimi = !I m we have 2:7=1 [limD(g;)]mi = m .
Clearly th e left R-semimodule R is compatible with any such limit function .

(25.57) PROPOSITION . Let R be a sem iring, let limD :D -+ R be a limit func­
tion defined on a convergence domain D in R N , and let M be a left R-semimodule
compatible with D . Let a be an element of R satisfying the conditions that
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Pa,ga E D and limD(Pa) = O. Then the equa tion X = aX + m' is uniquely
solvable for each element m' of M .

PROO F . Since ga ED, we know by Proposition 25.55 and Proposition 25.12 th at
a" exists an d that a * m' E £ (a , m' ) for each element m' of M. All we are left to
show is uniqueness. Indeed, assume that m E £ (a , m') . By Propos itio n 25.12(5)
we see that m = an+1m + E7=0aim' for all n 2: 0 and so It = (apa)m + (ga)m'
in M N. By compatibility, we therefore have m = [limD(apa)]m + [limD (ga)]m' =
OM + a"m' = a"m'. 0

We now turn to some results due to Karn er [1992, 1994].

(25.58) EXAMPLE . Let R be a semiring and let S = R((A)) for some nonempty
set A. It is easy to see tha t if s E S is quasiregular th en the sequence P. E SN
converges to Os . Therefore, by Proposition 25.57, we see t hat the equation X =
sX + m' is uniquely solvable for each quasiregular s E S and each element m' of a
left S-semimodule M .

(25.59) PROPOSITION. For a com ple te semiring R th e following conditions are
equivalen t:

(1) If B:N -+ R and if th ere exist a natural number no and an element a of R
such that

n

LB(i) = a
i = O

for all n 2: n o th en E B = a;
(2) If B:N -+ R and if there exists an elemen t a of R such tha t B(i) E £(1 , a)

foralliE N th en EBE£(l ,a);
(3) If B:0 -+ R, where 0 is countable, satisfies the conaition tha t E iEr B(i) =

E iEA B(i) for some fini te su bset A of 0 and all fini te su bsets I of 0 con­
taining A, then E B = E i EA B(i );

(4) Given a E R, ifB : 0 -+ R, where 0 is countable , satisfies the condition that
for each finit e subse t A of 0 th ere is a finit e subset 1/;(A) of 0 con taining A
sat is fying E iEI/J (A) B(i ) = a, th en E B = a.

PROOF. (1) => (4) : Without loss of generality we can assume that 0 = N .
Define a sequence {An I n E N} of finite sets inductively, by setting Ao = 1/;({O})
and An +1 = 1/; (An U {min(N \ An)} for each n EN . Then clearly An C An +1 for all
nand UnENAn = N. Now define th e function B':f'l -+ R inductively as follows:

(1) B'(O) = E{B(i) liE Ao};
(2) B'(n + 1) = E{B(i) liE An+1 \ An} .

th en Ei~ n B'(i) =E iEA
n

B(i) =a and so, by (1) , E B =E B' =a.
(4) => (3): This is imm ediate.
(3) => (2): Suppose B( i) E £(1 , a) for all i E N Define B':N -+ R by setting

0'(0 ) = a and B'(i + 1) =B(i) for all i E N. Let A ={O} . Th en for all finite subs ets
r of N contai ning A we have E i Er B'(i) = E iEA 8' (i) and so

a + L8 =LB' =LB'(i) = a.
i EA
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(2) => (1): Assume that I:7=0 B(i) = a for all n 2:: no. Define a function B':N --+ R
by set t ing B'(i) = B(no + i + 1) for all i E N. Then

n o+ i n o+ i+l

a + B'(i) = L B(j) + B(no + i + 1) = L B(j)B(j) =a
j=O j=O

for all i E f'l and so

n o

L B= L B(i) + L B( i) = L B' = a
i = O i> n o

and we are done. 0

(25.60) PROPOSITION. For a complete semiring R the following condi tions are
equivalent:

(1) If B:n --+ R is a fun ction and if a E R satisfies the condition that im(B) ~
£(1 , a) then I: BE £(1 , a);

(2) If B:n --+ R is a funct ion satisfy ing the condition that for some fixed finite
Ao ~ n and all finite Ao ~ A ~ n we have I:iEA B( i) = a then I: B=a;

(3) If B: n --+ R is a fun ction satisfying the condition that for some fixed a E R
and for all finit e A ~ n there is a finit e subset 'I/; (A) ofn con taining A and
satisfy ing I: iE lji(A ) B( i) = a, then I: B= a.

PROOF . Note th at R is partially-ordered by th e relat ion a :::; b iff th ere exists a
c E R satisfying a + c = b.

(1) => (3) : Let B: n --+ R be a function and let a be an element of R such that
th e condit ions in (3) are satisfied . Set r = '1/; (0 ) and a = I:iEA B(i). T hen for each
j E n \ A we have

a :::; a + B(j) = L B( i) :::; L B(i) = a
i EAu {j } i Elji(AU{j} )

and so th eta(i) E £(1 , a) for each i E n. Therefore, by (1) ,

LB=a+ L (}( i)=a .
i El1\ A

(3) => (2) : This is immediat e.
(2) => (1) : The proof is th e sam e as the corresponding part of th e proof of

Propos ition 25.59. 0



REFERENCES

S. KAMAL ABDALI

[1994] Parallel computations in *-semirings, in Klaus G. Fischer et al.
(eds .): Computational Algebra, Marcel Dekker, New York , 1994.

S. KAMAL ABDALI & B. DAVID SAUNDERS

[1985] Transitive closure and related semiring properties via eliminants,
Theor. CompoSci. 40 (1985) , 257 - 274.

SAMSON ABRAMSKY & STEVEN VICKERS

[1993] Quantales, observational logic, and process semantics, Math .
Structures Comput . Sci. 3 (1993), 161 - 227.

ACHILLE ACHACHE

[1985/6] Condition pour que la puissance IX du treillis complet I soit
algebrique, Portugal. Math . 43 (1985/6), 317- 319.

S. K. ACHARYYA, K. C. CHATTOPADHYAY, & G. G. RAY

[1993] Hemirings, congruences and the Stone-Cech compactification, Si­
mon Stevin 67 (1993) Supplement, 21 - 35.

M. R. ADHIKARI & M. K. DAS
[1994] Structure spaces for semirings, Bull . Calcutta Math. Soc. 86

(1994),313 - 317.

M. R. ADHIKARI, JONATHAN S. GOLAN & M. K. SEN

[1994] A note concerning congru ence relations on austere commutative
semirings, Indian Science Cruiser 8 (1994) 25 - 26.

ALFRED V. AHO, JOHN E. HOPCROFT & JEFFERY D. ULLMAN

[1974] The Design and Analysis of Computer Algorithms, Addison­
Wesley, New York , 1974.

JAVED AHSAN

[1993] Fully idempotent semirings, Proc. Japan Acad. 69, Ser . A (1993) ,
185 - 188.

MARIANNE AKIAN

[1995a] Densities of idempotent measures and large deviations, preprint ,
1995.



308 ______REFERENCES _

[1995b] Theory of cost measures: convergence of decision variables, pre­
print , 1995.

MARIANNE AKIAN , RAVINDRA BAPAT & STEPHANE GAUBERT

[1998] Asymptotics of the Perron eigenvalue and eigenvector using max­
algebra, C. R. Acad. Sci. Paris (I) 327 (1998), 927 - 932.

MARIANNE AKIAN , JEAN-PIERRE QUADRAT & MICHEL VIOT

[1994] Bellman processes , in G. Cohen & J. P. Quadrat (eds) : Eleventh
International Conference on Analysis and Optimization of Systems:
Discrete Event Syst ems, Lecture Notes in Control and Information
Sciences #199, Springer-Verlag , Berlin , 1994.

[1998] Duality between probability and optimization, in J . Gunawardena
(ed .): Id empoten cy (Bristol, 1994) , Pub!. Newton Inst . #11 , Cam­
bridge Univ . Press, Cambridge, 1998, 331 - 353.

FRANCISCO E. ALARCON & DANIEL D. ANDERSON

[1994a] Commutat ive semirings and their lattices of ideals , Houston J .
Math . 20 (1994), 571 -590 .

[1994b] The lattice of ideals of a polynomial semiring, Algebra Universalis
31 (1994) , 147 - 149.

GOTZ ALEFELD & JURGEN HERZBERGER

[1983] Introduction to Int erval Computations, Academic Press , New York ,
1983.

PAULJ .ALLEN

[1969] A fundamental th eorem of homomorphisms for semirings, Proc .
Amer. Math . Soc. 21 (1969), 412 - 416.

[1970] Cohen's th eorem for a class of Noetherian semirings, Pub!. Math .
Debrecen 17 (1970),169 - 17l.

PAUL J . ALLEN & LOUIS DALE

[1975] Ideal th eory in th e semiring Z+ , Pub!. Math . Debrecen, 22 (1975),
219 - 224.

PAUL J . ALLEN & WILLIAM R. WINDHAM

[1973] Operator algebras with applications to semirings, Pub!. Math . De­
brecen , 20 (1973) , 161 - 175.

ERIC ALLENDER, JIA JIAO , MEENA MAHAJAN & V. VINAY

(1996) Non-commutative arithmetic circuits : depth reduction and size
limits, DIMACS Technical Report 96-03, 1996.

ELISABETTA ALLEVI

[1987] Prodotti sot todiret ti di (+ , ·)-bande commutative e di quasianelli
distributivi,lst . Lombardo (Rend . Sc.) A 121 (1987) ,41 - 53.

J . P. ALLOUCE, E. CATELAND , H.-O. PEITGEN , G. SKORDEV, & J .
SHALLIT

[1995] Automatic maps on a semi ring with digits , Fractals 3 (1995) , 663
- 677.



______.REFERENCES _ 309

ANTONIO ALMEIDA COSTA

[1963] Sur la theorie generale des semi-anneaux, PubI. Math . Debrecen
10 (1963), 14 - 29.

[1968] Sur les Jl-demi-anneaux, Math . Z. 108 (1968) , 10 - 14.
[1974] Cours d'Algebre Generale, vol. III, Fundacao Calouste Gulbenkian,

Lisbon , 1974.

ANTONIO ALMEIDA COSTA & MARGARITA RAMALHO

[1978] Semirings, ideals and congruences, in Estudos de Algebra, Geome­
tria et Analise, No. II, Centenario da Academia das Ciencias de
Lisboa, Lisbon, 1978.

HUDA MOHAMMED J . AL-THANI

[1995] A note on projective semimodules, Kobe J . Math . 12 (1995), 89 ­
94.

[1996] k-projective semimodules, Kobe J . Math. 13 (1996), 49 - 59.

DANIEL D. ANDERSON

[1975] Distributive noether lattices, Michigan Math. J . 22 (1975), 109 ­
115.

[1976] Abstract commutative ideal theory without chain conditions , Al­
gebra Univ . 6 (1976) , 131 - 145.

[1977] Fake rings , fake modules, and duality, J . Algebra 47 (1977) , 425­
432 .

DANIEL D. ANDERSON & DAVID F . ANDERSON

[1991] Examples of star operations on integral domains, Comm. Alg. 18
(1991), 1621 - 1643.

JACK M. ANDERSON

[1993] The operational calculus of Mikusiriski , preprint, 1993.

CHARLES ANDRE

[1989] An algebra for "SENS" , Technical Report LASSY-13S, Laboratoire
de Signaux et Systemes, Universite de Nice-Sophia Antipolis, 1989.

A. J . ANTUNES MONTEIRO

[1978] Congruences, ideals and homomorphisms in semirings, in Estudos
de Algebra, Geometric et Analise, No. II , Centenario da Academia
das Ciencias de Lisboa, Lisbon, 1978.

MICHAEL A. ARBIB , A. J . KFOURY & ROBERT N. MOLL

[1981] A Basis for Theoretical Computer Science, Springer-Verlag, Berlin,
1981.

B.H.ARNOLD

[1951] Distributive lattices with a third operation defined, Pacific J . Math .
1 (1951),33 - 41.

JEAN-PIERRE AUBIN

[1993] Optima and Equilibria, Springer-Verlag, Berlin , 1993.



310 ______.R E F E R E N C E S _

ROBERT J . AUMANN & L. S. SHAPLEY

[1974] Values of Non-Atomic Games, Princeton University Press, Prince­
ton , 1974 .

JONATHAN BABB, MATTHEW FRANK & ANA NT AGARWAL

[1998] Solving graph problems with dynamic computation structures, pre­
print , 1998 .

FRANCOIS LUIS BACCELLI, GUY COHEN, GEERT JAN OLSDER & JEAN­
PIERRE QUADRAT

[1992] Synchronization and Linearity, John Wiley & Sons, New York,
1992.

FRANCOIS LUIS BACCELLI & JEAN MAIRESSE

[1998] Ergodic theorems for stochastic operators and discrete event net­
works, in J . Gunawardena (ed .) : Idempotency (Bristol, 1994),
Publ. Newton Inst . #11, Cambridge Univ . Press, Cambridge,
1998, 171 -208 .

ACHIM BACHEM

[1978] The theorem of Minkowski for polyhedral monoids and aggregated
linear Diophantine equations, in R . Henn et al. (eds .) : Optimiza­
tion and Operations Research, Lecture Notes in Economics and
Mathematical Systems #157, Springer-Verlag, Berlin, 1978 .

R . C. BACKHOUSE & BERNARD A. CARRE

[1975] Regular algebra applied to path-finding problems, J . Inst . Maths.
Applies. 15 (1975) , 161 - 186.

J . C . M. BAETEN, J . A. BERGSTRA & J . W . KLOP

[1988] An operational semantics for process algebra, in G . Mirkowska &
H. Rasiowa (eds .) : Mathemat ical Problems in Computation Theory,
Banach Center Publications #21, PWN , Warsaw, 1988 .

L.B.BALL

[1986] The arithmetic of differentiation, Math. Mag . 59 (1986) , 275 ­
282.

BERNHARD BANASCHEWSKI & ROSWITHA HARTING

[1985] Lattice aspects of radical ideals and choice principles, Proc. Lon­
don Math. Soc . (3) 50 (1985), 385 - 404.

HANS-JURGEN BANDELT

[1983] Free objects in the variety generated by rings and distributive lat­
tices, in K. H. Hofmann et al. (eds .) : Recent Developments in the
Algebraic, Analytical, and Topological Theory of Semigroups, Lec­
ture Notes in Mathematics #998, Springer-Verlag, Berlin, 1983.

HANS-JURGEN BANDELT & MARIO PETRICH

[1982] Sub direct products of rings and distributive lattices, Proc. Edin­
burgh Math . Soc. 25 (1982), 155 - 171.



______REFERENCES _ 311

EROL BARBUT

[1967] On Certain Semirings with A scending Chain Condit ions, PhD.
Thesis, University of Cal ifornia, Riverside, 1967.

LeROY B. BEASLEY & NORMAN J . PULLMAN

[1988a] Operators th at preserve semi ring ma trix functions, Lin. Alg. Appl.
99 (1988) , 199 - 216.

[1988b] Semiring rank versus column rank, Lin. Alg. Appl. 101 (1988),33
- 48.

V. P. BELAVKIN

[1987] Ord ered --semirings and generating functionals of quantum statis­
tics , Doklady Akad emii Nauk SSSR 293 (1987) , 18 - 21. [Russian]

RICHARD E. BELLMAN & MAGNUS GIERTZ

[1973] On th e analytic form alism of th e theory of fuzzy sets , Inf. Sc. 5
(1973) , 149 - 156.

JEAN BENABOU

[1959] Trellis locaux et paratopologies, Serninaire C. Ehresmann 1957/58,
Fac. des Sciences de Paris , 1959.

J . A. BERGSTRA & J . W . KLOP

[1983] Process algebra for communication and mutual exclusion , Report
IW 218/83 , Mathemat isch Centrum, Amsterdam, 1983.

[1984] The algebra of recursively defined processes and the algebra of reg­
ular processes, in J . Paredaen s (ed.) : Automata, Languages and
Programming, Lecture Notes in Computer Science #172 , Springer­
Verlag , Berlin , 1984.

[1986] Process algebr a: specification and verification in bisimulation se­
mantics , in M. Hazewinkel et al. (eds) : Math ematics and Computer
Science II , CWI Monograph #4, North Holland , Amsterdam, 1986.

[1989] ACPr , a universal axiom system for pro cess specificiation, in M.
Wirsing & J . A. Bergstra (eds.): Algebraic Methods: Th eory, Tool s
and Applications, Lecture Notes in Computer Science #394 ,
Springer-Verlag, Berlin , 1989.

J . A. BERGSTRA & ALBAN PONSE

(1) Frame-based proc ess logics, in Alban Ponse et al. (eds) : M odal
Logic and Pro cess Algebra, CSDLI Lecture Notes # 53, CSLI Pub­
lications , Stanford , 1995.

JOEL BERMAN & MASAO MUKAIDONO

[1984] Enumerating fuzzy switching functions and free Kleene algebras ,
Comp o and Maths. with Appls. 10 (1984) ,25 - 35.

JEAN BERSTEL & DOMINIQUE PERRIN

[1985] Theory of Codes, Academic Press, New York, 1985.

JEAN BERSTEL & CHRISTOPHE REUTENAUER

[1982] Recognizable formal power series on tr ees, Theor. Compo Sci. 18
(1982) , 115 - 148.



312 ______.R E F E R E N C E S _

[1988] Rational Seri es and Their Languages, Springer-Verlag , Berlin ,
1988.

PIERRE BERTHIAUME

[1967] The injective envelope of S - sets, Canad. Math . Bull. 10 (1967) ,
261 - 273.

MARTHA O. BERTMAN

[1978] Bicyclic semirings , J . Austral. Math. Soc. (Ser . A) 26 (1978) ,419
- 441.

ANDREJ BIALYNICKI - BIRULA

[1958] On the spaces of ideals of semirings, Fund . Math . 45 (1958) , 247
- 253.

ALAIN BIGARD, KLAUS KEIMEL & SAMUEL WOLFENSTEIN

[1977] Groupes et Anneaux Reticules, Lecture Notes in Mathematics
#608 , Springer-Verlag, Berlin , 1977.

GARY F. BIRKENMEIER

[1989] Seminearrings and nearrings induced by the circle operation , pre ­
print, 1989.

GARY F. BIRKENMEIER & HENRY HEATHERLY

[1987] Operation inducing systems, Algebra Universal is 24 (1987) , 137 ­
148.

[1989] Embeddings of strongly right bounded rings and algebras , Comm.
Algebra 17 (1989) , 573 - 586.

G. D. BIRKHOFF & GARRETT BIRKHOFF

[1946] Distributive postulates for systems like boolean algebras, Trans.
Amer. Math. Soc. 60 (1946) , 3 - 11.

GARRETT BIRKHOFF

[1971] The role of modern algebra in computing , in G. Birkhoff & M. Hall ,
Jr . (eds .): Comput ers in Algebra and Number Theory, SIAM=AMS
Proceedings #4, American Mathematical Society , Prov idence, R.
I. , 1971.

[1973] Lattice Theory, 3rd Edition, Colloquium Publication #25 , Ameri­
can Mathematical Society, Providence, R.I. , 1973.

STEFANO BISTARELLI, UGO MONTANARI & FRANCESCA ROSSI

[1997a] Constraint solving over semirings, in Proceedings of IJCAI '95, Mor­
gan Kaufmann , 1995.

[1997b] Semiring-based const raint solving and optimization , J . Assoc.
Compo Mach . 44 (1997), 201 - 236.

R.1. BLAIR
[1953] Ideal lattice and the structure of rings, Trans. Amer. Math . Soc.

75 (1953) , 136 - 153.

MICHAEL N. BLEICHER & SAMUEL BOURNE

[1965] On the embeddability of partially ordered halfrings, J . Math .
Mech. 14 (1965) , 109 - 116.



______.REFERENCES _ 313

ANDRZEJ BLIKLE

[1971] Nets compl ete lattices with a composition, Bull. Acad . Polon . Sci.,
Ser sci. math. astr . phys . 19 (1971), 1123 - 1127.

[1977] Analysis of programs by algebraic means, in Mathematica/ Founda­
tions of Computer Science, Banach Center Publications #2, PWN,
Warsaw, 1977.

WAYNE BLIZARD

[1989] Multiset th eory, Notre Dame J . Formal Logic 30 (1989) , 36 - 66.

P. A. BLONIARZ, HARRY B. HUNT III & DANIEL J . ROSENKRANTZ

[1984] Algebraic structures with hard equivalence and minimization prob­
lems , J. Assoc. Compo Mach. 31 (1984) ,879 - 904.

STEPHEN L. BLOOM & ZOLTA.N ESIK

[1993] Iteration Theories , Springer-Verlag, Berlin, 1993.

STEPHEN L. BLOOM , N. SABADINI & R. F . C. WALTERS

[1996] Matrices, machines and behaviors, Appl. Categ. Struct. 4 (1996) ,
343 - 360.

THOMAS S. BLYTH

[1964] Matrices over ordered algebraic structures, J . London Math . Soc.
39 (1964) ,427 - 432.

[1965] The general form of residuated algebraic structures, Bull . Soc.
Math . France 93 (1965), 109 - 127.

THOMAS S. BLYTH & MELVIN F. JANOWITZ

[1972] Residuation Theory, Pergamon Press, Oxford, 1972.

KENNETH P. BOGART

[1969a] Distributive local noether lattices, Michigan Math . J . 16 (1969),
215 - 223.

[1969b] Nonimbeddable noether lattices, Proc. Amer. Math . Soc. 22
(1969), 129 - 133.

FRANCIS BORCEUX, J . ROSICKY & GILBERTE VAN DEN BOSSCHE

[1989] Quantales and CO-algebras, J . London Math . Soc. (2) 40 (1989),
398 - 404.

FRANCIS BORCEUX & GILBERTE VAN DEN BOSSCHE

[1986] Quantales and their sheaves, Order 3 (1986), 61 - 87.

MARIA MARGARITA BOTERO DE MEZA & HANNS J. WEINERT

[1971] Erweiterung topologischer Halbringe durch Quotienten und Differ­
entzenbildung, Jber. Deutsch Math .-Verein . 73 (1971) , 60 - 85.

SAMUEL BOURNE

[1951] The Jacobson radical of a semiring, Proc . Nat . Acad . Sci. U.S. A.
37 (1951),163 - 170.

[1952] On the homomorphism theorem for semirings, Proc. Nat . Acad .
Sci. U.S.A. 38 (1952), 118 - 119.



314 ______REFERENCES _

[1956] On multiplicative idempotents of a potent semiring, Proc. Nat.
Acad . Sci. U.S.A. 42 (1956) ,632 - 638.

[1961/2a] On normed semialgebras, Studia Math . 21 (1961/2), 45 - 54.
[1961/2b] On Banach *-semialgebras, Studia Math . 21 (1961/2),207 - 214.

[1962] On locally compact positive halffields , Math . Ann . 146 (1962), 423
- 426.

SAMUEL BOURNE & HANS J. ZASSE NHAUS

[1958] On the semiradical of a semiring, Proc. Nat . Acad . Sci. USA 44
(1958),907 - 914.

J . G . BRAKER & GEERT JAN OLSDER

[1993] The power algorithm in max algebr a , Linear Alg. App!. 182 (1993) ,
67 - 89.

J . G . BRAKER & J. A. C. RESING

[1993] On a generalized asymptoticity problem in max algebra, Di screte
Eve nt Systems: Mod eling and Control (Pragu e, 1992), Progr. Sys­
tems Control Theory , #13, Birkhauser , Basel , 1993, 125-139.

CAROLYN BROWN & DO UG GURR

[1993a] A representation theorem for quantales, J . Pure App!. Alg. 85
(1993), 27 - 42.

[1993b] Relations and non-commutative linear logic, preprint , 1993.

PETER BRUCKER

[1972] R-Netzwerke und Matrix Algorithmen , Computing 10 (1972) , 271
- 283.

P ETER BRUCKER, W . PAPENJOHANNI & UWE ZIMMERMANN

[1984] A dual optimality criterion for algebraic linear programs, Ann . Dis­
crete Math . 19 (1984) , 35 - 40.

GREGORY W . BRUNFIEL

[1979] Partially Ord ered Rings and Semi-Algebraic Geom etry, London
Math . Soc. Lecture Note Series #37 , Cambridge University Press,
Cambridge, 1979.

G. BRU NGS & H. LAKSER

[1975] Injective hulls of semilattices, Canad . Math . Bul!. 13 (1975) , 297
- 298.

JAN USZ A. BRZOZOWSKI

[1964] Derivatives of regular events, J . Assoc. Compo Mach . 11 (1964) ,
481 - 494.

M. PAZ BUJA NDA JA UREGUI & MIGUEL L. LAPLAZA GRACIA

[1967] Una generalizacion del concepto de anill o local (conclusion) , Rev.
Mat . Hispano-Americana 27 (1967) ,63 - 10l.

RICHARD G. BURTON

[1975] Fracti onal elements in multiplicative lat ti ces, Pacific J. Math . 56
(1975) ,35 - 49.



______REFERENCES _ 315

PETER BUTKOVIC

[1985] Necessary solvability condit ions of syst ems of linear ext remal equa­
tions , Discret e Applied Math. 10 (1985) , 19 - 26.

DAN BUTNARIU & ERICH PETER KLEMENT

[1993] Triangular Norm-Based Measures and Games with Fuzzy Coali­
t ions, Kluwer , Dordrecht , 1993.

DAN BUTNARIU, ERICH PETER KLEMENT & SAMY ZAFRANY

[1995] On triangular norm-based propositional fuzzy logics, Fuzzy Sets
and Systems 69 (1995), 241 - 255.

CAO ZHIQIANG

[1984] Comparison between two kinds of semilattice-semigroups, Acta
Math. Scientia 4 (1984), 311 - 317.

[1993] An algebraic syst em generalizing the fuzzy subsets of a set, in P.
Wang (ed.): Advances in Fuzzy Sets, Possibility Theory, and Ap ­
plications , Plenum, New York, 1993, 71 - 80.

CAO ZHIQIANG , KI HANG KIM & FRED W. ROUSH

[1984] Incline Algebra and Applications, Ellis Horwood , Chichester, 1984.

BERNARD A. CARRE

[1971] An algebra for network routing problems , J . Inst . Math . Applies.
7 (1971) , 273 - 294.

[1979] Graphs and Networks, Oxford Univ. Press, Oxford , 1979.

E. D. CASHWELL & C. J . EVERETT

[1959] The ring of number-theoretic functions , Pacific J. Math. 9 (1959) ,
975 - 985.

GIANPIERO CATTANEO & ALESSANDRO MANIA

[1974] Abstract orthogonality and orthocomplementation , Proc. Cam­
bridge Phil. Soc. 76 (1974) , 115 - 132.

GIANPIERO CATTANEO & GIUSEPPE MARINO

[1988] Non-usual orthocomplementations on partially ordered sets and
fuzziness, Fuzzy Sets and Systems 25 (1988) , 107 - 123.

KATARINA CECHLAROvA & JAN PLAvKA

[1996] Linear independence in bottleneck algebras , Fuzzy Sets and Sys­
tems 77 (1996), 337 - 348.

STEFAN CHANAS

[1987] Fuzzy optimization in networks, in J . Kacprzyk & S. A. Orlovski
(eds .): Optimization Models Using Fuzzy Sets and Possibility The­
ory, Reidel, Dordrecht , 1987.

RITA CHAUDHURI & A. MUKHERJEA

[1980] Idempotent boolean matrices, Semigroup Forum 21 (1980), 273 ­
282.



316 ______REFERENCES _

SHIOW-WEN WENDY JIANG CHEN

[1987] Decision Support in Manufacturing Systems Using Activity Net­
work, PhD. Thesis, University of Iowa, Ames, 1987 .

LUDMILA A. CHERKASOVA

[1988] On models and algebras for concurrent processes, in M. P. Chytil et
al. (eds .) : Mathematical Foundations for Computer Science 1988,
Lecture Notes in Computer Science #324, Springer-Verlag, Berlin,
1988.

L. H. CHIN & ALFRED TARSKI

[1951] Distributive and modular laws in the arithmetic of relation alge­
bras, Univ . Calif. Publ. Math. 1 (1951),341 - 384.

HAN HYUK CHO

[1992] On the regular fuzzy matrices, in Myung-Hwan Kim (ed.) : Pros­
pects of Modern Algebra, Proceedings of Workshops in Pure Math­
ematics #12 , Pure Mathematics Research Assn ., The Korean Aca­
demic Council , 1992.

CHRISTIAN CHOFFRUT

[1992] Rational relations and rational series, Theor. Compo Sci. 98
(1992) ,5 - 13.

CHRISTIAN CHOFFRUT & GIOVANNI PIGHIZZINI

[1997] Distances between languages and reflexivity of relations , in I. Pri­
vara & P. Ruzicka (eds .): Mathematical Foundations of Computer
Science 1997, Lecture Notes in Computer Science #1295 , Springer­
Verlag , Berlin, 1997.

NOAM CHOMSKY AND MARCEL PAUL SCHUTZENBERGER

[1963] The algebraic theory of context-free languages, in P. Brafford & D.
Hirschberg (eds .) : Computer Programming and Formal Systems ,
North Holland , Amsterdam, 1963.

A. C. CHOUDHURY

[1957] The doubly distributive m-lattice, Bull. Calcutta Math . Soc . 49
(1957) , 71 - 74.

R. PROCESI CIAMPI & R. ROTA

[1987] The hyperring spectrum, Rivis . Mat. Pura ed Appl. 1 (1987) ,71
- 80.

ALFRED H. CLIFFORD

[1958] Totally-ordered commutative semigroups, Bull. Amer. Math . Soc.
64 (1958), 305 - 316.

ALFRED H. CLIFFORD & G . B. PRESTON

[1961] The Algebraic Theory of Semigroups, vol. I, Mathematical Surveys
#7 , American Mathematical Society, Providence, 1961.



______REFERENCES _ 317

JEAN COCHET-TERRASSON, GUY COHEN , STEPHANE GAUBERT,
MICHAEL MeGETTRICK & JEAN-PIERRE QUADRAT

[1998] Numerical computation of spectral elements in max-plus algebra, to
appear, Proceedings of the IFAC Workshop on Systems, Structure
and Control, Nantes, 1998.

GUY COHEN , STEPHANE GAUBERT & JEAN-PIERRE QUADRAT

[1996] Kernels, images and projections in Dioids, preprint, 1996.
[1997] Linear projectors in the max-plus algebra, preprint, 1997.
[1998] Algebraic system analysis of timed Petri nets, in J . Gunawardena

(ed .) : Idempotency (Bristol 1994) , Publ. Newton Inst . #11 , Cam­
bridge Univ. Press, Cambridge, 1998,145 - 170.

PAUL M. COHN

[1965] Universal Algebra, Harper & Row, New York, 1965.
[1975] Algebra and language theory, Bull. London Math . Soc . 7 (1975),

1 - 29.

JOHN H. CONWAY

[1971] Regular Algebra and Finite Machines, Chapman and Hall, London ,
1971.

WILLIAM H. CORNISH

[1971] Direct summands in semirings, Math . Japon. 16 (1971), 13 - 19.

MARIE-FRANCOISE COSTE-ROY, MICHEL COSTE & LOUIS MAHE

[1980] Contribution to the study of the natural number object in elemen­
tary topoi, J . Pure Appl. Algebra 17 (1980), 36 - 68.

R. C. COURTER

[1969] Rings all of whose factor rings are semi-prime, Canad. Math . Bull.
12 (1969), 417 - 426.

THOMAS C. CRAVEN

[1991] Orderings on semirings, Semigroup Forum 43 (1991),45 - 52.

ROGER CRUON & PHILIPPE F . HERVE

[1965] Quelques resultats relatifs a une structure algebrique et a son ap­
plication au probleme central de l'ordonnancement , Rev . Franc.
Rech. Oper. 34 (1965), 3 - 19.

RAYMOND A. CUNINGHAME-GREEN

[1962] Describing industrial processes with interference and approximat­
ing their steady-state behavior, Op . Res. Quart . 13 (1962), 95 ­
100.

[1976] Projections in minimax algebra, Math . Programming 10 (1976) ,
111 - 123.

[1979] Minimax algebra, Lecture Notes in Economics and Mathematical
Systems #166, Springer-Verlag, Berlin, 1979.

[1983] The characteristic maxpolynomial of a matrix, J . Math . Anal.
Appl. 95 (1983), 110 - 116.



318 ______REFERENCES _

[1984] Using fields for semiring computations, Ann. Discrete Math . 19
(1984),55 - 74.

[1991] Minimax algebra and its applications, Fuzzy Sets and Systems 41
(1991),251 - 267.

RAYMOND A. CUNINGHAME-GREEN & W . F. BORAWITZ

[1984] Scheduling by non-commutative algebra, Ann . Discrete Math. 19
(1984) , 75 - 82.

RAYMOND A. CUNINGHAME-GREEN & RAINER E. BURKARD

[1984] Eigenfunctions and optimal orbits , J . Comp o Appl. Math. 11
(1984), 83 - 94.

RAYMOND A. CUNINGHAME-GREEN & F . HUISMAN

[1982] Convergence problems in minimax algebra, J . Math. Anal. & App!.
88 (1982), 196 - 203.

RAYMOND A. CUNINGHAME-GREEN & P. F. J. MEIJER

[1980] An algebra for piecewise-linear minimax problems, Discrete App!.
Math . 2 (1980), 267 - 294.

LOUIS PALE

[1976a] Monic and monic free ideals in a polynomial semiring, Proc . Amer .
Math . Soc. 56 (1976), 45 - 50.

[1976b] Monic and monic free ideals in a polynomial semiring in several
variables, Proc. Amer. Math . Soc. 61 (1976),209 - 216.

[1977a] The k-closure of monic and monic free ideals in a polynomial semir­
ing, Proc . Amer. Math. Soc. 64 (1977) , 219 - 226.

[1977b] Direct sums of semirings and the Krull-Schmidt theorem, Kyung­
pook Math . J . 17 (1977),135 - 141.

[1980] A note on the structure of ideals in a Euclidean ring , Kyungpook
Math. J . 20 (1980), 279.

[1981] Standard halfrings and standard ideals , Kyungpook Math . J . 21
(1981) ,281 - 288.

[1982] The structure of monic ideals in a noncommutative polynomial
semiring, Acta Math . Acad . Sci. Hungar . 39 (1982) , 163 - 168.

[1983] Extending certain semiring homomorphisms to ring homomor­
phisms, Kyungpook Math . J . 23 (1983), 13 - 18.

LOUIS DALE & PAUL J . ALLEN

[1976] Ideal theory in polynomial semirings, Pub!. Math . Debrecen 23
(1976) , 183 - 190.

LOUIS DALE & DOROTHY 1. HANSON

[1977] The structure of ideals in a Euclidean semiring, Kyungpook Math.
J . 17 (1977) , 21 - 29.

LOUIS DALE & JANET D. PITTS

[1978] Euclidean and gaussian semirings, Kyungpook Math . J . 18 (1978),
17 - 22.



______.REFERENCES _ 319

B. DE BAETS & E. E. KERRE
[1993a] The generalized modus ponens and triangular fuzzy data model,

Fuzzy Sets and Systems 59, (1993), 305 - 317.
[1993b] Fuzzy relational compositions, Fuzzy Sets and Systems 60 (1993)

109 - 120.

RICHARD DEDEKIND

[1894] Uber die Theorie der ganzen algebraischen Zahlen, Supplement XI
to P. G. Lejeune Dirichlet : Vorlesungen iiber Zahlentheorie, 4 Aufl.,
Druck und Verlag, Braunschweig, 1894.

S. DELSARTE

[1948] Fonctions de Mobius sur les groupes Abeliens finis, Annals of Math .
49 (1948), 600 - 609.

A. DE LUCA & S. TERMINI

[1972] Algebraic properties offuzzy sets , J. Math . Anal. Appl. 40 (1972) ,
373 - 386.

PIERRE DEL MORAL

[1998] Maslov optimization theory, topological aspects , in J . Gunawar­
dena (ed.): Idempotency (Bristol 1994), PubI. Newton Inst. #11,
Cambridge Univ. Press, Cambridge, 1998,354 - 382.

PIERRE DEL MORAL & M. DOISY

[1999a] Maslov idempotent probability calculus, preprint, 1999.
[1999b] On the applications of Maslov optimization theory, preprint , 1999.

PIERRE DEL MORAL & GERARD SALUT
[1998] Random particle methods in (max , +) optimization problems, in

J . Gunawardena (ed.): Idempotency (Bristol 1994), Publ. Newton
Inst. #11 , Cambridge Univ. Press , Cambridge, 1998,383 -391.

M.-M. DEZA & 1. G. ROSENBERG
[1986] General convolutions motivated by designs , Acta Univ. Carolinae

Math . et Phys. 27 (1986), 49 - 66.

ANTONIO DI NOLA
[1985] Relational equations in totally ordered lattices and their complete

solution, J . Math . Anal. Appl. 107 (1985) , 148 - 155.
[1990] On solving relational equations in Brouwerian lattices, Fuzzy Sets

and Systems 34 (1990) , 365 - 376.

ANTONIO DI NOLA & ADA LETTIERI

[1989] Relation equations in residuated lattices, Rend . Circ . Mat .
Palermo 3 (1989) , 246 - 256.

TAMMO tom DIECK

[1979] Transformation Groups and Representation Theory, Lecture Notes
in Mathematics #766 , Springer-Verlag, Berlin, 1979.

ROBERT P. DILWORTH

[1939] Non-commutative residuated lattices, Trans. Amer . Math . Soc.
46 (1939), 426 - 444.



320 ______.REFERENCES _

[1962] Abstract commutative ideal theory, Pacific J . Math. 12 (1962),481
- 498.

HANS DOBBERTIN

[1979] Note on associative Newman algebras, Algebra Univ . 9 (1979), 396
- 397.

[1982] On Vaught's criterion for isomorphisms of countable Boolean alge­
bras, Algebra Univ . 15 (1982) ,95 - 114.

J .-P. DOIGNON, P. MONJARET, M. ROUBENS & Ph. VINCKE

[1986] Biorders families, valued relations and preference modelling, J.
Math . Psych . 30 (1986) , 435 - 480.

I. 1. DORROH

[1932] Concerning adjunctions to algebra, Bull. Amer. Math . Soc. 38
(1932),85 - 88.

RONALD EUGENE DOVER & HOMER E. STONE

[1965] On semisubtractive halfrings, Bull Austral. Math . Soc. 12 (1965) ,
371 - 378.

CLIFFORD HUGH DOWKER & DONNA STRAUSS

[1974] Separation axioms for frames , in Topics in Topology , Keszthely
(Hungary) 1972, Colloq. Math. Soc. Janos Bolyai #8 , North
Holland, Amsterdam, 1974.

XIAOYONG DU & NAOHIRO ISHII

[1995] An algebraic rewriting theorem of multiple linear recursions and its
applications, in N. Revell & A Min Tjoa (eds .): Sixth Conference
on Database and Expert Systems Applications, Lecture Notes in
Computer Science #978 , Springer-Verlag, Berlin , 1995.

R. DUARTE RAMOS

[1978] Des questions d'absorption en demi-anneaux, in Estudos de Alge­
bra, Geometric et Analise, No. II, Centenario da Academia das
Ciencias de Lisboa, Lisbon , 1978.

DIDIER DUBOIS & HENRI PRADE

[1980] Fuzzy Sets and Systems, Theory and Applications, Academic Press ,
New York, 1980.

MARIE-LOUISE DUBREIL-JACOTIN , LEONCE LESIEUR & ROBERT
CROISOT

[1953] Lecons sur la Theorie des Treillis, des Structures Algebriques Or­
donnees ei Trei/lis Geotnetriques, Gauthier-Villars, Paris , 1953.

G. DUCHAMP & J . Y. THIBON

[1988] Theoremes de transfert pour les polynomes partiellement commu­
tatifs , Theoretical Compo Sci. 57 (1988), 239 - 249.

P. I. DUDNIKOV

[1992] Endomorphisms of the sub module of bounded functions , in V. P.
Maslov & S. N. Sambourskif (eds .): Idempotent Analysis, Advances



______REFERENCES _ 321

in Soviet Mathematics #13 , Am eri can Mathematical Society, Prov­
idence, 1992 .

P. I. DUDNIKOV & S. N. SAMBOURSKII

[1989] Spectra of endomorphisms of semimodules over semirings with an
idempotent operation , Dokl. Acad . Nauk SSR 308 (1989), 780 ­
783. [Russian]

[1991] Endomorphisms of semimodules over semirings with an idempotent
opration, Izv . Akad . Nauk SSSR Ser . Math . 55 (1991), 93 - 109.
[Russian]

[1992] Endomorphisms of finitely generated free semimodules, in V. P.
Maslov &S. N. Sarnbourskif (eds .) : Idempotent Analysis, Advances
in Soviet Mathematics #13, American Mathematical Society, Prov­
idence, 1992 .

BILL J . DULIN & JAMES R. MOSHER

[1972] The Ded ekind property for semirings, J. Austral. Math . Soc . 14
(1972) , 82 - 90 .

ARYEH DVORETZKY, ABRAHAM WALD & J . WOLFOWITZ

[1951] Relations among certain ranges of vector measures, Pacific J . Math .
1 (1951),59 - 74.

CHARLESEHRESMANN

[1957] Gattungen von lokalen Strukturen , Jber . Deutsch . Math.-Verein .
60 (1957/8), 59 -77.

SAMUEL ElLENBERG

[1974] Automata, Languages, and Machines, vol. A, Academic Press, New
York , 1974 .

SAMUEL ElLENBERG & MARCEL PAUL SCHUTZENBERGER

[1969] Rational sets in commutative monoids, J. Algebra 13 (1969) ,173
- 191.

R . EILHAUER

[1968] Zur Theorie der Halbkorper . I, Acta Math . Acad . Sci . Hungar .
19 (1968), 23 - 45 .

CALVIN C. ELGOT

[1975] Monadic computation and iterative algebraic theories , in H. E.
Rose & J . C . Shepherdson (eds .) : Logic Colloquium '73, North
Holland, Amsterdam, 1975.

[1976] Matricial theories , J . Algebra 42 (1976) , 391 - 422 .

D. D. ERMOLAEVA

[1989] Automorphisms of the max-matrix system , Vest . Moskov. Univ .,
Matematika 44 (1989), 3 - 8. [Russ ian]

FANG JIN-X UAN

[1993] Studies in fuzzy relations using triangular norms, Info Sci . 67
(1993), 127 - 135.



322 ______REFERENCES _

SHALOM FEIGELSTOCK
[1980] Radicals of the semiring of abelian groups , Publ. Math . Debrecen

27 (1980), 89 - 92.

W. FENCHEL

[1949] On the conjugat e convex functions, Canad . J. Math . 1 (1949), 73
- 77.

A. V. FINKELSTEIN & M. A. ROYTBERG

[1993] Computation of biopolymers: a general approach to different prob­
lems, BioSystems 30 (1993) , 1 - 20.

ISIDORE FLEISCHER

[1995] Abstract ideal theory, Normal 43 (1995), 120 - 135.

JOHN G. FLETCHER

[1980] A more general algorithm for computing closed semi ring costs be­
tween vertices of a directed graph , Comm. Assoc. Compo Mach.
23 (1980) , 350 - 351.

MICHEL FLIESS

[1971] Sur la definition des series formell es algebriqu es, C. R. Acad . Sci.
Paris 273, A284 - A287.

[1974] Matrices de Hankel, J . Math . Pures et Appl . 53 (1974) ,197 - 224.

JANOS FODOR

[1992] Traces offuzzy binary relations, Fuzzy Sets and Systems 50 (1992),
331 - 341.

TATYANA S. FOFANOVA
[1971] Polygons over distribu tive lattices, Sibir . Mat. Z. 12 (1971) , 1195

- 1199. [Russian]
[1982] Polygons over distributive lattices, in B. Csakany et al. (eds.) :

Universal Algebra, Colloq . Math . Soc. Janos Bolyai #29, North
Holland , Amst erdam, 1982.

M. J . FRANK

[1979] On the simultaneous associativity of F(x , y) and x + y - F(x, y) ,
Aeq. Math. 19 (1979) , 194 - 226.

D. H. FREMLIN

[1974] Topological Riesz Spaces and Measure Theory, Cambridge Univer­
sity Press , Cambridge, 1974.

HANS FREUDENTHAL

[1936] Teilweise geordnete Moduln, Proc . Akad . Wet . Amsterdam 39
(1936) ,641 - 651.

PETER FREYD

[1966] Algebra valued functors in general and tensor products in particu­
lar , Colloq . Math . 14 (1966) , 89 - 106.

VERONIQUER FROIDURE & JEAN-ERIC PIN

[1998] Algorithms for computing finite semigroups, preprint , 1998.



______REFERENCES _ 323

LASZLO FUCHS

[1954] A lattice-theoretic discussion of some problems in additive ideal
theory, Acta Math . Acad . Sc. Hung . 5 (1954), 299 - 313.

[1963] Partially Ordered Algebraic Systems, Addison-Wesley, Reading,
Mass., 1963.

LASZLO FUCHS & OTTO STEINFELD

[1963] Principal components and prime factorization in partially ordered
semigroups, Ann. Univ. Sci. Budapest. Sec. Math . 6 (1963), 103
- 11I.

R. FULLER & H.-J . Z.IMMERMANN

[1992] On computation of the compositional rule of inference under trian­
gular norms, Fuzzy Sets and Systems 51 (1992) ,267 - 275.

GIORGIO GALLO & STEFANO PALLOTTINO

[1986] Shortest path methods: a unifying approach , in G. Gallo & C.
Sandi (eds.): Netflow at Pisa, Mathematical Programming Study
#20 , North Holland , Amsterdam, 1986.

[1988] Shortest path algorithms, Ann . Oper . Res. 13 (1988), 3 - 79.

F . R. GANTMACHER

[1959] Applications of the Theory of Matrices, Interscience, New York,
1959.

BARRY J . GARDNER

[1993] Some abstract algebra from the elementary calculus course, Int . J .
Math. Educ . Sci. Technol. 24 (1993) , 781 - 789.

STEPHANE GAUBERT

[1995] Performance evaluation of (max , +) automata, IEEE Transactions
on Automatic Control 40 (1995), 2014 - 2025.

[1996a] Systemes Dynamiques aEvenements Discrets (Notes de cours com­
mun , EN-SMP , Option Automatique & DEA ATS Orsay) , INRIA
Rocquencourt , Le Chesnay, 1996.

[1996b] On the Burnside problem for semigroups of matrices in the
(max, +) algebra, Semigroup Forum 52 (1996) , 271 - 292.

STEPHANE GAUBERT & JEAN MAIRESSE

[1998] Task resource models and (max , +) automata, in J . Gunawardena
(ed .): Idempotency (Bristol 1994), Publ. Newton Inst . #11 , Cam­
bridge Univ. Press, Cambridge, 1998, 133 - 144.

[1999] Modeling and analysis of timed Petri nets using heaps of pieces, to
appear , IEEE Transactions on Automatic Control, 1999.

STEPHANE GAUBERT & MAX PLUS

[1997] Methods and applications of (max, +) linear algebra, in R. Reis­
chuk & M. Morvan (eds.): STAGS 97, Lecture Notes in Computer
Scvience #1200 , Springer-Verlag, Berlin , 1997.



324 ______REFERENCES _

BRUNO GAUJAL & ALAIN JEAN-MARIE
[1998] Computational issues in recursive stochastic systems, in J. Gu­

nawardena (ed .): Idempotency (Bristol, 1994), Publ. Newton Inst .
#11 , Cambridge Univ. Press , Cambridge, 1998,209 - 230.

F. GECSEG & 1. PEAK

[1972] Algebraic Theory of Automata, Akademai Kaido, Budapest, 1972.

IZRAIL ' GEL 'FAND

[1941] Normiert e Ringe , Mat . Sbornik 9 (1941) , 3 - 23.

GEORGE GEORGESCU

[1 988] Some sheaf constructions for distributive lattices, Bull. Math. Soc.
Sci. Math . R. S. Roum . 32 (1988) ,299 - 303.

YAN GEORGET & PHILIPPE CODOGNET

[1998] Compiling semiring-based constraints with clp(FD,S) , preprint ,
1998.

GERHARD GIERZ et al.

[1980] A Compendium of Continuous Lattices, Springer-Verlag , Berlin ,
1980.

B. GIFFLER

[1963] Scheduling general production system using schedule algebra, Nav.
Res. Log. Quart . 10 (1963) ,237 - 255.

[1968] Schedule algebra: a progress report , Nav. Res. Log. Quart. 15
(1968) ,255 - 280.

ROBERT GILMER

[1972] Multiplicative Ideal Th eory, Marcel Dekker, New York , 1972.

E. GIRALDES

[1978a) Sur les demi-anneaux a division a droite, in Esiudos de Algebra,
Geometria et Analise, No. II , Centenario da Academia das Ciencias
de Lisboa, Lisbon , 1978.

[1978b) Sue les demi-ann eaux inverses, in Esiudos de Algebra, Geometric et
Analise, No. II , Centenario da Academia das Ciencias de Lisboa,
Lisbon, 1978.

JEAN-YVES GIRARD

[1987) Linear Logic, J . Th eoret. Compo Sci. 50 (1987) ,1 - 102.
[1989) Towards a geometry of interaction , in J. W. Gray & A. Scedrov

(eds.): Categories in Computer Science and Logic, Contemporary
Mathematics #92 , American Mathematical Society, Providence,
1989.

YEHOSHAFAT GIVE 'ON

[1 964] Lattice matrices, Inform. and Control 7 (1964) , 477 - 484.

KAZIMIERZ GLAZEK

[1968] On certain characterizat ions of distributive lattices, Colloq. Math.
19 (1968) , 195 - 198.



______REFERENCES _ 325

[1 985] A Short Guide th rough th e L it erature on Se mirings, Math emati cal
Insti tu te, Univers ity of Wroclaw , Poland , 1985.

JOSEPH A. GOGU EN

[1967] L-fuzzy sets , J . Math. Ana l. Appl. 18 (1967) , 145 - 174.
[1969] The logic of inexact concepts, Synth ese 19 (1968/69) , 325 - 373.

JONATHAN S. GOLAN

[1 986] Torsion T heories, Longm an Scientific and Technical , Harlow, 1986.
[1987] Lin ear Topologies on a R ing: an Overview, Longm an Scientific and

Technical , Harl ow, 1987.
[1991] Informat ion semimo dules and absorbing subsemimo dules, J . Math .

(Hanoi) 19 (1991) , 1 - 21.
[1 992] Th e T heory of Se mirings, with Applicat ion s in M athe m atics and

Th eoreti cal Com puter Scie nce, Longman Scientifi c and Technic al ,
Harlow , 1992.

[1996a] Norms , semirings, and power algebras , in S. Parvathi et al. (eds) :
Proce edings of th e Fourth Ramanujan S ym posium on Algebra and
its Applications, Publications of th e Ram anuj an Institute #5 , Uni­
versity of Madras , Madras , 1996.

[1996b] Semi rings of form al series over hyperm onoids: some int eresting
cases, Kyungpook Math. J . 36 (1996), 107 - 111.

[1997] A fram ework for consideration of fuzzy Petri nets, in Proceedings
of F UZZY '97, Israel Ministry of Science, 1997.

JO NATHA N S. GOLAN, ALEXA NDRU MATE ESCU & DRA GOS VAIDA

[1996] Semirings and pa ra llel composit ion of processes, J . Automata , Lan­
guages and Combinatorics 1 (1996), 199-217.

JONATHA N S. GOLAN & HAROLD SIMMONS

[1 988] Deri vat ives, N uclei an d Dimensions on th e Fram e of Torsion T he­
ories , Longm an Scientific and Technical. Harlow, 1988.

JONATHAN S. GOL AN & WANG HAUXIO NG

[1996] On emb edding in complete semirings , Comm . Alg. 24 (1996) , 2945
- 2962.

MARTIN GOLDSTERN

[1985] Vervollstiindigung von Halbringen , Diplom arb eit , Technische Uni­
versitat Wien, 1985.

MICH EL GONDRAN

[1975] Path algebra and algorithms, in B. Roy (ed.) : Com binatorial Pro ­
gramming : M eth ods and Applications , D. Reidel , Dordrecht , 1975.

[1979] Les elements p-regul iers dans les dioides, Discrete Math . 25 (1979),
33 - 39.

MICHEL GON DRAN & MICHEL MINOUX

[1978] L'independance lineair e dans les dioides, Bulletin de la Direction
Etudes et Recherches, EDF, Ser . C, 1 (1978),67 - 90.

[1984a] Graph s an d A lgorithms, Wiley-In terscience, New York , 1984.



326 ______REFERENCES _

[1984b] Linear algebra in dioids: a survey of recent results , Ann . Discrete
Math . 19 (1984) , 147 - 164.

LEON GONZALEZ

[1999] A note on th e infinitary action of triangular norms and conorms,
Fuzzy Sets and Syst ems 101 (1999), 177 - 180.

SIE GFRIED GOTTWALD

[1984] T-Normen und <p-Operatoren als Wahrheitswertfunktionen mehrw­
ertiger Junktoren, in G. Wechsung (ed.) : Freqe Conference , 1984 ,
Akad emie-Verlag, Berlin , 1984.

CURTIS GREENE

[1982] T he Mobius function of a partially ordered set , in I. Rival (ed .):
Ord ered Sets, D. Reidel, Dordrecht, 1982.

JEREMY GUNAWARDENA

[1994] Min-Max functions, Discrete Event Dynamical Systems 4 (1994),
377 - 406.

[1998] An introduction to idempotency, in J . Gun awardaea (ed .): Idem­
pot en cy (Bristol 1994), Publ . Newton Inst . #11 , Cambridge Univ.
Press, Ca mbridge, 1998, 1 - 49.

GUO SI-ZHENG , WANG PEI-ZHUANG , ANTONIO DI NOLA & S. SESSA

[1988] Further contributions to the study of finit e fuzzy relation equat ions,
Fuzzy Sets and Systems 26 (1988) , 93 - 104.

M. GUPTA & T . YAMAKAWA

[1988] Fuzzy Computing: Th eory , Hardware , and Applications, Elsevier ,
Amsterd am , 1988.

VINEET GUPTA

[1994] Chu Spac es: A Model of Concurrency, PhD. Thesis, Department
of Computer Science, Stanford University, 1994.

VERENA GURUSWAMI

[1976] Torsion Th eories and Localizat ions for M- sets, PhD. Thesis, McGill
University , Montreal , 1976.

FERNANDO GUZMAN

[1992] The variety of Boolean semirings, J . Pure and Appl . Alg. 78
(1992), 253 - 270.

DORTE HAFTENDORN

[1978] Additiv kommutative und idempotente Halbringe mi t Faktorbedin­
gung. I, Publ . Math . Debrecen 25 (1978), 107 - 116.

[1979] Additiv kommutative und idempotente Halbringe mit Fak torbedin­
gung, II , Publ . Math . Debr ecen 26 (1979) , 5 - 12.

M. HALL & S. PIANSKOOL

[1996] Injecti vity for cancellat ive semimodules, South east Asian Bull .
Math . 20, no . 4 (1996), 85 - 93.



______REFERENCES _ 327

FRANZ HALTER-KOCH

[1998) Ideal Systems, an Introduction to Multiplicative Ideal Theory, Mar­
cel Dekker, New York , 1998.

ELDON HANSEN

[1992) Global Optimization Using Interval Analysis, Marcel Dekker , New
York , 1992.

J . HANUMA NTHACHARI, K. VENU RAJU & HANNS J . WEINERT

[1986) Some results on partially ordered semirings and semigroups, in S.
Wolfenst ein (ed) : Algebra and Order, Proceedings of the First In­
ternational Symposium on Ordered Algebraic St ructures,
Heldermann-Verlag, Berlin , 1986.

KOSABURO HASHIGUCHI

[1982) Limitness theorem for finit e automata with distance functions, J .
Compo Syst . Sci. 24 (1982) , 233 - 244.

HIROSHI HASHIMOTO

[1984] Subinverses of fuzzy matrices , Fuzzy Sets and Systems 12 (1984) ,
155 - 168.

[1985) Transitivity of generalized fuzzy matrices , Fuzzy Sets and Syst ems
17 (1985), 83 - 90.

HENRY E. HEATHERLY

[1974) Semi ring multiplications on commutative monoids, Publ. Math .
Debrecen 21 (1974) , 119 - 123.

UDO HEBISCH

[1990) The Kleene th eorem in countably complete semirings , Bayr euther
Math . Schrift . 31 (1990),55 - 66.

[1992) Eine algebraische Theorie unendlicher Summen mi t Anwendungen
auf Halbgruppen und Halbringe, Bayreuther. Math . Schrift. 40
(1992) ,21 - 152.

UDO HEBISCH & HANNS J . WEINERT

[1987) On Euclidean semirings, Kyungpook Math . J . 27 (1987) , 61 - 88.
[1993) Halbringe, Teubner , Stuttgart , 1993.
[1996) Semi rings and semifields , in M. Hazewinkel (ed .) : Handbook of Al­

gebra, vol. I, North-Holland, Amsterdam, 1996, 425 - 462.

REINHOLD HECKMANN

[1993) Observable modules and power domain constructions , Algebra,
Logic & Applications 5 (1993) , 159 - 187.

H. HELLENDOORN

[1990] Closure properties of the compositional rule of inference , Fuzzy
Sets and Systems 35 (1990) , 163 - 183.

MATTHEW HENNESSY

[1988] Algebraic Theory of Processes, MIT Press, Cambridge, Mass ., 1988.



328 ______REFERENCES _

MELVIN HENRIKSEN

[1958] Ideals in semirings with commutative addition, Notices Amer .
Math . Soc . 5 (1958), 321.

[1958/9] The an(a) = a theorem for semirings, Math . Japon . 5 (1958/9),21
- 24.

WOLFGANG HERFORT & WERNER KUICH

[1984] Semitopological semirings and pushdown automata, Math . Sys­
tems Theory 17 (1984), 279 - 291.

WIM H. HESSELINK

[1990] Command algebras, recursion , and program transformation, For­
mal Aspects of Computing 2 (1990), 60 - 104.

DENIS HIGGS

[1980) Axiomatic infinite sums - an algebraic approach to integration the­
ory, in W. Graves (ed.) : Proceedings of the Conference on Inte­
gration, Topology, and Geometry in Linear Spaces, Contemporary
Mathematics #2, American Mathematical Society, Providence,
1980.

DAVID HILBERT

[1890] tiber die Theorie der algebraischen Formen, Math . Ann . 36 (1890),
473 - 534 .

[1899) tiber den Zahlbegriff, Jber . Deutsch . Math.-Verein. 8 (1899), 180
- 184.

PETER J . HILTON

[1967] Some remarks concerning the semiring of polyhedra, Bull. Soc .
Math. Belg. 19 (1967),277 - 288.

EVAN HOUSTON & MUHAMMAD ZAFRULLAH

[1988] Integral domains in which each t-ideal is divisorial, Michigan Math .
J. 35 (1988), 291 - 300 .

JOHN M. HOWIE

[1976] An Introduction to Semigroup Theory , Academic Press, New York,
1976.

SUNG C. HU

[1975] A ternary algebra for probability computation of digital circuits,
in Proceedings of the 1975 International Symposium on Multiple­
Valued Logic, IEEE Computer Society, Long Beach, 1975 .

ROBERT A. HUMMEL & MICHAEL S. LANDY

[1987] A statistical viewpoint on the theory of evidence, IEEE Trans.
Pattern Analysis and Machine Intel. 10 (1988) , 235 - 247.

HARRY B. HUNT III

[1983] Finite languages and the computational complexity of algebraic
structures, in L. J. Cummings (ed .) : Combinatorics on Words,
Progress and Perspectives, Academic Press, New York , 1983 .



______REFERENCES _ 329

EDWARD V. HUNTINGTON
[1902] Complete sets of postulates for the theories of positive integral and

positive rational numbers , Trans. Amer. Math . Soc. 3 (1902),280
- 284.

SYED A. HUQ

[1973] The semiring of quotients of commutative semirings, Colloq . Math .
28 (1973) , 185 - 188.

HARRY C. HUTCHINS & HANNS J . WEINERT

[1990] Homomorphims and kernels of semifields , Period . Math . Hung . 21
(1990) , 113 - 152.

KENZO IIZUKA
[1959] On th e Jacobson radic al of a semiring, Tohoku Math . J . (2) 11

(1959),409 - 421.

YANNIS E. IOANNIDIS & EUGENE WONG

[1991] Towards an algebraic theory ofrecursion , J. Assoc. Compo Mach.,
38 (1991) 329 - 381.

KIYOSHI ISEKI

[1956a] Notes on topological spaces V. On structure spaces of semiring,
Proc . Japan . Acad. 32 (1956) ,426 - 429.

[1956b] Ideal th eory of semiring , Proc. Japan . Acad . 32 (1956) , 554 - 559.
[1958a] Ideals in semirings, Proc. Japan . Acad . 34 (1958) , 29 - 31.
[1958b] On ideals in semirings, Proc. Japan . Acad . 34 (1958), 507 - 509.

KIYOSHI ISEKI & YASUE MIYANAGA
[1956a] Notes on topological spaces III. On space of maximal ideals of a

semiring, Proc. Japan . Acad . 32 (1956),325 - 328.
[1956b] Notes on topological spaces IV. Function semiring on topological

spaces , Proc. Japan . Acad . 32 (1956) , 392 - 395.
KAZUO IWANO

[1987] T wo-dimensional Dynamic Graphs and th eir VLSI Applications,
PhD . Thesis , Princeton University, 1987.

HIROYUKI IZUMI , YASUYOSHI INAGAKI & NAMIO HONDA
[1984] A complete axiom syst em for algebra of closed-regul ar expressions,

in J . Paredaens (ed .): Automata, Languages and Programming,
Lecture Notes in Computer Science #172 , Springer-Verlag , Berlin ,
1984.

J . JACAS & 1. VALVERDE

[1996] On fuzzy relations, metrics, and cluster analysis , preprint , 1996.

GERARD JACOB

[1975] Sur un Theoreme de Shamir , Inform. and Control 27 (1975) , 218
- 226.

BERNARD JACOBSON & ROBERT J. WISNER

[1966] Matrix number theory, I: factorization of 2 x 2 unimodular matrices,
Pub . Math . Debrecen 13 (1966), 67 - 72.



330 ___ _ _ _ .R E F E R E N C E S _

NATHAN JA COBSON

[1980 ] Basic Algebra II, Freeman, San Francisco, 1980.
[1985] Basic Algebra I (2nd edition) , Freeman , San Francisco , 1985.

RYSZARD JANICKI

[1977] Vect ors of corou tines over Blikle nets , in M. Karpinski (ed .) : Fun­
damentals of Computation Theory, Lecture Not es in Computer Sci­
ence # 56, Springer-Verlag, Berlin , 1977.

MELVIN F. JANOWITZ

[1970] Principal multiplicative lattices , Pacific J . Math . 33 (1970) , 653­
656.

[1976] A note on Rickart rings and semi-Boolean algebras , Algebra Univ.
6 (1976) ,9 - 12.

MARK JERRUM & MARC SNIR

[1982] Some exact complexity results for straight-line computations over
semirings , J. Assoc . Compo Mach . 29 (1982), 874 - 897.

JAROSLAV JEZEK & TOMAS KEPKA

[1983] Simple semimo dules over commut at ive semirings, Act a . Sci. Math .
(Szeged) 46 (1983) , 17 - 27.

E. W . JOHNSON & JOHNNY A. JOHNSON

[1970] Lattice modules over semi- local Noether lattices, Fund. Math . 68
(1970) , 187 - 201.

JAMES S. JOHNSON & ERNEST G. MANES

[1970] On modules over a semiring, J . Algebra 15 (1970) , 57 - 67.

PETER T . JOHNSTONE

[1982] Stone Spaces, Cambridge University Press, Cambridge, 1982.
[1984] Wallman compactificat ion of local es, Houston J. Math. 10 (1984),

201 - 206.

PASCUAL JORDAN

[1949] Uber nicht commutative Verbande, Arch. Math . 2 (1949) , 56 - 59.

ANDRE JOYAL & MYLES TIERNEY

[1984] An Extension of the Galois Theory of Grothendieck, A. M. S. Mem­
oir #309 , Am erican Mathematical Society, Providence, 1984.

M. A. KAASHOEK & T . T . WEST

[1 974] Locally Compact Semi-Algebras, North Holland , Amsterd am , 1974.

R. E. KALMAN , P. L. FALB & MICHAEL A. ARBIB

[1969] Topics in Mathemati cal System Theory, McGraw-Hill , New York ,
1969.

GEORG KARNER

[1992] On limits in complete semirings, Semigroup Forum 45 (1992) , 148
- 165.



______REFERENCES _ 331

[1994] A topology for complete semirings, in P. Enjalbert et al. (eds.) ,
Proceedings of STACS '94, Lecture Notes in Computer Science
#775 , Springer-Verlag, Berlin, 1994, 389 - 400.

GEORG KARNER & WERNER KUICH

[1997] A characterization of abstract famili es of algebraic power series, in
I. Privara & P. Ruzi cka (eds .): Mathemati cal Foundations of Com­
puter Science 1997, Lecture Notes in Computer Science #1295,
Springer-Verlag, Berlin, 1997.

PAUL H. KARVELLAS

[1974] Inversive semirings, J . Austral. Math . Soc. 18 (1974) , 277 - 288.
[1975] Extension of a semigroup embedding theorem to semirings, Canad.

Math. Bull . 18 (1975), 297 - 298.

YEFIM KATSOV

[1997] Tensor products and injective envelopes of semimodules over addi­
tive regular semirings, Algebra Colloq. 4 (1997) , 121 - 131.

ARNOLD KAUFMANN

[1975] Introduction to the Theory of Fuzzy Subsets, vol. I, Academic Press,
New York, 1975.

ARNOLD KAUFMANN & MADAN M. GUPTA

[1985] Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold , New
York, 1985.

YASUO KAWAHARA & HITOSHI FURUSAWA

[1999] An algebraic formulation of fuzzy relations , Fuzzy Sets and Systems
101 (1999) , 125 - 135.

K. A. KEARNES

[1995] Semilattice modes I: th e associated semiring, Algebra Universalis
34 (1995), 220 - 272.

KLAUS KEIMEL

[1972] A unified th eory of minimal prime ideals , Acta Math . Acad . Sci.
Hungar. 23 (1972) , 51 - 69.

JIN BAI KIM

[1984] Inverses of Boolean matrices, Bull. Inst. Math . Acad . Sinica 12
(1984) , 125 - 128.

JIN BAI KIM , ALPHONSE BAARTMANS & NOR SHAKILA SAHADIN

[1989] Determinant theory for fuzzy matrices, Fuzzy Sets and Syst ems 29
(1989), 349 - 356.

KI HANG KIM

[1982] Boolean Matrix Theory and Applications, Marcel Dekker, New
York , 1982.

KI HANG KIM , MASAHARU MIZUMOTO, JUNICHI TOYODA & KOKICHI
TANAKA

[1975] L-fuzzy grammars, Inform. Sci. 8 (1975), 123 - 140.



332 ______REFERENCES _

KI HANG KIM & FRED W. ROUSH

[1980] Generalized fuzzy matrices, Fuzzy Sets and Systems 4 (1980), 293
- 315.

[1995] Inclines of algebraic structures, Fuzzy Sets and Systems 72 (1995),
189 - 196.

DAVID KIRBY

[1969] Closure operations on ideals and submodules, J. London Math.
Soc. 44 (1969), 283 - 291.

STEPHEN C. KLEENE

[1956] Representation of events in nerve nets and finite automata, in C.
E. Shannon & J . McCarthy (eds .): Automata Studies, Princeton
University Press, Princeton, 1956.

ERICH PETER KLEMENT

[1982] On the relationship between different notions of fuzzy measures, in
R. Yager (ed.): Fuzzy Set and Possibility Theory, Pergamon Press,
New York, 1982.

DONALD E. KNUTH

[1969] The Art of Computer Programming, vol. 2: Seminumerical Algo­
rithms, Addison-Wesley, Reading, Mass., 1969.

VASSILI N. KOLOKOL'TSOV

[1992] On linear, additive, and homogeneous operators in idempotent
analysis, in V. P. Maslov & S. N. Sambourskif (eds.) : Idempotent
Analysis, Advances in Soviet Mathematics #13, American Mathe­
matical Society, Providence, 1992.

VASSILI N. KOLOKOL'TSOV & VICTOR P. MASLOV

[1988] The general form of the endomorphisms in the space of continuous
functions with values in a numerical commutative semiring (with
the operation EEl = max), Soviet Math . Dokl. 36 (1988) , 55 - 59.

[1989a] Idempotent analysis as a technique of the theory of control and
optimal synthesis I, Funktsional. Anal. i Prilozhen. 23 (1989), 1 ­
14. [Russian]

[1989b] Idempotent analysis as a technique of the theory of control and
optimal synthesis II , Funktsional. Anal. i Prilozhen. 23 (1989), 53
- 62, 96. [Russian]

[1997] Idempotent Analysis and Applications, Kluwer, Dordrecht, 1997.
[1998] New differential equation for the dynamics of Pareto sets , in J .

Gunawardena (ed .): Idempotency (Bristol, 1994), Publ. Newton
Inst . #11, Cambridge Univ . Press, Cambridge, 1998,322 - 330.

MAURICE KOSKAS

[1969] Forme algebrique des theories de Stone-Gel'fand, Sem. P. Dubreil,
M. L. Dubreil-Jacotin, 1. Lesieur et C. Pisot 21 (1967/68) , Fasc.
2, Secretariat Mathematique, Paris, 1969.



______REFERENCES _ 333

DEXTER KOZEN

[1990] On Kleene algebras and closed semirings, in B. Rovan (ed .) : Math­
ematical Foundations of Computer Science , 1990, Lecture Notes in
Computer Science #452 , Springer-Verlag, Berlin, 1990.

DANIEL KROB

[1987] Monoids et semi- anneaux complets, Semigroup Forum 36 (1987) ,
323 - 339.

[1988] Equations K -Rationnelles, thesis , Universite Paris VII , 1988.
[1992] Models of a K-rational identity system, J . Compo Syst em Sci. 45

(1992),396 - 434.
[1998] Some automata-theoretic asp ects of min-max-plus semirings, in J .

Gunawardena (ed .): Idempotency (Bristol, 1994) , Publ . Newton
Inst . #11, Cambridge Univ . Press, Cambridge, 1998,70 - 79.

WOLFGANG KRULL

[1924] Axiomatische Begriindung der Algem einen Idealtheory, SitZ. phys.­
med . Soc . Erlangen 56 (1924) , 47 - 63.

WERNER KUICH

[1987] The Kleene and the Parikh theorem in complete semirings, in T .
Ottmann (ed .) : Automata, Languages and Programming, Lecture
Notes in Computer Science #267 , Springer-Verlag, Berlin, 1987.

[1991] Automata and languages generalized to w-continuous semirings,
Theor. Compo Sci. 79 (1991), 137 - 150.

[1995] Representations and compl ete semiring morphisms, Info . Process­
ing Letters 56 (1995), 293 - 298.

WERNER KUICH & ARTO SALOMAA

[1986] Semirings, A utom ata, Languages, EATCS Monographs on Theo­
retical Computer Science no. 5, Springer-Verlag, Berlin , 1986.

WERNER KUICH & F. J . URBANEK

[1983] Infinite linear systems and one counter languages , Theor. Compo
Sci. 22 (1983), 95 - 126.

J . KUNTZMANN

[1972] Theorie des Reseaux (Graph es) , Dunod , Paris , 1972.

SUSAN LaGRASSA

[1995] Semirings: Ideals and Polynomials, PhD . Thesis , University of
Iowa, 1995.

JOHN LAKE

[1976] Sets , fuzzy sets , multisets and functions , J . London Math . Soc. (2)
12 (1976), 323 - 326.

GERARD LALLEMENT

[1979] Semigroups and Combinatorial Applications, Wiley, New York ,
1979.

JOACHIM LAMBEK

[1966] Lectures on Rings and Modules , Blaisdell , Waltham , Mass ., 1966.



334 ______REFERENCES _

MAX D. LARSEN & PAUL J. McCARTHY

[1971] Multiplicativ e Theory of Ideals, Academic' Press, New York, 1971.

DONALD R. LaTORRE

[1965] On h-ideals and k-ideals in hemirings, Pub!. Math. Debrecen 12
(1965) , 219 - 226.

[1967a] A note on the Jacobson radical of a hemiring, Pub!. Math . Debre­
cen 14 (1967) , 9 - 13.

[1967b] The Brown-McCoy radicals of a hemiring , Pub!. Math. Debrecen
14 (1967) , 15 - 28.

[1970] A note on quotient semirings, Proc. Amer. Math. Soc. 24 (1970) ,
463 - 465.

EUGENE L. LAWLER

[1976] Combinatorial Optimization: Networks and Matroids, Holt, Rine­
hart and Winston, New York, 1976.

F. WILLIAM LAWVERE

[1964] An elementary theory of the category of sets, Proc. Nat. Acad .
Sci. 52 (1964) , 1506 - 1511.

[1973] Metric spaces, generaliz ed logic and closed categories, Rend. Sem.
Mat . e Fis . Milano (1973) , 135 - 166.

REBECCA LEE

[1979] Covers and associated primes in noetherian lattice modules, Hous­
ton J . Math. 5 (1979), 219 - 239.

LEE SIN-MIN

[1971] Axiomatic characterization of E-semirings, Acta Sci. Math.
(Szeged) 32 (1971) , 337 - 343.

DANIEL J . LEHMANN

[1977] Algebraic structures for transitive closure, Theor. Compo Sci. 4
(1977) , 59 - 76.

S. A. LESIN & S. N. SAMBOURSKII

[1992] Spectra of compact endomorphisms, in V. P. Maslov & S. N. Sam­
bourskif (eds .): Idempotent Analysis, Advances in Soviet Mathe­
matics #13 , American Mathematical Society, Providence, 1992.

RING LEUNG

[1988] On the topological structure of a finitely-gen erated semigroup of
matrices, Semigroup Forum 37 (1988), 273 - 287.

YAAKOV LEVITZKI

[1946] On powers with transfinite exponents, Riveon LeMathematika 1
(1946) , 8 - 13. [Hebrew]

LING CHO-HSIN

[1966] Representation of associa tive functions , Pub!. Math . Debrecen 12
(1966) , 189 - 212.



______REFERENCES _ 335

GRIGORI L. LITVINOV & VICTOR P. MASLOV

[1998] The correspondence principle for idempotent calculus and some
computer applications , in J . Gunawardena (ed .) : Idempotency
(Bristol, 1994), Pub!. Newton Inst. #11 , Cambridge Univ . Press,
Cambridge , 1998 , 420 - 443.

GRIGORI L. LITVINOV , VICTOR P. MASLOV & A. Ya. RODIONOV

[1998] Unifying approach to software and hardware design for scientific
calculations, preprint , 1998 .

GRIGORI L. LITVINOV , VICTOR P. MASLOV & A. N. SOBOLEVSKII

[1998] Idempotent mathematics and interval analysis, preprint , 1998 .

LID WANG -JIN

[1982] Fuzzy invariant subgroups and fuzzy ideals , Fuzzy Sets and Systems
8 (1982), 133 - 139.

DANIEL LOEB

[1992] Sets with a negative number of elements, Advances in Math 91
(1992),64 -74 .

HOOI-TONG LOH

[1967] Not es on semirings, Math . Mag . 40 (1967) , 150 - 152.

HOOI-TONG LOH & H. H. TEH

[1966/ 7] Som e theorems on groupoid sem irings, Nanta Math . 1 (1966/7) ,
33 - 37.

P. LORENZEN

[1939] Abstrakte Begriindung der multiplikativen Idealtheorie, Math . Z.
45 (1939) , 533 - 553 .

PAOLA LORETI & MARCO PEDICINI

[1998] Idempotent Analogu e of Resolvent Kernels for a Det erministic Op­
timal Control Problem , preprint , 1998 .

M. LOTHAIRE

[1983] Com binatorics on Words , Addison-Wesley, Reading, Mass ., 1983.

JOHN K. LUEDEMAN

[1983] Torsion th eories and semigroups of quot ients , in K. H. Hofmann et
a!' (eds.) : R ecent Developments in th e Algebraic, Analytical, and
Topological Theory of S emigroups, Lecture Not es in Mathematics
#998 , Springer-Verl ag , Berlin, 1983 .

HERBERT LUGOWSKI

[1962] tiber die Vervollstandigung geordneter Halbringe, Pub!. Math . De­
brecen 9 (1962) , 213 - 222.

[1964a] tiber gewisse geordnete Halbmoduln mit negativen Elementen ,
Pub!. Math . Debrecen 11 (1964),23 - 31.

[1964b] ti ber die Vervollst"andigung gewisser geordneter Halbmoduln mit
negativen Elem enten , Pub!. Math . Debrecen 11 (1964) , 135 - 138.



336 ______REFERENCES _

W. A. J. LUXEMBURG & ADRIAAN C. ZAANEN

[1971] Riesz Spaces, vol. 1, North Holland , Amsterdam, 1971.

ROGER C. LYNDON

[1961] Relation algebras and projective geometries, Michigan Math. J . 8
(1961) ,21 - 28.

SHUICHIRO MAEDA

[1960] On a ring whose principal right ideals generated by idempotents
form a lattice, J . Science Hiroshima Univ . Sec. A 24 (1960) ,509 ­
525.

F. S. MACAULAY

[1916] Algebraic Theory of Modular Syst ems, Cambridge University Press,
Cambridge, 1916.

BERND MAHR

[1981] A bird's-eye view of path problems, in H. Nolt emeier (ed.) : Graph­
theoretic Concepts in Computer Science, Lecture Notes in Com­
puter Science #100, Springer-Verlag, Berlin, 1981.

[1982] Algebraic complexity of path problems, RAIRO Inform. Theor. 16
(1982), 263 - 292.

[1984] Iteration and summability in semirings, Ann . Discrete Math. 19
(1984), 229 - 256.

MICHAEL G. MAIN & DAVID B. BE NSION

[1985] Free semiring-representat ions and nondeterminism, J . Compo Sci.
Sys . 30 (1985) , 318 - 328.

MICHAEL G. MAIN & DAVID L. BLACK

[1993] Semantic models for to tal correctn ess and fairness, Theor. Compo
Sci. 107 (1993) , 305 - 332.

JEAN MAIRESSE

[1985] A graphical approach to th e spe ctral th eory in the (max , +) alge­
bra , IEEE Transactions on Automatic Control 20 (1985) , 1-6.

[1997] Products of irreducilbe random matrices in th e (max , +) algebra,
Adv. in Appl. Probab . 29 (1997) ,444 - 477.

KING-TIM MAK & KERMIT SIGMON

[1988] Standard threads and distributivity, Aeq. Math. 36 (1988) , 252 ­
267.

A. MANDEL & IMRE SIMON

[1977] On finit e semigroups of matrices, Theor. CompoSci. 5 (1977) , 101
- 111.

ERNEST G. MANES

[1976] Algebraic Theori es, Spr inger-Verlag, Berlin , 1976.

ERNEST G. MANES & MICHAEL A. ARBIB

[1986] Algebraic Approaches to Program Semantics, Springer-Verlag,
Berlin , 1986.



______REFERENCES _ 33 7

ERNEST G. MANES & D. B. BENSON

[1985] The inverse semigroup of a sum-ordered semiring, Semigroup Fo­
rum 31 (1985) , 129 - 152.

ALBERTO MARTELLI

[1974] An applicat ion of regular algebra to the enumeration of cut sets in
a graph , in J . Rosenfeldt (ed.): Informa tion Pro cessing 74, Nort h
Holland , Amsterd am , 1974.

[1976] A gau ssian elimination algorit hm for the enume ration of cut sets
in a graph , J . Assoc. Compo Mach. 23 (1976) , 58 - 73.

OLIVIER MARTIN , ANDREW M. ODLYZKO & STEPHEN WOLFRAM

[1984] Algebraic properties of cellular automata , Comm. Math. Phys. 93
(1984) ,21 9 - 258.

JEAN-PAUL MASCLE

[1986] Torsion matrix semigroups and recognizable transductions, in L.
Kott (ed .): Automata, Languages and Programming, Lecture Notes
in Computer Science #226 , Springer-Verlag , Berlin , 1986.

VICTOR P. MASLOV

[1987] Methodes Op eratorielles , Mir, Moscow, 1987.

VICTOR P. MASLOV & S. N. SAMBO URSKII

[1992a] Idempot ent A nalysis, Advan ces in Soviet Math ematics #13 , Amer­
ican Mathematical Soc., Providence, R.I. , 1992.

[1 992b] Stationary Hamil ton-J acobi and Bellm an equations (existence and
uniqueness of solutions) in V. P. Maslov & S. N. Sambourskif (eds.):
Id empotent Analysis, Advances in Soviet Math ematics #13 , Amer­
ican Mathematical Society, Providence, 1992.

MAX-PL US WORKING GROUP

[1995] Max-plus algebra and applications to system th eory and optimal
control , in Proceeding s of th e Int ernational Congress of M ath emati­
cians , Vol. 1,2 (Zurich , 1994),1511-1522 , Birkauser , Basel, 1995.

RALPH N. McKENZIE, GEORGE F. McNULTY & WALTER F. TAYLOR

[1987] Algebras, Lattices, Vari eti es, vol. I, Wadsworth & Brooks/Cole,
Monterey, 1987.

KURT MEHLH ORN

[1984] Data Stru ctures and A lgorithms, vol. 2: Graph Algorithms and
NP-Complet en ess , Springer-Verlag, Berlin , 1984.

KARL MENGER

[1942] Statisti cal metrics, Proc . Nat . Acad . Sci. USA 28 (1942) , 535 ­
537.

RADKO MESIAR & ENDRE PAP

[1998] Different int erpretations of triangular norms and related opera­
tions , Fuzzy Sets & Systems 96 (1998), 183 - 189.



338 ______REFERENCES _

HENRYK MINC

[1978] Perman ents, Addison-Wesley, New York, 1978.
[1988] Nonnegative matrices, Wiley, New York , 1988.

E. MINIEKA & D. R. SHIER

[1 973] A note on an algebra for the k best rout es in a network , J . Inst .
Maths. Appl ies. 11 (1973), 145 - 149.

MICH EL MINOUX

[1976] Structures algebriques genera lisees des problernes de cheminement
dans les graphes: t heorernes, algorithmes et applica t ions, RAIRO
Rech. Oper . 10 (1976) , 33 - 62.

[1979] Generalized path algebras, in A. Prekopa (ed.): Surve y of Math e­
matical Programm ing, vol. 2, North Holland , Amst erdam , 1979.

SIDNEY S. MITCHELL & PAUL B. FENOGLIO

[1988] Congruence-free commutative semirings, Semigroup Forum 37
(1988) ,79 - 9l.

SIDNEY S. MITCHELL & PORNTIP SINUTOKE

[1982] The th eory of semifields , Kyungpook Math . J. 22 (1982), 325 ­
347.

MASAHARU MIZUMOTO

[1989] Pictorial repr esentations of fuzzy connectives. Part I: Cases of t­
norm s, t-conorrns , and averaging operators , Fuzzy Sets and Sys­
tems 31 (1989) ,217 - 242.

MASAHARU MIZUMOTO & KOKI CHI TA NAKA

[1981] Fuzzy sets and their operations, Inform. and Cont rol 48 (1981) , 30
- 48.

MASAHARU MIZUMOTO , J . TOYODA & KOKI CHI TANAKA

[1975] Various kind s of automata with weights , J . Comput er System Sci.
10 (1975) , 219 - 236.

JIRI MOCKOR

[1977] A realization of d-gr oup s, Czech . Math . J . 27 (1977) , 296 - 312.
[1983] Groups of Divisibility, D. Reidel , Dordrecht , 1983.

A. MOFFAT & T . TAKAOKA

[1987] An all pair s shortest path algorithm with expected t ime O( n 2 log n) ,
SIAM J . Comput ing 16 (1987) ,1023 - 103l.

ITALICO MOLI NARO

[1960] Demi- groupes residuifs , J . Math . Pures et Ap pl. (Ser. 9) 39 (1960) ,
319 - 356.

RAMO N E. MOORE

[19 66] Int erval Analysis, Prenti ce-Hall , Englewood Cliffs, N. J ., 1966.
[1979] Methods and Applications of Int erval A nalysis, SIA Studies in Ap­

plied Math . # 2, Soc. Indust . Appl. Math., Philad elphi a , 1979.



______REFERENCES _ 339

JAMES R. MOSHER

[1970] Generalized quotients of hemirings, Compos. Math . 22 (1970) , 275
- 281.

[1971] Semirings with descending chain condition and without nilpotent
elements, Compos. Math . 23 (1971), 79 - 85.

P. MUKHOPADHYAY

[1996] Characterization of regular semirings, Math. Vesnik 48 (996), 83
- 85.

ALBERT A. MULLIN

[1975] On the algebraic structure of pre-rings, Notices Amer . Math . Soc.
22 (1975) , A703.

V. MURALI

[1989] Fuzzy equivalence relations, Fuzzy equivalence relations 30 (1989) ,
155 - 163.

KENTARO MURATA

[1950] On the quotient semi-group of a nonkommutative semi-group, Os­
aka Math . J . 2 (1950), 1 - 5.

P. V. RAMANA MURTY

[1974] Ideal topology on a distributive lattice, J . Austral. Math . Soc. 18
(1974), 503 - 508.

J . C. MUZIO & T . C. WESSELKAMPER

[1986] Multiple-valued Switching Theory, Adam Hilger Ltd ., Bristol, 1986.

HIDEGORO N4.KANO

[1966] Linear Lattices, Wayne State University Press , Detroit, 1966.

TAKEO NAKANO

[1967] Rings and partly ordered systems, Math . Z. 99 (1967), 355 - 376.

G. NAUDE & C. NOLTE

[1982] A survey of the realization and duality theories of linear systems
over rings, Quaest . Math . 5 (1982) , 135 - 164.

M. H. A. NEWMAN

[1941] A characterization of Boolean lattices and rings, J . London Math.
Soc. 16 (1941), 256 - 272.

SUSAN B. NIEFIELD & KIMMO I. ROSENTHAL

[1988] Constructing locales from quantales , Math. Proc . Camb. Phil.
Soc. 104 (1988) ,215 - 234.

[1990] Sheaves of semiprime ideals, Cahiers Topologie Geom . Differenti­
elle Categoriques 31 (1990), 213 - 228.

MAURICE NIVAT

[1968] Transductions des langages de Chomsky, Ann . Inst. Fourier,
Grenoble 18 (1968), 339 - 456.



340 ______REFERENCES _

EMMY NOETHER

[1927] Abstrakter Aufbau der Idealtheorie in algebraischen Zahl und
Funktionenkorpern , Math . Ann . 96 (1927),26 - 61.

M. 1. NORONHA GALV AO

[1959] On the theory of residuals , Univ . Lisboa Rev . Fac . Ci . A (2) 7
(1959) , 283 - 300 .

[1960a] Sur les ideaux reguliers d'un semi-anneaux, Univ . Lisboa Rev . Fac .
Ci . A (2) 8 (1960),169 - 172.

[1960b] Sobre a teo ria de Noether-Krull em seimianeis, Univ. Lisboa Rev.
Fac . Ci . A (2) 8 (1960) , 175 - 256 .

[1978a] Les relations de congruence sur Ie demi-anneau N des nobres na­

turels , Period. Math . Hungar. 9 (1978) ,231 - 235 .
[1978b] Ideals in the semiring N, Portugal. Math . 37 (1978) , 113 - 117.
[1978c] Sur les demi-anneaux a. division, in Estudos de Algebra, Geometric

et Analise, No. II , Centenario da Academia das Ciencias de Lisboa,
Lisbon , 1978.

SAKIKO OHASHI

[1968] On axiom systems of commutative rings , Proc. Japan . Acad . 44
(1968),915 - 924 .

GEERT JAN OLSDER

[1991] Eigenvalues of dynamic max-min systems, Discrete Event Dynam­
ical Systems: Theory and Applications 1 (1991), 177-207.

[1992] About difference equations, algebras and discrete events, in A. van
der Burgh & J . Simonis (eds.) : Topics in Engineering Mathematics,
Kluwer, Dordrecht , 1992 , 121 - 150.

GEERT JAN OLSDER & C . ROOS

[1988 ] Cramer and Cayley-Hamilton in the max algebra, Lin . Alg . Appl.
101 (1988) ,87-108 .

D. M. OLSON

[1978] A note on the homomorphism theorem for hemirings, Internat . J .
Math . & Math . Sci . 1 (1978) ,439 - 445 .

D . M. OLSON & T . L. JENKINS

[1983] Radical theory for hemirings, J . Nat. Sci . Math . 23 (1983) , 23 ­
32 .

SERGEI V. OVCHINNIKOV

[1981] Structure of fuzzy binary relations, Fuzzy Sets and Systems 6
(1981) ,169 - 175.

[1993] On some fuzzy binary relations related to implication functions, in
R . Lowen and M. Roubens (eds .) : Fuzzy Logic, State of the Art,
Kluwer, Dordrecht , 1993 .

R . PADMANABHAN & H. SUBRAMANIAN

[1968] Ideals in semirings , Math . Japon . 13 (1968) , 123 - 128.



______REFERENCES _ 341

S. N. N. PANDIT
[1961] A new matrix calculus, SIAM J . Appl. Math. 9 (1961) ,632 - 639.

SEYMOUR PAPERT
[1959] Which distributive lattices are lattices of closed sets?, Proc. Camb.

Phil. Soc. 55 (1959) ,172-176.
[1964] An abstract theory of topological subspaces , Proc . Camb . Phil.

Soc. 60 (1964) , 197 - 203.

DAVID PARK

[1981] Concurrency and automata on infinite sequences , in P. Duessen
(ed.): Theoretical Computer Science , Lecture Notes in Computer
Science #104 , Springer-Verlag, Berlin , 1981.

JAN PASEKA

[1986] Regular and normal quantales , Archiv . Math . (Brno) 22 (1986),
203 - 210.

JAN PAVELKA

[1979a] On fuzzy logic I, Z. Math . Logik Grund . Math . 25 (1979), 45 ­
52.

[1979b] On fuzzy logic II, Z. Math. Logik Grund . Math . 25 (1979) , 119 ­
134.

[1979c] On fuzzy logic III , Z. Math . Logik Grund . Math . 25 (1979) , 447 ­
464.

K. R. PEARSON

[1966] Interval semirings on R 1 with ordinary multiplication, J . Austral.
Math. Soc. 6 (1966) , 273 - 288.

[1983a] Certain topological semirings in R 1 , J . Austral. Math . Soc. 8
(1968),171 -182.

[1983b] Embedding semirings in semirings with multiplicative unit , J . Aus­
tral. Math. Soc. 8 (1968) , 183 - 191.

KETY PEEVA

[1983] On algebraic structures for matrices, relations and graphs over a
semiring, Mat . Bul. 7-8 (1983/4) , 36 - 48.

[1991] Equivalence, reduction and minimization of finite automata over
semirings, Th eor . Comp oSci. 88 (1991), 269 - 285.

DIONISIO PEREZ ESTEBAN

[1988] Semi-rings and spectral spaces, in J. L. Bueso et al. (eds.): Ring
Theory Proceedings, Granada, 1986, Lecture Notes in Mathematics
#1328 , Springer-Verlag , Berlin, 1988.

VASILE PETEANU

[1967] An algebra of the optimal path in networks, Mathematica (Cluj) 9
(1967), 335 - 342.

[1969] Optimal paths in networks and generalizations (I) , Mathematica
(Cluj) 11 (1969) ,311 - 327.

[1970] Optimal paths in networks and generalizations (II) , Mathematica
(Cluj) 12 (1970) , 159 - 186.



342 ______REFERENCES _

JAMES 1. PETERSON

[1981] Petri Net Theory and the Modeling of Systems, Pretice-Hall, En­
glewood Cliffs, N.J ., 1981.

MARIO PETRICH

[1965] Associative polynomial multiplications over an infinite integral do­
main, Math . Nachr . 29 (1965) , 67 - 75.

A. R. PIERCE

[1975] Bibliography on algorithms for shortest path , shortest spanning
tree , and related circuit routing problems (1956-1974) , Networks 5
(1975), 129 - 149.

RICHARD S. PIERCE

[1972] Compact Zero-Dimensional Metric Spaces of Finite Type, A. M. S.
Memoir #130 , American Mathematical Society, Providence, 1972.

[1983] Tensor products of boolean algebras , in R. S. Freese & O. C. Gar­
cia (eds.): Universal Algebra and Lattice Theory, Lecture Notes in
Mathematics #1004, Springer-Verlag, Berlin , 1983.

[1989] Countable boolean algebras, in J . Donald Monk (ed .): Handbook
of Boolean Algebras, vol. 3, North Holland , Amsterdam, 1989.

JEAN-ERIC PIN

[1998] Tropical semirings, in J . Gunawardena (ed.): Idempotency (Bris­
tol, 1994), Publ. Newton Inst. #11, Cambridge Univ . Press,
Cambridge, 1998, 50 - 69.

B. PIOCHI

[1988] Congruences on inversive hemirings, Stud. Sci. Math . Hungar. 23
(1988),251 - 255.

MIREILLE O. POINSIGNON GRILLET

[1970] Subdivision rings of a semiring, Fund . Math . 67 (1970),67 - 74.

S. V. POLIN

[1974] Simple skew semifields and semifields, Sibir . Math . Z. 15 (1974),
90 - 101. [Russian]

FRANCISCO POYATOS SUAREZ

[1967] Descomposiciones irreducibles en suma direct a interna de ciertas
estructuras algebraicas, Rev. Mat . Hispano-Americana (4) 27
(1967), 151 - 170.

[1969] Sobre ciertas descomposiciones de semim6dulos en sum a directa,
Rev. Mat . Hispano-Americana (4) 29 (1969) ,50 - 58.

[1971] Modulos de complecion de A-semim6dulos, Rev. Mat . Hispano­
Ameri cana (4) 31 (1971), 123 - 156.

[1972] EI teorema de Jordan-Holder para A-semim6dulos, Rev. Mat .
Hispano-Americana (4) 32 (1972),251 - 260.

[1973a] EI teorema de Jordan-Holder para A-semim6dulos (continuaci6n) ,
Rev. Mat. Hispano-Americana (4) 33 (1973),36 - 48.



______REFERENCES _ 343

[1 973b] El teo rema de Jordan-Holder para Avsemirnodulos (conclusion),
Rev. Mat . Hispano-Americana (4) 33 (1973), 122 - 132.

[1974] Sucesiones prin cipales y series de composicion de A-semimodul os,
Rev. Mat. Hispano-Americana (4) 34 (1974) , 60 - 66.

[1976] Series prin cipales y series de composicion de semianillos, Rev. Mat.
Hispano-Americana (4) 36 (1976), 63 - 76.

[1977] Sobre ciertas propiedades de los bi-ideales de un semianillo, Rev.
Mat . Hispano-Americana (4) 37 (1977) , 107 - 113.

[1980] The Jord an-Holder theorem for semirings, Rev. Mat . Hispano­
Americana (4) 40 (1980), 49 - 65.

RAQ UEL PRATA DOS SANTOS

[1981] Pseudocompl ementation in semirings and rl- algebr as , in Aetas VIII
Jornada s Luso Espanholas Mat em.dtica, vol. I , Universidade Coim­
bra, 1981.

VAUGHN PRATT

[1986] Modeling concur rency with partial ord ers , Int . J. Parallel Proc ess­
ing 15 (1986) , 33 - 71.

[1993] The second calculus of binary relations , in MFCS '93, Lecture
Notes in Comput er Science #711 , Springer-Verlag, Berlin , 1993,
142 - 155.

[1 994] Chu spaces, comp lementarity and uncer tainty in rati onal mechan­
ics, preprin t , 1994.

[1995a] The Stone gamut : a coordinat izat ion of mathematics, in Proc. 10th
Annual Symposium on Logic in Computer Science, IEEE Comput er
Society Press, 1995, 444 - 454.

[1995b] Chu spaces and their interpretat ion as concurrent obj ects , in Com­
puter Sc ience Today, Lecture Notes in Computer Science #1000,
Springer-Verlag, Berlin , 1995, 392 - 405.

[1 996] Reconciling event structures and higher dimensional automata, pre­
print , 1996.

[1997] Chu spaces from the representational viewpoint , prepr int , 1997.

WALTER PRENOWITZ & JAM ES JA NTOSCIAK

[1 979] Join Geom etries, Sprin ger-Verlag , Berlin , 1979.

KENDALL PRESTON, Jr . & MICHAEL J . B. DUFF

[1984] Modern Cellular Automata, Theory and Applications, Plenum , New
York , 1984.

HILARY ANN PRIESTLEY

[1970] Representation of distribu tive lattices by means of ordered Stone
spaces , Bull. London Math . Soc. 2 (1970), 186 - 190.

DANUTA PRZEWORSKA-ROLEWICZ

[1 988] A lgebraic Analysis, Kluwer , Dordrecht , 1988.
[1 998] Logarithms and An ti logarithms , Kluwer , Dordr echt , 1998.

MARGARITA RAMALHO

[1974] Demi-an neaux: morphism es et ideaux II , in Estu dos de Maiemdiica



344 ______REFERENCES _

em Hom enagem ao Prof. A. Alm eida Costa, Lisbon , 1974.
[1976] A characterizat ion of Jl-semirings, Proc. . Amer. Math. Soc. 60

(1976) ,49 - 52.

P. RANGA RAO

[1981] Latt ice ordered semi rings , Math . Sem. Notes Kobe Univ . 9 (1981),
119 - 149.

HELENA RASIOWA & ROMA N SIKORSKI

[1 963] Th e Math emat ics of Metamath emat ics, PWN, Warsaw, 1963.

LASZLO REDEl

[1952] Die Verallgemeinerung der Schreierschen Erweit erungstheorie,
Acta Sci. Math . (Szeged) 14 (1952) , 252 - 273.

[1967] Algebra, vol. I, Akad erniai Kaid6, Budapest , 1967.

HORST REI CHEL

[1987] Initial Computab ility, Algebraic Specifications, and Partial Alge­
bras, Oxford University Press, Oxford , 1987.

WOLFGANG REISIG

[1 985] Petri Nets, Springer-Verlag, Berlin , 1985.

CHRIST OPHE RE UTENAUER

[1978] Sur les series rationn elles en variables non commutat ives, in G.
Ausiello and C. Bohrn (eds.):, Automata, Languages and Program­
ming , Lecture Notes in Compute r Science # 62, Springer-Verlag,
Berlin , 1978.

CHRIST OPHE RE UTENAUER & HOWARD ST RAUBING

[1984] Inversion of matrices over a commut ative semi ring , J . Algebra 88
(1984) ,350 - 360.

PIERRE ROBERT

[1971] An algorithm for finding th e essent ial sets of arcs of certain gra phs,
J . Comb. Theory 10 (1971) ,288 - 298.

GAETANO RODRIQUEZ

[1977] Bande di semi anelli mon oidali , Boll. Un. Mat. Ital. (5) 14B
(1977) , 569 - 591.

[1980] Decomp osizione di un semianello in un semireticolo di semianelli,
Boll. Un . Mat . It al. Suppl. 2 (1980), 53 - 67.

LEOPOLDO ROMAN

[1 989] Cartesian categories with natural numbers object , J . Pure Appl.
Algebra 58 (1989), 267 - 278.

LEOPOLDO ROMA N & BEATRIZ RUMBOS

[1991a] Quanti c lat t ices, Intern at. J. Th eoret . Phys. 30 (1991) ,1555-1563.
[1991b] A characterization of nuclei and implication in orthom odular lat­

ti ces, J . Pure Appl. Algebra 73 (1991), 155 - 163.



______.REFERENCES 345

ANNA B. ROMANOWSKA & JONATHAN D. H. SMITH

[1985] Modal Theory , An Algebraic Approach to Order, Geometry, and
Convexity, Heldermann Verlag, Berlin, 1985.

IVO ROSENBERG

[1988] Algebraic properties of a general convolution, in M.-M. Deza et al.
(eds.): Algebraic, Extremal and Metric Combinatorics, 1986, Lon­
don Math . Soc. Lecture Note Series #131 , Cambridge University
Press, Cambridge, 1988.

DANIEL J . ROSENKRANTZ & HARRY B. HUNT, III

[1988] Matrix multiplication for finite algebraic systems, Inform. Proc.
Letters 28 (1988), 189 - 192.

KIMMO I. ROSENTHAL

[1990] A note on Girard quantales, Cahiers Topologie Geom . Differenti elle
Categoriques 31 (1990) ,3 - 11.

[1992] A general approach to Gabriel filters on quantales, Comm. Algebra
20 (1992), 3393 - 3409.

JIRI ROSICKY

[1987] Multiplicative lattices and frames , Acta Math . Hung . 49 (1987) ,
391 - 395.

[1989] Multiplicative lattices and C* - algebras, Cahiers Topologie Geom .
Differentielle Categoriques 30 (1989) , 99 - 105.

[1995] Characterizing spatial quantales , Algebra Universalis 34 (1995) ,
175 - 178.

JIRI ROSICKY & S. SMARDA

[1985] T1-Locales, Math . Proc . Cambridge Phil. Soc. 98 (1985), 81 - 86.

LOUIS H. ROWEN

[1988a] Ring Theory , Vol. I, Academic Press, San Diego, 1988.
[1988b] Ring Theory , Vol. II , Academic Press, San Diego, 1988.

KAMALARANJAN ROY

[1960] Newmannian geometry I, Bull. Calcutta Math . Soc. 52 (1960),
187 - 194.

GRZEGORZ ROZENBERG & ARTO SALOMAA

[1980] The Mathematical Theory of L Systems, Academic Press , New
York, 1980.

D.E.RUTHERFORD

[1963/4] The Cayley-Hamilton theorem for semi-rings, Proc . Roy. Soc.
Edinburgh A66 (1963/4) , 211 - 215.

JACQUES SAKAROVITCH

[1987] Kleene's theorem tevisited , in A. Kelemenova & J. Kelemen
(eds.): Trends, Techniques and Problems in Theoretical Computer
Science, Lecture Notes in Computer Science #281, Springer-Verlag,
Berlin, 1987.



346 ______REFERENCES _

ARTO SALOMAA

[1966] Two complete axiom systems for the algebra of regular events, J.
Assoc. Compo Mach. 13 (1966), 158 - 169.

ARTO SALOMAA & MATTI SOITTOLA

[1978] Automata-theoreti c Aspects of Formal Power Series, Springer­
Verlag, Berlin , 1978.

S. N. SAMBO URSKII & A. A. TARASHCHAN

[1992] The Fourier transform and semirings of Pareto sets, in V. P. Maslov
& S. N. Sambourskil (eds .) : Idempotent Analysis, Advances in
Soviet Mathematics #13, American Mathematical Society, Prov­
idence , 1992.

ELIE SANCHEZ

[1976] Resolution of composite fuzzy relation equations, Inform. and Con­
trol 30 (1976), 38 - 48.

JUAN B. SANCHO DE SALAS & TERESA SANCHO DE SALAS

[1989] Dimension of dense subalgebras of C(X) , Proc . Amer . Math . Soc.
105 (1989) , 491 - 499.

TERESA SANCHO DE SALAS

[1987] Methods of Commutative Algebra for Topology, Dpto. de Mathe­
maticas, Universidad de Salamanca, Salamanca, 1987.

BORIS M. SCHEIN

[1976] Regular elements of th e semigroup of all binary relations, Semi­
group Forum 13 (1976) , 95 - 102.

JURG SCHMID

[1983] Distributive lattices and rings of quotients, in A. P. Huhn & E.
T . Schmidt (eds .): Contributions to Lattice Th eory, Colloq. Math .
Soc. Janos Bolyai #33, North Holland, Amsterdam, 1983.

G. SCHMIDT & T . STROHLEIN

[1985] Relation algebras: concept of points and representability, Discrete
Math . 54 (1985), 83 - 92.

K. D. SCHMIDT

[1982] A general Jordan decomposition, Arch . Math . 38 (1982), 556 ­
564.

E. SCHRODER

[1895] Volresung iiber die Algebra der Logic (Exakte Logik). Dritter Band:
Algebra und Logik der Relative , B. G .Teubner, Leipzig, 1895.

B. SCHWEIZER & A. SKLAR

[1961] Associative functions and stat ist ical triangle inequalities , Pub!.
Math . Debrecen 8 (1961), 169 - 186.

[1963] Associative functions and abstract semigroups, Pub!. Math . De­
brecen 10 (1963) , 69 - 81.



______REFERENCES _ 347

DANIEL J . SCULLY

[1991) Maximal rank-one spaces of matrices over chain semirings I: u­
spaces , Lin. Alg. Appl . 150 (1991) , 67 - 80.

[1993) Maximal rank-one spaces of matrices over chain semirings II : (u ,i)­
spaces, Lin. Aig. Appl . 181 (1993), 29 - 43 .

M. K. SEN & M. R. ADHIKARI

[1992) On k-ideals of semirings, Internat . J . Math . & Math . Sci. 15
(1992), 347 - 350.

[1993) On maximal k-ideals of semirings, Proc. Amer . Math . Soc. 119
(1993), 699 - 703.

B. SHAFER

[1976) A Mathematical Theory of Evidence, Princeton University Press ,
Princeton N. J ., 1976.

D. R. SHIER

[1973) A decomposition algorithm for optimality probl ems in tree­
structured networks, Discrete Math . 6 (1973) , 175 - 189.

[1976] Iterative methods for determining the k shortest paths in a network ,
Networks 6 (1976) , 205 - 229.

M. A. SHUBIN

[1992) Algebraic remarks on idempotent semirings and the kernel theory
in spaces of bounded functions, in V. P. Maslov & S. N. Sarnbourskif
(eds.): Idempotent Analys is, Advances in Soviet Mathematics #13,
Ameri can Mathematical Society, Providence, 1992.

H. J. SHYR

[1979) Free Monoids and Languages, Soochow University, Taipei , Taiwan ,
1979.

IMRE SIMON

[1988) Recognizable sets with multiplicities in the tropical semiring, in M.
P. Chytil et al . (eds.) : Mathematical Foundations for Computer
Science 1988, Lecture Notes in Computer Science #324 , Springer­
Verlag, Berlin, 1988.

[1994) On semigroups of matrices over the tropical semiring, RAIRO In­
form . Theor. Appl . 28 (1994) , 277-294.'

PRAHLAD SINGH & N. S. YADAV

[1981] A typ e of semiring, Nepali Math. Sc. Rep. 6 (1981) , 45 - 48.

R. SIVARAMAKRISHNAN

[1989] Classical Theory of Arithmetic Functions, Marcel Dekker Inc ., New
York, 1989.

LEV A. SKORNJAKOV

[1986] Invertible matrices over distributive lattices, Sib. Mat . Z. 27
(1986) , 182 - 185. [Russian]



348 ______REFERENCES _

W. SLOWIKOWSKI & WACLAW ZAWADOWSKI
[1955] A generalization of maximal ideals method of Stone and Gelfand,

Fund. Math . 42 (1955), 215 - 231.
DAVID A. SMITH

[1966] On semigroups, semirings, and rings of quotients, J. Sci. Hiroshima
Univ. 30 (1966), 123 - 130.

F. A. SMITH

[1966] A structure theory for a class of lattice ordered semirings, Fund .
Math. 59 (1966), 49 - 64.

ALEXANDRU SOLIAN & T. M. VISWANATHAN
[1988] Hochster's theorem, coherent locales, and lattices of radical ideals,

Comm. Algebra 16 (1988), 2625 - 2648.
EDUARDO D. SONTAG

[1976] On linear systems and noncommutative rings, Math . Systems The­
ory 9 (1976), 327 - 344.

DONALD F. STANAT

[1972] Approximation of weighted type 0 languages by formal power se­
ries, Inform. and Control 21 (1972), 344 - 381.

OTTO STEINFELD
[1959] Uber die Struktursatze der Semiringe, Acta Math . Acad. Sci.

~ungar. 10 (1959), 149 - 155.
[1963] Uber Semiringe mit multiplikativer Kiirzungsregel, Acta Sci. Math

(Szeged) 24 (1963) , 190 - 195.
[1964] Uber die Operatorendomorphismen gewisser Operatorhalb­

gruppen, Acta. Math. Sci. Hungar. 15 (1964), 123 - 131.

BO STENSTROM
[1969] Radicals and socles of lattices, Arch. Math. 20 (1969),258 ·- 261.

HOMER E. STONE
[1972] Ideals in halfrings, Proc. Amer . Math . Soc. 33 (1972) , 8 - 14.
[1977] Matrix representation of simple halfrings, Trans. Amer . Math.

Soc. 233 (1977), 339 - 353.
MARSHALL STONE

[1937] Topological representation of distributive lattices and Brouwerian
logics, Casopis Pest . Mat. Fys . 67 (1937), 1 - 25.

HOWARD STRAUBING
[1983a] A combinatorial proof of the Cayley-Hamilton Theorem, Discrete

Math . 43 (1983), 273 - 279.
[1983b] The Burnside problem for semigroups of matrices, in L. J . Cum­

mings (ed.): Combinaiorics on Words, Progress and Perspectives,
Academic Press, New York, 1983, 279 - 295.

TEO STURM
[1986] On an algebraization of measure theory, abstract semirings, Quaest .

Math. 9 (1986), 393 - 441.



______REFERENCES _ 349

H. SUBRAMANIAN

[1970] Von Neumann regularity in semirings, Math. Nachr . 45 (1970) , 73
- 79.

M. SUGENO

[1979] Theory of Fuzzy Integrals and Applications, PhD . Thesis , Tokyo
Institute of Technology, Tokyo , 1979.

PHILIPP SUNDERHAUF

[1997] Tensor products and powerspaces in quantitive domain theory,
Electronic Notes in Theoretical Computer Science 6 (1997) .

MICHIHIRO TAKAHASHI

[1981] On the bordism categories. II , Math . Sem. Notes Kobe Univ . 9
(1981) ,495 - 530.

[1982a] On the bordism categories. III , Math . Sem. Notes Kobe Univ. 10
(1982) ,211 - 236.

[1982b] Completeness and c-completeness of th e category of semimodules,
Math . Sem. Notes Kobe Univ . 10 (1982), 551 - 562.

[1982c] Extensions of semimodules. I, Math . Sem. Notes Kobe Univ. 10
(1982) ,563 - 592.

[1983] Extensions of semimodules. II, Math . Sem. Notes Kobe Univ . 11
(1983) ,83 - 118.

[1984a] On semimodules. I, Kobe J . Math . 1 (1984) ,67 - 97.
[1984b] On semimodules. II, Kobe J . Math . 1 (1984) , 177 - 190.

[1985] On semimodules. III , Kobe J . Math. 2 (1985) , 131 - 141.
[1987] Structures of semimodules, Kobe J . Math 4. (1987),79 - 101.

[1996a] Isomorphism theorems in semimodule th eory, preprint , 1996.

MICHIHIRO TAKAHASHI & WANG HUAXIONG

[1993] Injective semimodule over a 2-semiring, Kobe J . Math . 10 (1993) ,
59 - 70.

BIT-SHUN TAM

[1981] On the semiring of cone preserving maps, Lin. Alg. and its Appl.
35 (1981) , 79 - 108.

TAKAYUKI TAMURA

[1981] Notes on semirings whose multiplicative semigroups are groups, in
K. Numakura (ed) : Proceedings of the 5th Symposium on Semi­
groups, Josai University, Sakado, 1981.

G. S. TANG & H. H. TEH

[1966/7] A remark on the relation between groupoid semirings and matrix
semirings, Nant a Math . 1 (1966/7) ,38 - 39.

ROBERT E. TARJAN

[1981a] A unified approach to path problems, J . Assoc. Comp o Mach. 28
(1981) ,577 - 593.

[1981b] Fast algorithms for solving path problems, J . Assoc. Comp oMach.
28 (1981) , 594 - 614.



350 ______REFERENCES _

M. K. THAKARE & C. S. MANJAREKAR

[1984] Abstract spectral theory: multiplicative lattices in which every
character is contained in a unique maximal character, in H. L.
Manocha & J. B. Srivastava (eds) : Algebra and its Applications,
Marcel Dekker , New York, 1984.

M. K. THAKARE, C. S. MANJAREKAR & S. MAEDA

[1988] Abstract spectral theory II: Minimal characters and minimal spec­
trums of multiplicative lattices, Acta Sci. Math . 52 (1988), 53 ­
67.

MELVIN C. THORNTON

[1972] Semirings of functions determine finite To topologies , Proc. Amer .
Math . Soc. 34 (1972), 307 - 310.

W. J . THRON

[1962] Lattice-equivalence of topological spaces, Duke Math . J . 29 (1962),
671 - 680.

YUPAPORN TIRASUPA

[1979] Factorizable transformation semigroups, Semigroup Forum 18
(1979), 15 - 19.

C. W. TONG & K. P. LAM

[1996] Closed semiring optimization circuits using a connectionist ap­
proach, IEEE Trans. Circuits and Systems I: Fundamental Theory
and Applications 43 (1996) , 478 - 482.

A. S. TROELSTRA

[1992] Lectures on Linear Logic, CSLI Lecture Notes #29, Center for the
Study of Language and Information, Stanford, Calif., 1992.

ASKAR A. TUGANBAEV

[1998] Semidistributive Modules and Rings, Kluwer, Dordrecht , 1998

L. VALVERDE

[1985] On the structure of F-indistinguishability operators, Fuzzy Sets
and Systems 17 (1985), 313 - 328.

ROBERT M. VANCKO

[1974] The class of algebras in which weak independence is equivalent to
direct sums independence, Colloq . Math . 30 (1974) , 187 - 191.

H. S. VANDIVER

[1934] Note on a simple type of algebra in which cancellation law of ad­
dition does not hold, Bull. Amer . Math. Soc. 40 (1934), 914 ­
920.

[1939] On some simple types of semi-rings, Amer. Math . Monthly 46
(1939),22 - 26.

[1940] On the embedding of one semi-group in another, with application
to semi-rings, Amer. J . Math. 62 (1940), 72 - 78.



______REFERENCES _ 35 1

H. S. VANDIVER & M. H. WEAVER

[1956] A development of associative algebra and an algebraic theory of
numbers . IV, Math . Mag. 30 (1956) , 1 - 8.

JULES C. VARLET

[1969] Fermetures mul tiplicatives, Bull. Soc. Roy. Sci. Liege 38 (1969),
101 - 115.

JOH N VO N NEUMANN

[1966] Th eory of S elf-Reproducing Automata, Univ . of Illinois Press , Ur­
bana , 1966 .

N. N. VOROBJEV

[1963] The extremal matrix algebra , Dokl. Akad . Nauk SSSR 152 (1963) ,
24 - 27. [Russian]

EDOUARD WAGNEUR

[1991] Moduloids and pseudomodules 1.Dimension theory, Discr et e Math .
98 (1991) , 57 - 73.

[1998] The geometry of finite dimensional pseudomodules, in J . Gunawar­
dena (ed .) : Idempoten cy (Bristol, 1994), Publ. Newton Inst . #11 ,
Cambridge Univ . Press , Cambridge, 1998, 392 - 405 .

ABRAHAM WALD

[1943] On a statistical generalization of metric spaces, Proc. Nat . Acad.
Sci . USA 29 (1943), 196 - 197.

WANG HAUXIONG

[1988] A note on endomorphism semirings of semimodules, Kobe J. Math .
5 (1988) , 155 - 160.

[1994] Inj ective hulls of semimodules over additively-idempotent sernir­
ings , Semigroup Forum 48 (1994) , 377 - 379 .

[1996] Some Semiring-th eoretic Aspects of Rational Events , PhD . Thesis ,
University of Haifa , 1996.

[1997] On characters of semirings , Houston J . Math . 23 (1997),391- 405 .
[1998] On rational series and rational languages, Theor. Compo Sci. 205

(1998) ,329 - 336 .

WANG HAUXIONG & MICHIHIRO TAKAHASHI

[1989] On epimorphisms of semimodules, Kobe J . Math. 6 (1989), 297 ­
298.

MORGAN WARD

[1937] Residuation in structures over which a multiplication is defined ,
Duke Math . J . 3 (1937) , 627 - 636.

[1940] Residuated distributive lattices, Duke Math . J . 6 (1940) , 641 ­
651.

MORGAN WARD & ROBERT P. DILWORTH

[1939] Residuated lattices, Trans. Am er . Math . Soc . 45 (1939) , 335 ­
354.



352 ______REFERENCES _

SIEGFRIED WEBER

(1983] A general concept offuzzy connectives, negations , and implications
based on t-norms and t-conorms, Fuzzy Sets and Systems 11 (1983) ,
115 - 134.

WOLFGANG WECHLER

[1975] R-fuzzy grammars, in J . Becvar (ed. ): Mathematical Foundations
of Computer Scien ce, 1975, Lecture Not es in Computer Science
#32 , Springer-Verlag, Berlin , 1975.

[1977] FamiliesofR-fuzzy languages, in M. Karpinski (ed .) : Fundamentals
of Computation Theo ry, Lecture Notes in Computer Science #56,
Springer-Verlag, Berlin , 1977.

[1984] Linearization of systems of algebraic equations . Part I: Dyck ma­
trices, in G . Wechsung (ed .) : Frege Conference, 1984, Akademi e­
Verlag, Berlin , 1984.

[1986a] R-fuzzy com putat ion , J . Math . Anal. Appl. 115 (1986), 225 - 232.
[1986b] Hoare algebras versus dynamic algebras, in J . Demetrovics et al.

(eds.) : Algebra, Combinatorics and Logic in Computer S cienc e,
Colloq. Math . Soc . Janos Bolyai #42 , North Holland , Amsterdam ,
1986.

[1988] Iterative nondeterministic algebras, in G. Mirkowska & H. Rasiowa
(eds .) : Math ematical Problems in Computation Th eory , Banach
Center Publications #21 , PWN , Warsaw , 1988.

HANNS J . WEINERT

[1962] Uber Halbringe und Halbkorper . I, Acta Math . Acad . Sci. Hun­
gar . 13 (1962) , 363 - 378.

[1963] Uber Halbringe und Halbkorper . II , Acta. Math . Acad . Sci.
Hungar. 14 (1963), 209 - 227.

[1964] Uber Halbringe und Halbkorper . III , Acta. Math. Acad . Sci .
Hungar . 15 (1964) ,177 - 194.

[1980] Multiplicative cancellativity of semirings and semigroups, Acta.
Math . Acad . Sci. Hungar. 35 (1980) , 335 - 338.

[1982] Th eory of Semigroups and R ing-like Algebras , Notes of Lectures at
th e Universidad de los Andes, Bogota , Columbia , 1982.

[1986] Partially ord ered semirings and semigroups, in S. Wolfenstein (ed .) :
Algebra and Ord er, Proceedings of th e Fi rst Int ernational Sympo­
sium on Ord ered Algebraic Structures, Heldermann-Verlag, Berlin,
1986.

[1988] Generalized semialgebras over semirings, in H. Jurgensen et al.
(eds .) : S emigroups, Th eory and Applications, Lecture Not es in
Mathem atics # 1320, Springer-Verlag, Berlin , 1988.

RICHARD WIEGANDT

[1959] On th e general th eory of Mobius inversion formula and Mobius
product , Acta Sci. Math . (Szeged) 20 (1959), 164 - 180.

[1962] Uber die Struktursatze der Halbringe, Ann. Univ. Sci. Budapesti­
nensis Sec. Math . 5 (1962) , 51 - 68.



______REFERENCES _ 353

AHNONT WONGSEELASHOTE

[1976] An algebra for determining all path-values in a network with ap­
plication to k-shortest paths problems, Networks 6 (1976). 307 ­
334.

[1979] Semirings and path spaces, Discrete Math. 26 (1979), 55 - 78.

WU FUMING

[1998] A Framework for Dynamic Modelling of Information Systems:
Petri Nets on Difference-Ordered Hemirings, PhD . Thesis , Uni­
versity of Haifa, 1998.

DAVID N. YETTER

[1989] Quantales and (non-commutative) linear logic, preprint, 1989.

YING XIE

[1991] w-Complete Semirings and Matrix Iteration Theories, PhD . Thesis ,
Stevens Institute of Technology, Hoboken, 1991.

MICHAEL YOELI

[1961] A note on a generalization of boolean matrix theory, Amer . Math .
Monthly 68 (1961),552 - 557.

[1965] Lattice-ordered semigroups, graphs, and automata, J . Soc. Indust.
Appl. Math . 13 (1965), 411 - 422.

S. M. YUSUF & M. SHABIR

[1988] Radical classes and semisimple classes for hemirings, Stud. Sci.
Math. Hungar. 23 (1988), 231 - 235.

ADRIAAN C. ZAANEN

[1983] Riesz Spaces II, North Holland, Amsterdam, 198~ .

LOFTI A. ZADEH

[1965] Fuzzy Sets, Inform . and Control 8 (1965), 338 - 353.

HANS J. ZASSENHAUS

[1958] The Theory of Groups, 2nd ed., Chelsea, New York, 1958.

JOHN ZELEZNIKOW

[1981] Regular semirings, Semigroup Forum 23 (1981), 119 - 136.

ZHANG KUN-LUN

[1994] Determinant theory for DOl-lattice matrices, Fuzzy Sets and Sys­
tems 62 (1994), 347 - 353.

ZHAO CUI-KUI

[1987] On matrix equations in a class of complete and completely distribu­
tive lattices, Fuzzy Sets and Systems 22 (1987), 303 - 320.

[1990] Inverses of L-fuzzy matrices, Fuzzy Sets and Systems 34 (1990),
103 - 116.

KAREL ZIMMERMANN

[1982] The solution of some nonlinear optimization problems in a minimax
algebra, Z. Angew. Math. Mech. 62 (1982), T391 - T392.



354 ______REFERENCES _

UWE ZIMMERMANN

[1981] Linear and Combinatorial Optimization in Ordered Algebraic
Structures, North Holland, Amsterdam, 1981.



INDEX OF APPLICATIONS

Semi ring th eory has been developed not as an exercise in generalization for gen­
eralization 's sake but because of its value as a tool in many significant applications
in mathematics, computer science, and other fields. A sample of these applications
is given in the tex t , though , since our primary emphasis is on the mathematics of
semirings, most are only mentioned en passant. References are provided, however,
to allow th e int erested reader to pursue these on his/her own.

abelian group th eory 8,36
analysis of computer programs 267,295
automata th eory 7,11 ,16 ,17,22,28,29,38 ,247,249 ,292 ,296
behavior of industrial processes 17
capacity th eory 13
cellular automata 32
codes 10
combinatorics 20,36 ,219
communicat ing processes 17
commutat ive ring theory 54,234 ,235 ,268
computer circuitry design 15,16,30 ,244
concurrent computational syst ems 12,22 ,39
constraint systems 250
control th eory 17
data types 10,290
database systems 290
design of fuzzy controllers and microprocessors 41
design of VLSI chips 288
design th eory 33
discrete-event dynamical syst ems 17,36 ,197 ,211 ,220 ,289
flowchart schemes 29
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formal language theory
foundations of analysis
fractals 14
functional analysis
fuzzy number theory
fuzzy set theory
game theory 13
geometry 15,33
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group theory 9,85
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Markov processes 28
model theory 24
nonabelian group theory
noncommutative ring theory
number theory 31
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operational calculus
optimal control
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pattern recognition
probability 20,105
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Petri nets 39,289
probability theory
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quantum mechanics
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signal processing 20, 151
statistics 13,247
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task resource allocation 39
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- in a semiring 48
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- regular element 143
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adjoint 22
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- morphism 109,122
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- , finite
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• B
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- function 188
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- polynomial 221
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• I
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- algebra 4
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input
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semifield 52
semigroup 1
- , commutative 1
-, complete-lattice-ordered 267
semiisornorphism

- of semimodules 169
- of semirings 122
semimodule 149
- , austere 155
-, cancellative 172
- , classically torsionfree 164
-, column 212
- , compatible with a limit function 304
- , complete 260
- , countably-complete 260
- , crucial 166
-, decomposable 185
-, difference-ordered 237
-, entire 154
-, factor 164
- , faithfully cancellative 174
-, finitary 260
- , finitely-generated 153
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- , free 194
- , indecomposable 185
-, information 154
-, injective 197
-, inje ctive relative to a class 202
-, injective relative to a filter 207
- , input 197
-, noncrucial 166
-, nonzeroic 156
- of quotients 09
- , output 197
- , partially-ordered 236
-, projective 195
-, quasisimple 177
- , row 212
- , semitopological 149
- , simple 163
- , state 197
- , steady projective 197
-, strongly torsionfree 205
- , topological 149
-, torsion 204
- , torsionfree 207
- , totally-ordered 236
- , totally-solvable 293
-, uniquely-solvable 293
-, zeroic 156
-, zerosumfree 150
semmearnng 286
semiprime

- element 232
- ideal 90
semmng 1
- , additively-regular 144
-, algebraic xx269 - , algebraically-closed 43
-, archimedian 67
- , antisimple 5
- , austere 71
- , Bandelt 147
-, basic 57
- , boolean 7
-, cancellative 49
- , CLO- 267
-, compactly-generated 269
- , complete 247
-, complete-lattice-ordered 267
-, Conway 294
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-, countably complete 247,252
-, difference-ordered 228
-, distributive lattice-ordered 239
-, DLO- 239
-, Dijkstra -, division 52
-, divisory lattice-ordered 243
-, euclidean 136
- , extremal -, finitarily complete 252
-, FO- 267
- , frame ordered 267
- , Gel'fand 56
- , Girard 281
-, integral 60
-, Kleene 296
- , lattice-ordered 239
- , Lehmann 294
-, multiplicatively cancellative 54
-, noetherian 69
-, nonzeroic 50
- of differential polynomials 37
- of formal polynomials 32
- of formal power series 37
- of fractions 134
- of fractions , classical 131
- of Laurent series 132
- of (D x D)-matrices 249
- of polynomials 36
- of quotients 209
- of skew polynomials 113
- of symmetric formal polynomials 37
-, opposite 12
-, partially-ordered 5
-, plain 50
- , PLIS- 136
- , QLO- 267
- , quantalic lattice-ordered 267
-, quasilocal 65
- , reduced 98
- , semi topological 5
- , separative 118
- , simple 4
-, topological 5
-, tropical 16
-, uniquely difference-ordered 228
- , weakly uniquely difference-ordered 229
-, WUDO- 229
-, yoked 49
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-, zeroic 50
- , zerosumfree 4
semisubtractive

- closure 75
- subset 66
semi topological

- semimodule 149
- semiring 5
separating ideal 204
separative semiring 118
sequence

- , canonical 303
- , power 303
series, absorbing 179
set
-, hybrid 20
- of generators of a subsemimodule 153
- of generators of a subsem imodule, standard 192
shift 40
- , affi ne right 285
- endomorphism 159
- , right 285
Shortest Path problem 287
shuffle product 11
Sierpinski topology 7
signal 151
simp le

- semimodule 163
- semiring 4
simulation 22
skew polynomi al 113
small element 77
solvab le 286
source 289
spect rum 85
stability index 287
stable

- element 287
- function 41
standa rd

- set of generators 192
- thread 14
star operation 235
starfree language 11
state

- of a Chu space 22
- of a program 22
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197

19

153

154

205

154

197

24

137

22

66

292

38

22
112

5,165
92

167

31

24

177

3

- of an automaton
- satisfying a statement
- semimodule 197
- -updating homomorphism
steady

- homomorphism
- morphism 122
- projective semimodule
strict nucleus 234
strictly positive 223
strong

- closure 75, 155
- equivalence relation
- subset of a semimodule
- subset 66
strongly

- infinite element
- irreducible ideal
- torsionfree semimodule
- transitive relation
sub direct product
subhemiring
submonoid, fuzzy
submodule 150
submultiplicative norm
subsemimodule 150
- , absorbing 165
- , dense 205
- , generated by a given set
-, large 199
-, minimal 150
-, quas iminimal
-, torsion 206
subsemiring 3
-, basic 57
-, full 225
-, rationally closed
subset
-, closed 53
- , fuzzy 20
- with values in a semiring
subtractive

- closure 75,155
- subset of a semimodule
- subset of a semiring
subword distance
sum
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- , direct 184
- principal 272
summand , direct 184
summation 247
- , necessary 251
support 19
switching algebra 7
symbol 10
symmetric

- difference 62
- formal polynomial 37
- free monoid 37
- relation 22
symmetri zed algebra 97
system

- , discrete time dynamical 197
- morphism 197

• T
Takahashi extension 175
tame morphi sm 124
target 289
tensor product 187
theory 24
Thierrin-Vagner inverse 3
thread , standard 14
threshold 289
t imed Petri net 289
topological

- semimodule 149
- semiring 5
topologizing filter 203
topology

- , Karn er 257
-, pointless . . . . . 7
- , Sierpinski 7
-, Zariski 89
torsion

- congruence 204
- semimodule 204
- subsemim odul e 206
torsionfree semimodule 207
totally-ordered

- hemiring 223
- semimodule 236
totally-solvab le - semimodul e 293
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- semiring 293
trace 28,272
transform, of a Chu space 22
transformation 286
transition

- in a Petri net 289
- matrix 28
- matrix of an automaton 38
- system 159
transitive

- element 226
- relation 22
translation 175
transpose 212
triangular conorm 13
triangular norm 12
-, fundamental 13
trivial

- congruence relation 95,163
- extension 156
tropical semiring 16
two-sided element of a quantale 267
type of a constraint 250

• Uultrafilter 98
ultraproduct 98
unit 50
uniquely - difference ordered semi ring 228
- solvable equation 286
- solvable semimodule 293
- solvable semiring 293
universal congruence relation 163

• Vvalue 22
- of a constraint 250
variable - length code 10
- of a Chu space 22
vertex 2,21

• Wweak basis 191
weakly

- linearly indepndent 191
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- meet-principal 272
- principal 272
- sum-principal 272
- uniquely difference ordered semiring 229
weight 22
well inside 59
Wiegandt convolution 34
word 10
WUDO-semiring 229

• Y
yoked semiring 49
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• Z
Zariski topology
zero divisor
zerorc

- semimodule
- semiring
zeroid

- of a semimodule
- of a semiring
zerosumfree

- semimodule
- semiring

89
4

156
50

155
50

150
4


