feat(main.py):重构主函数调用方式,将 app() 调用封装到 main() 函数中

 feat(euler_37.py):添加截断质数问题的初始实现
 feat(euler_37_primeclass.py):添加基于质数生成器的截断质数完整解决方案
📝 docs(millerrabin_test.pdf):添加 Miller-Rabin 测试的详细文档
This commit is contained in:
2026-01-07 18:26:00 +08:00
parent 5fd04305ee
commit 09ddf3f65c
4 changed files with 219 additions and 1 deletions

View File

@@ -64,5 +64,9 @@ def version():
typer.echo("projecteuler solution version 0.1.0")
if __name__ == "__main__":
def main():
app()
if __name__ == "__main__":
main()

View File

@@ -0,0 +1,43 @@
"""
The number 3797 has an interesting property.
Being prime itself, it is possible to continuously remove digits from left to right,
and remain prime at each stage: 3797, 797, 97, and 7.
Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
"""
from itertools import product
def combine_lists(a: list[int], b: list[int|None], c: list[int]) -> list[int]:
"""将三个列表的每个元素组合成数字"""
return [int(f"{x}{y}{z}") for x, y, z in product(a, b, c)]
def is_prime(n: int) -> bool:
"""判断一个数是否为素数"""
if n < 2:
return False
for i in range(2, int(n ** 0.5) + 1):
if n % i == 0:
return False
return True
def TruncatablePrime() -> list[int]:
begin = [2, 3, 5, 7]
end = [3, 7]
middle = [1, 3, 7, 9]
res = []
for length in range(2, 7):
if length - 2 == 0:
midb = []
else:
midb = product(middle, repeat=length - 2)
midb = [int("".join(map(str, x))) for x in midb]
nums = combine_lists(begin, midb, end)
for num in nums :
if is

View File

@@ -0,0 +1,171 @@
"""
The number 3797 has an interesting property.
Being prime itself, it is possible to continuously remove digits from left to right,
and remain prime at each stage: 3797, 797, 97, and 7.
Similarly we can work from right to left: 3797, 379, 37, and 3.
Find the sum of the only eleven primes that are both truncatable from left to right and right to left.
NOTE: 2, 3, 5, and 7 are not considered to be truncatable primes.
"""
import math
import random
import time
def timer(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} taken: {end_time - start_time:.6f} seconds")
return result
return wrapper
def miller_rabin_test(n: int, k: int = 10) -> bool:
if n < 2:
return False
if n == 2 or n == 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
r, s = 0, n - 1
while s % 2 == 0:
r += 1
s //= 2
for _ in range(k):
a = random.randrange(2, n - 1)
x = pow(a, s, n)
if x == 1 or x == n - 1:
continue
for _ in range(r - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
class PrimeGenerator:
"""质数生成器"""
_cache = []
def __init__(self):
# self._cache = [] # 缓存已生成的质数
self._generator = self._prime_generator()
@classmethod
def is_prime(cls, n: int) -> bool:
"""检查是否为质数(使用缓存优化)"""
if n < 2:
return False
# 检查缓存
if cls._cache:
limit = int(math.isqrt(n))
for p in cls._cache:
if p > limit:
break
if n % p == 0:
return False
# 使用Miller-Rabin测试
return miller_rabin_test(n)
def _prime_generator(self):
"""生成质数的内部生成器"""
n = 2
yield n
n = 3
while True:
if self.is_prime(n):
PrimeGenerator._cache.append(n)
yield n
n += 2
def __iter__(self):
return self
def __next__(self) -> int:
return next(self._generator)
def __call__(self, start: int = 2):
"""从指定位置开始生成质数"""
# 重置生成器到指定位置
self._generator = self._prime_generator_from(start)
return self
def _prime_generator_from(self, start: int):
"""从指定位置开始的生成器"""
if start < 2:
n = 2
else:
n = start if start % 2 else start + 1
while True:
if self.is_prime(n):
yield n
n += 2
def primes_up_to(self, limit: int):
"""生成所有不超过limit的质数"""
if limit < 2:
return
yield 2
n = 3
while n <= limit:
if self.is_prime(n):
yield n
n += 2
def nth_prime(self, n: int) -> int:
"""获取第n个质数从1开始"""
if n < 1:
raise ValueError("n必须大于0")
# 如果已经在缓存中,直接返回
if n <= len(PrimeGenerator._cache):
return PrimeGenerator._cache[n - 1]
# 否则继续生成直到第n个
gen = self._prime_generator()
for _ in range(n):
result = next(gen)
return result
def truncate_number(number: int) -> list[int]:
"""生成一个数的所有截断形式"""
str_num = str(number)
return [int(str_num[:i]) for i in range(1, len(str_num))] + [
int(str_num[i:]) for i in range(len(str_num))
]
@timer
def main() -> None:
primes = PrimeGenerator()
res = []
n = 0
while n < 11:
prime = next(primes)
if prime < 10:
continue
truncate = truncate_number(prime)
if all(primes.is_prime(trunc) for trunc in truncate):
res.append(prime)
print(prime)
n += 1
print(f"Sum is : {sum(res)}")
if __name__ == "__main__":
main()

Binary file not shown.