feat(project):添加欧拉项目第4、5题解决方案及文档

📝 docs(README):更新项目描述并添加核心数学理念说明
🔧 chore(pyproject.toml):更新项目描述信息
♻️ refactor(euler_3.py):改进质因数分解函数并添加类型注解
💡 docs(readme):添加第4题数学分析文档和算法说明
 test(euler_3.py):添加主函数测试用例验证质因数分解功能
This commit is contained in:
2025-12-15 12:12:03 +08:00
parent d1af6aa880
commit 65999c8456
7 changed files with 203 additions and 2 deletions

View File

@@ -0,0 +1,48 @@
从数学角度,**快速**找到两个三位数相乘得到的最大回文数。
## 核心数学洞察
首先,两个三位数最大的乘积是: 999 × 999 = 998001 。所以最大的回文数一定是6位的。
**1. 回文数的结构性质**
一个6位回文数可以表示为
$$
\overline{abccba} = 100000a + 10000b + 1000c + 100c + 10b + a = 100001a + 10010b + 1100c = 11 \times (9091a + 910b + 100c)
$$
**关键结论**所有6位回文数都是**11的倍数**。
**2. 质因数推论**
如果乘积 $p \times q$ 是回文数且这个回文数是11的倍数那么
- 由于11是质数**p和q中至少有一个是11的倍数**
- 这样搜索空间直接缩小为原来的1/11
## 最优算法策略
```python
def largest_palindrome_product():
max_palindrome = 0
max_factors = (0, 0)
# 外层循环从大到小且只遍历11的倍数
for i in range(990, 100, -11): # 从990开始最大的11的倍数
# 内层循环从i开始避免重复利用乘法交换律
for j in range(999, i-1, -1):
product = i * j
# 提前终止:如果乘积已小于当前最大值
if product <= max_palindrome:
break
# 检查是否为回文数
if str(product) == str(product)[::-1]:
max_palindrome = product
max_factors = (i, j)
break # 找到即可跳出内层循环
return max_palindrome, max_factors
# 结果906609 = 913 × 993
```