📝 docs(0031):添加动态规划数学原理和权威文献参考
✨ feat(0032):新增Pandigital数字问题解决方案
This commit is contained in:
82
solutions/0032.Pandigital/euler_32.py
Normal file
82
solutions/0032.Pandigital/euler_32.py
Normal file
@@ -0,0 +1,82 @@
|
||||
"""
|
||||
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once;
|
||||
for example, the 5-digit number, 15234, is 1 through 5 pandigital.
|
||||
|
||||
The product 7254 is unusual, as the identity, 39 × 186 = 7254,
|
||||
containing multiplicand, multiplier, and product is 1 through 9 pandigital.
|
||||
|
||||
|
||||
Find the sum of all products whose multiplicand/multiplier/product identity can be written
|
||||
as a 1 through 9 pandigital.
|
||||
HINT: Some products can be obtained in more than one way so be sure to only include it once in your sum.
|
||||
"""
|
||||
|
||||
import time
|
||||
from itertools import permutations
|
||||
|
||||
|
||||
def timer(func):
|
||||
def wrapper(*args, **kwargs):
|
||||
start = time.time()
|
||||
result = func(*args, **kwargs)
|
||||
end = time.time()
|
||||
print(f"{func.__name__} took {end - start:.6f} seconds")
|
||||
return result
|
||||
|
||||
return wrapper
|
||||
|
||||
|
||||
def is_pandigital(n: list[str]) -> bool:
|
||||
if n[0] == "1":
|
||||
x = [int("".join(n[:2]))]
|
||||
y = [int("".join(n[2:5]))]
|
||||
else:
|
||||
x = [int(n[0]), int("".join(n[:2]))]
|
||||
y = [int("".join(n[1:5])), int("".join(n[2:5]))]
|
||||
z = int("".join(n[5:]))
|
||||
for i in range(len(x)):
|
||||
if x[i] * y[i] == z:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def pandigital_products() -> list[int]:
|
||||
all_permuts = permutations("123456789")
|
||||
res = set()
|
||||
for perm in all_permuts:
|
||||
if is_pandigital(list(perm)):
|
||||
res.add(int("".join(perm[5:])))
|
||||
return list(res)
|
||||
|
||||
|
||||
@timer
|
||||
def main_compute() -> None:
|
||||
res = set()
|
||||
for x in range(2, 10):
|
||||
for z in range(1234, 9877):
|
||||
if z % x == 0:
|
||||
y = z // x
|
||||
if "".join(sorted(str(x) + str(y) + str(z))) == "123456789":
|
||||
res.add(z)
|
||||
print(f"{x} * {y} = {z}")
|
||||
for x in range(12, 99):
|
||||
for z in range(1234, 9877):
|
||||
if z % x == 0:
|
||||
y = z // x
|
||||
if "".join(sorted(str(x) + str(y) + str(z))) == "123456789":
|
||||
res.add(z)
|
||||
print(f"{x} * {y} = {z}")
|
||||
res = list(res)
|
||||
print(f"= {sum(res)}")
|
||||
|
||||
|
||||
@timer
|
||||
def main() -> None:
|
||||
res = pandigital_products()
|
||||
print("+".join(map(str, res)))
|
||||
print(f"= {sum(res)}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main_compute()
|
||||
7
solutions/0032.Pandigital/readme.md
Normal file
7
solutions/0032.Pandigital/readme.md
Normal file
@@ -0,0 +1,7 @@
|
||||
比较容易确定这样一点:
|
||||
1. 可实现的数位分布:【2,3,4】,【1,4,4】。
|
||||
2. 1位数: 2-9
|
||||
3. 2位数: 12-98
|
||||
4. 4位数: 1234-9876
|
||||
|
||||
所以,最简单的就是试算所有可能。我也考虑了使用排列方法进行计算,但是效率比直接计算要略低。
|
||||
Reference in New Issue
Block a user