📝 docs(0037.TruncatablePrimes):添加readme.md文档解释截断素数只有11个的原因 ✨ feat(euler_38.py):新增全数字倍数问题的解决方案,包含优化算法和详细注释
85 lines
2.5 KiB
Python
85 lines
2.5 KiB
Python
"""
|
||
Take the number 192 and multiply it by each of 1, 2, and 3:
|
||
|
||
192 * 1 = 192
|
||
192 * 2 = 384
|
||
192 * 3 = 576
|
||
|
||
By concatenating each product we get the 1 to 9 pandigital, 192384576.
|
||
We will call 192384576 the concatenated product of 192 and (1,2,3).
|
||
|
||
The same can be achieved by starting with 9 and multiplying by 1,2,3,4, and 5,
|
||
giving the pandigital, 918273645, which is the concatenated product of 9 and (1,2,3,4,5).
|
||
|
||
What is the largest 1 to 9 pandigital 9-digit number that can be formed as the concatenated product
|
||
of an integer with (1,2,...,n) where n > 1?
|
||
"""
|
||
|
||
import time
|
||
|
||
|
||
def timer(func):
|
||
def wrapper(*args, **kwargs):
|
||
start_time = time.time()
|
||
result = func(*args, **kwargs)
|
||
end_time = time.time()
|
||
print(f"Execution time: {end_time - start_time:.6f} seconds")
|
||
return result
|
||
return wrapper
|
||
|
||
|
||
# def max_pandiMulti():
|
||
# max_num = 0
|
||
# key = [1,2,3,4,5]
|
||
# res = (0, [])
|
||
# ok = False
|
||
# for i in range(9999, 9, -1):
|
||
# mul_keys = [i * j for j in key]
|
||
# for j in range(5) :
|
||
# numx = "".join(map(str, mul_keys[:j+1]))
|
||
# if len(numx) == 9 and set(numx) == set('123456789'):
|
||
# max_num = max(max_num, int(numx))
|
||
# if max_num == int(numx):
|
||
# res = (i, key[:j+1])
|
||
# ok = True
|
||
# break
|
||
# if ok:
|
||
# break
|
||
# return max_num, res
|
||
|
||
|
||
def max_pandiMulti_better():
|
||
max_num = 0
|
||
res = (0, [])
|
||
# 配置列表:(n, start, end),其中 start > end,表示从大到小遍历
|
||
configs = [
|
||
(2, 9999, 5000), # n=2: i ∈ [5000, 9999]
|
||
(3, 333, 100), # n=3: i ∈ [100, 333]
|
||
(4, 33, 25), # n=4: i ∈ [25, 33]
|
||
(5, 9, 5) # n=5: i ∈ [5, 9]
|
||
]
|
||
|
||
for n, start, end in configs:
|
||
for i in range(start, end - 1, -1):
|
||
# 生成拼接字符串
|
||
s = ''.join(str(i * k) for k in range(1, n + 1))
|
||
# 检查是否为1-9 pandigital
|
||
if set(s) == set('123456789'):
|
||
num = int(s)
|
||
if num > max_num:
|
||
max_num = num
|
||
res = (i, list(range(1, n + 1)))
|
||
break # 当前n中,i递减,第一个满足条件的即为最大,可终止内层循环
|
||
|
||
return max_num, res
|
||
|
||
|
||
@timer
|
||
def main():
|
||
maxnum, ress = max_pandiMulti_better()
|
||
print(f"{maxnum} : {ress}")
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|